Уравнение теплового баланса здания формула

Тепловой баланс зданий и сооружений

Тепловой баланс зданий и сооружений позволяет установить соотношение между тепловыми потерями и количеством тепла, выделяемым различными источниками внутри зданий и сооружений.

В общем случае составление тепловых балансов позволяет определить КПД установки, расход топлива или электроэнергии для получения единицы тепловой энергии, расход пара (или другого теплоносителя) для получения единичной продукции. Тепловой баланс это соотношение, связывающее приход и расход теплоты и составляется на единицу выпускаемой продукции, на 1 кг твердого или жидкого топлива, на 1 м 3 газообразного топлива или в процентах, %, от введенной (суммарной) располагаемой теплоты.

Полученная информация о тепловом балансе организации или предприятия используется для исследования либо отдельного объекта, либо организации в целом. Методы анализа полученной информации делятся на физические и финансовые [3].

Физический метод исследования оперирует с физическими или натуральными параметрами и имеет целью определение характеристик эффективности энергоиспользования. Он включает следующие этапы:

1. Все данные энергопотребления приводятся к единой международной системе измерения – СИ.

2. Определяется состав объектов: отдельные потребители, подразделения, технологические линии, цеха или предприятие в целом.

3. Проводится распределение потребляемой энергии по отдельным объектам, а также видам энергоресурсов и энергоносителей: электроэнергия, пар, горячая вода, топливо (твердое, жидкое, газообразное).

4. Определяются факторы, влияющие на потребление энергии: температура наружного воздуха (для систем отопления и вентиляции), расход топлива в паровых теплогенераторах (для систем пароснабжения) и водогрейных котлах (для систем теплоснабжения), электрической энергии (для технологического оборудования, холодильников).

5. Вычисляется удельное энергопотребление по отдельным видам энергоресурсов и объектам, которое определяется отношением энергопотребления к выпуску продукции (Вт или 1 кг топлива/на единицу продукции). Значение полученного удельного энергопотребления сравнивается с нормативными значениями, после чего делается вывод об эффективности энергоиспользования как по отдельным объектам, так и по предприятию в целом. Нормативные значения могут быть заданы, рассчитаны или взяты из периодической литературы.

6. Определяются прямые потери различных энергоносителей за счет потерь электроэнергии, утечек воды или конденсата, недогрузки или простоев оборудования, потерь теплоты (с уходящими топочными газами, химический и механический недожог, от наружных ограждений в окружающую среду), неквалифицированной эксплуатации и других выявленных нарушений.

7. Выявляются наиболее неблагоприятные объекты с точки зрения эффективности энергоиспользования.

Финансовый метод исследования оценивает прямые потери в денежном выражении и проводится параллельно с физическим методом исследования. Он придает экономическое обоснование выводам, полученным на основании физического метода исследования и позволяет вычислить распределение затрат на энергоресурсы по всем объектам энергопотребления и видам энергоресурсов. Финансово-экономические критерии имеют важное значение при исследовании энергосберегающих рекомендаций и проектов.

В данной лекции рассмотрен метод составления энергетических балансов здании и сооружений на примере квартиры в многоквартирном доме. Более широкий подход к составлению тепловых балансов приводится в литературе [3].

В осенне-зимний период создание приемлемого теплового режима помещения обеспечивается преимущественно посредством системы отопления. В расчетах тепловых балансов гражданских помещений учитываются также тепловыделения бытовых электроприборов, особенно если они работают длительное время; теплоотдача от человека, а для производственных помещений — и другие источники тепла.

При этом помещение теряет теплоту через наружные ограждения (окна и стены), она также расходуется на нагревание наружного воздуха, проникающего через неплотности ограждений или вентиляционные отверстия и каналы.

В установившемся режиме потери равны поступлениям теплоты. Посредством расчета всех составляющих поступления и расхода теплоты определяется избыток или дефицит теплоты. Дефицит теплоты указывает на необходимость установки дополнительных источников тепла; избыток теплоты на количественном уровне устраняется вентиляцией, на качественном – уменьшением площади или заменой отопительных приборов.

Уравнение теплового баланса для квартиры для стационарного режима имеет вид [6]:

, [Вт] (1)

где — теплота, уносимая через ограждения;

— теплота, расходуемая на нагрев инфильтрующегося воздуха;

— теплота, поступающая от системы отопления;

— теплота, выделяемая бытовыми электроприборами;

— теплота, выделяемая человеком.

Распишем каждое из составляющих уравнения теплового баланса и обозначим все входящие в уравнения величины.

Теплота, уносимая через ограждения.Указанные составляющие уравнения теплового баланса следует определять с округлением до 10 Вт по формуле [6]:

, (2)

где — cтены или окна;

— площади соответственных наружных ограждений, м 2 , правила обмера которых следующие:

а) площади окон, дверей измеряются по наименьшему строительному проему,

б) площади наружных стен измеряются:

— в плане – по внешнему периметру между наружным углом и осями внутренних стен,

— по высоте (в средних этажах) – от поверхности пола до поверхности пола следующего этажа,

в) при необходимости определения теплопотерь через внутренние ограждения их площади берутся по внутреннему обмеру;

, — температуры воздуха, расчетная в помещении и наружная для холодного периода года соответственно, °С, согласно [4, 5];

— добавочные потери теплоты в долях от основных потерь, определяемые для наружных ограждений в зависимости от их ориентации на сторону света, согласно [6];

— коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху по [8];

— сопротивление теплопередаче ограждающей конструкции, м 2 ×°С/Вт, следует определять по [8] по формуле:

, (3)

где — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций Вт/(м 2 ×°С), находится из таблиц [8];

— термическое сопротивление ограждающей конструкции, м 2 ×°С/Вт,

где — толщина данного слоя в составе ограждающей конструкции, м,

— теплопроводность данного слоя в составе ограждающей конструкции, Вт/(м×°С);

Для многослойных ограждающих конструкций определяется по формуле [8]:

, (4)

где , , — термические сопротивления каждого из слоев ограждения;

— коэффициент теплоотдачи (для зимних условий) наружной поверхности ограждающей конструкции, Вт/(м 2 ×°С), находится из таблиц [9].

Теплота, расходуемая на нагрев инфильтрующегося воздуха. Расчет проводится согласно [4, 6].

Расход теплоты , Вт, на нагревание инфильтрующегося воздуха в помещениях жилых и общественных зданий при естественной вытяжной вентиляции, не компенсируемого подогретым приточным воздухом, следует принимать равным большей из величин, полученных из расчета по формулам (4.5) и (4.9), указанным ниже [6].

, Вт (5)

где — расход инфильтрующегося воздуха, кг/ч, через ограждающие конструкции помещения, определяемый по формуле (6);

— удельная теплоемкость воздуха, равная 1000 Дж/(кг×К);

— коэффициент учета влияния встречного теплового потока в конструкциях, равный:

а) 0,7 — для стыков панелей стен и окон с тройными переплетами,

б) 0,8 -для окон и балконных дверей с раздельными переплетами,

в)1,0 — для одинарных окон, окон и балконных дверей со спаренными переплетами и открытых проемов.

Расход инфильтрующегося в помещение воздуха , кг/ч, через неплотности наружных ограждений следует определять по формуле [6]:

, (6)

где , — площади наружных ограждающих конструкций, м 2 , соответственно световых проемов (окон, балконных дверей, фонарей) и других ограждений;

— площадь щелей, неплотностей и проемов в наружных ограждающих конструкциях, м 2 ;

, — расчетная разность давлений, определяемая по формуле (7), между давлениями на наружной и внутренней поверхностях ограждающих конструкций соответственно на расчетном этаже при Dp1=10 Па;

Разность давлений воздуха на наружной и внутренней поверхностях ограждающих конструкций , Па, следует определять по формуле [8]:

, (7)

где — высота здания (от поверхности земли до верха карниза), м;

, — удельный вес соответственно наружного и внутреннего воздуха, Н/м 3 , определяемый по формуле

, (8)

— максимальная из средних скоростей ветра по румбам за январь, м/c;

— сопротивление воздухопроницанию, м 2 ×ч×Па/кг определяемое для окон и балконных дверей по формуле [8]:

(9)

— нормативная воздухопроницаемость наружных ограждающих конструкций, кг/(м 2 ×ч), находится из таблицы в [8];

— длина стыков стеновых панелей, м.

, Вт (10)

где — расход удаляемого воздуха, м 3 /ч, не компенсируемый подогретым приточным воздухом; для жилых зданий — удельный нормативный расход 3 м 3 /ч на 1 м 2 жилых помещений;

— плотность воздуха в помещении, кг/м 3 .

Теплота, поступающая от системы отопления.Тепловая потребность помещения, которую должна обеспечивать система отопления, есть (см. формулу (1)):

, Вт (11)

, Вт (12)

, Вт (13)

где — теплоотдача от радиаторов, Вт;

— теплоотдача от подводящих трубопроводов, Вт.

С помощью формул (11) и (13) нужно найти и сопоставить действительную и требуемую теплоотдачу от радиаторов в квартире. При этом следует:

1. Найти — действительную теплоотдачу от радиаторов — из таблиц [4, 5] в зависимости от типа радиаторов, количества секций и расчетной температуры воздуха в помещении;

2. Найти по изложенной ниже методике и, подставив ее в формулу (13), получить — требуемую теплоотдачу — и сопоставить ее с .

найдем по методике, изложенной в [10]. Для этого по таблице определим площадь в эквивалентных квадратных метрах (экм) одного метра неизолированного участка трубопровода в зависимости от его диаметра. Найдем теплоотдачу с 1 экм по формуле:

, (14)

где — разность между температурой воды, поступающей в радиатор и расчетной температурой воздуха в помещении.

Тогда теплоотдача от подводящих труб вычисляется по формуле:

, (15)

где — поправочный коэффициент на статус подводящих трубопроводов и равен:

а) 0.5 – для стояков;

б) 0.9 – для подводок к радиаторам;

в) 0.25 – для магистралей над потолком;

г) 0.75 — для магистралей под потолком;

— длина отдельных участков, м.

Теплоотдача с гладкотрубного змеевика в ванной рассчитывается по формуле, указанной в [10], Вт:

, (16)

где — площадь требуемой теплоотдающей поверхности змеевика, экм;

= 1.0 (для ванной комнаты); 1.03 (для других помещений)- поправочный коэффициент на остывание воды в трубопроводах;

= 0.95 – коэффициент учета числа секций;

= 1.14 (для ванной комнаты); 0.95 (для других помещений) – коэффициент учета способа подводки теплоносителя к нагревательному прибору и изменение теплоотдачи в зависимости от относительного расхода воды;

= 1.0 – коэффициент учета способа установки нагревательного прибора и различные укрытия.

Теплоотдача от бытовых электроприбороввычисляется по формуле[11]:

, Вт (17)

где — потребляемая прибором мощность, Вт;

— коэффициент, учитывающий переход электрической энергии в тепловую;

— время работы прибора, с/сут.

Теплоотдача от человека вычисляется по формуле [11]:

, Вт (18)

где — количество человек в квартире;

— коэффициент, учитывающий интенсивность физической нагрузки:

— легкая работа 1.0,

— средняя работа 1.07,

— тяжелая работа 1.15;

— коэффициент, учитывающий утепленность одежды:

— легкая одежда 1.0,

— одежда средней утепленности 0.66,

— одежда высокой утепленности 0.5;

— подвижность воздуха в помещении, 0.10 – 0.12 м/с;

— время пребывания людей в помещении, с/сут.

Оценка удельной тепловой характеристики квартиры.Удельную тепловую характеристику квартиры можно рассчитать по формуле [11]:

, Вт/(м 3 ×°С) (19)

где — расчетные тепловые потери через наружные ограждения всеми помещениями квартиры, Вт;

— объем квартиры по внешнему обмеру, м 3 .

Расчет годовых затрат теплоты.В [9] указывается, что для Санкт-Петербурга месяцы с октября по апрель включительно есть месяцы со среднемесячной температурой менее 8 °С. Согласно [10], продолжительность отопительного сезона составляет 219 суток. При этом средняя температура наружного воздуха в отопительный сезон составляет –2.2 °С.

Найдем годовые затраты теплоты по формуле [11]:

, ГДж (20)

где — установочная тепловая мощность системы отопления по укрупненным показателям, Вт:

(21)

— средняя температура наружного воздуха в отопительный сезон, °С;

— продолжительность отопительного сезона, сут.

Таким образом вычислив все вышеприведенные компоненты можно составить тепловой баланс помещения, оценить его удельную тепловую характеристику и годовые затраты на отопление и выработать перечень мероприятий по сбережению тепловой энергии.

Дата добавления: 2016-11-29 ; просмотров: 10919 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Энергоэффективность систем обеспечения параметров микроклимата. Тепловой баланс помещений

Сегодня мы начинаем публиковать цикл статей, посвящённых анализу методов создания и поддержания теплового режима помещений в холодный период года. Первая статья цикла расскажет о развитии современных энергоэффективных систем создания и поддержания теплового комфорта в помещениях. По мнению авторов, это развитие требует уточнения основных закономерностей по расчёту теплопотребления зданиями.

Составляющие теплового баланса помещения

Физический смысл теплового баланса помещения в холодный период года заключается в поддержании постоянной температуры внутреннего воздуха tв [ °C] системами обеспечения параметров микроклимата. Сведение всех составляющих поступления и расхода теплоты определяет дефицит или избыток её в помещении. Тепловой баланс составляется для таких расчётных условий, когда возникает наибольший дефицит теплоты. Наличие дефицита теплоты ΔQ [Вт] показывает следующую количественную характеристику мощности системы отопления [Вт] [1]:

где Qогр — потери теплоты через наружные ограждения, Вт; Qин — расход теплоты на нагрев инфильтрующегося воздуха, Вт; Qт-б — технологические или бытовые поступления (расходы) теплоты, Вт.

Для производственных помещений промышленных зданий в (1) при расчёте мощности систем отопления логично и оправдано определять величину ± Qт-б для периодов технологических циклов с наименьшими тепловыделениями.

Формирование теплового режима в помещениях жилых и общественных зданий во многом отличается от производственных. При продолжительном отсутствии в квартире жильцов, а в общественных зданиях посетителей или обслуживающего персонала какие-либо дополнительные (бытовые) тепловыделения Qт-б отсутствуют. Поэтому они не должны учитываться при расчётах тепловых балансов данных помещений [2, 3], то есть расчётные температурные параметры воздуха должны поддерживаться при отсутствии людей и неработающем бытовом или служебном оборудовании.

Однако в отечественную нормативную литературу для снижения реальной расчётной мощности систем отопления было введено понятие теплового потока, поступающего в жилые комнаты и кухни: 21 Вт на 1 м 2 площади пола [4]; затем

он был произвольно уменьшен до 10 Вт на 1 м 2 площади пола [1]. Данное положение привело к законодательному нарушению санитарно-гигиенических норм по поддержанию минимальной расчётной температуры в жилых и общественных помещениях. Авторами нормативов по субъективному введению бытового теплового потока при расчёте теплового баланса жилого помещения подменено понятие «энергоэффективность», то есть рациональное и, по возможности, полное использования потенциала искусственно генерируемой энергии, на «энергосбережение», которое осуществляется административными методами.

Поэтому зависимость (1) для жилых и общественных зданий должна иметь следующий вид:

Формирование теплового режима в помещениях жилых и общественных зданий во многом отличается от производственных. Например, при продолжительном отсутствии в квартире жильцов, а в общественных зданиях посетителей или обслуживающего персонала какие-либо дополнительные тепловыделения отсутствуют

В сельскохозяйственных зданиях расчётный температурный режим в холодный период года возможно, как правило, создать только за счёт варьирования теплофизическими характеристиками наружных ограждений (пассивных элементов систем обеспечения параметров микроклимата). В процессе жизнедеятельности животные, птицы, хранящееся сочное растительное сырьё (картофель, овощи, фрукты) выделяют явную теплоту: физиологическую Qф или биологическую Q6. Рациональный подбор теплофизических характеристик наружных ограждений позволяет в таких помещениях отказаться от искусственно генерируемой теплоты. Поддержание расчётной внутренней температуры осуществляется за счёт утилизации явной теплоты, то есть помещения эксплуатируются как неотапливаемые с естественными источниками энергии. Для помещений таких энергопассивных производственных сельскохозяйственных комплексов уравнение теплового баланса имеет вид:

Потери теплоты отапливаемыми помещениями через ограждения

Расчётные трансмиссионные потери теплоты помещением при выборе тепловой мощности определяются как сумма потерь через все ограждения. Количество теплоты, проходящее через каждое ограждение при стационарном режиме Qогр [Вт] определяется по формуле Фурье [1] (расшифровка обозначений в формуле (4) приведена далее в статье):

Основным критерием теплотехнических показателей энергоэффективных зданий должно быть снижение затрат тепловой энергии системами обеспечения параметров микроклимата.

Не претендуя на полноту освещения всех вопросов по эффективному использованию теплоты, предлагаемый в статье анализ физических процессов переноса теплоты через ограждения позволяет уточнить факторы формирования температурного режима помещений.

Рассмотрим соответствие закономерностей переноса теплоты и логики протекания этих процессов по основополагающей формуле (4) некоторым современным широко рекламируемым (в том числе в нормативных источниках) рекомендациям по рациональному использованию подаваемой в помещения тепловой энергии.

Расчётная площадь каждой ограждающей конструкции А [м 2 ] вычисляется с соблюдением определённых условно принятых правил обмера, которые стабильны с первой половины ХХ века. В них заложены особенности переноса теплоты теплопроводностью в каждом из конструктивных видов ограждений.

Положение ограждения относительно наружного воздуха (коэффициент n) учитывается для ограждений, отделяющих отапливаемые помещения от неотапливаемых (чердаки, подвалы, скотные дворы в сельских домах).

Температура в неотапливаемых помещениях всегда выше наружной. Поэтому потери теплоты уменьшаются и соответствуют разности температур (например, для чердака tчер):

Значения понижающего расчётную разность температур коэффициента n, приведённые в нормах [5], несмотря на их ориентировочный характер, показали свою востребованность и необходимость в практических расчётах. Термодинамическая основа коэффициента n показывает возможную степень использования энергетического потенциала теплоносителя системы отопления путём последовательного использования как высокопотенциальной, так и низкопотенциальной энергии. Многие способы наиболее полной утилизации поданной в здание теплоты характерны для индивидуальных зданий, имеющих чердаки, подполья, сени, тамбуры, пристроенные животноводческие помещения. В нормативных документах следует расширить область использования коэффициента n, разработать и внести его значения для многоквартирных домов. Например, значения n отсутствуют: для лифтовых холлов домов с наружными пожарными лестницами, для «тёплых» чердаков с естественной или механической вытяжной вентиляцией, для застеклённых лоджий и т.п.

Об этом цикле статей

Представленный в данном цикле статей анализ методов создания и поддержания теплового режима помещений в холодный период года не является альтернативой общепринятых апробированных практикой методик расчёта, конструирования и эксплуатации систем обеспечения параметров микроклимата. Необходимость анализа современных тенденций формирования комфортного теплового режима помещений вызвана повышением требований по энергосбережению в строительстве. Однако предлагаемые новые решения по экономии тепловой энергии (даже включённые в нормативную литературу) не всегда соответствуют физическим законам тепломассопереноса, санитарным нормам, а иногда и здравому смыслу. При этом, жёстко регламентируя применение одних технических решений, действующие нормы не учитывают их совместную работу с другими элементами эксплуатируемых систем.

Нормативные документы, регламентирующие проектирование и эксплуатацию систем обеспечения параметров микроклимата, должны включать научно систематизированные, физически обоснованные и экономичные схемы систем, порядок их выбора и расчёта, рекомендации по реконструкции объектов, не позволяющие различной их трактовки. С другой стороны, они должны позволять отказываться от одних средств автоматизации и кажущегося «энергосбережения», являющихся обязательными по нормативным документам, на иные, способные повысить энергетические и экономические показатели систем. Этот фактор является особо актуален с учётом появившегося в области принятия инженерных решений не проверенных в отечественной практике зарубежных стереотипов, навязанных рекламой или лоббированием частными компаниями.

Проведённый анализ нормативной и справочной литературы по энергосбережению в строительстве подготовлен в рамках выполнения НИР «Разработка и научное обоснование теплофизических закономерностей переноса теплоты и влаги в неотапливаемых производственных сельскохозяйственных зданиях» с финансированием из средств Минобрнауки России, в рамках базовой части государственного задания на научные исследования.

Разность температуры внутреннего tв и наружного воздуха tн5 [°C] в холодный период года с коэффициентом обеспеченности kоб = 0,92 в формуле (4) определяет максимальную величину переноса теплоты из помещения в атмосферу. Расчётные значения температуры (tв каждого из помещений жилых зданий приведены в нормах [6]. Современная квартира представляет собой единый комплекс обитания семьи, поэтому практически невозможно поддерживать стабильный индивидуальный температурный режим в каждом из помещений, но для фиксации общего количества необходимой подаваемой в квартиру теплоты это различие имеет определённое значение.

Более сложным является расчёт потерь или поступлений теплоты через внутренние ограждения смежных помещений с различной расчётной температурой. Потери или поступления теплоты допускается не учитывать, если разность температуры в этих помещениях не более 3 °С [1]. В научной и справочной литературе не обнаружено теплотехнических и каких-либо иных объяснений субъективному снижению существовавшей ранее разности температур от 5 до 30 °C. Следствием является возникновение ряда практически тупиковых расчётных ситуаций. Например, расчёт нестационарного по функциональному назначению температурного режима ванных, совмещённых туалетов (25 °C) и окружающих помещений (18-20 °C).

Не изученной до практического внедрения является методика нормирования и теплофизического расчёта количественных показателей ограждений между смежными помещениями с различной расчётной температурой.

Они важны не только по количественным характеристикам переноса теплоты, но и по стабилизации влажностного состояния внутренних ограждений. Необходимым и обязательным условием должна быть недопустимость наблюдаемой на практике конденсации водяных паров на внутренних поверхностях ограждений смежных помещений с более высокой температурой. Характерный пример, ограждение между кухней tв = 20 °C) и лестничной клеткой в многоэтажных домах с лифтовыми холлами tв = 16 °C) и в жилых домах с неотапливаемыми лестничными клетками tв = 5 °C). Только для единственного последнего случая СНиП 23-02-2003 [5] при разности расчётных температур смежных помещений 6 °С и более обязывает нормировать и, соответственно, конструктивно менять ограждающие конструкции.

Ориентированные на другие стороны горизонта наружные ограждения получают в холодный период года меньшее количество лучистой энергии, вследствие чего их наружные поверхности имеют более низкую температуру и потери теплоты через них увеличиваются

Добавки к основным потерям теплоты отапливаемых помещений (Σβ, доли), то есть определение реальных потерь теплоты отапливаемым помещением, относится до настоящего времени к наименее изученному, субъективно трактуемому вопросу. Количественные характеристики добавок к основным потерям теплоты составляют [1]:

Добавки на ориентацию по сторонам горизонта βст.г, согласно нормам, принимаются на все вертикальные и наклонные (проекции на вертикаль) ограждения. Условно из-за наличия солнечной радиации за расчётную принята ориентация наружных ограждений на юг и юго-запад (βст.г = 0). Считается, что ориентированные на другие стороны горизонта наружные ограждения получают в холодный период года меньшее количество лучистой энергии, вследствие чего их наружные поверхности имеют более низкую температуру и потери теплоты через них увеличиваются. В то же время наиболее холодный период суток приходится на ночные и предутренние часы при отсутствии лучистого теплопритока, а теплоинерционность непрозрачных ограждающих конструкций препятствует колебаниям суточных температур их внутренних поверхностей. Данные добавки βст.г существуют с начала прошлого века [3], считаются традиционными и незыблемыми, однако они противоречат физическому смыслу процесса определения максимального дефицита теплоты в помещении и не должны учитываться при расчётах мощности систем отопления.

Расчет систем отопления (часть 3 — Расчет радиаторов)

Итак, исходя из предыдущих статей стало ясно, что комфортные параметры внутреннего воздуха в помещениях в зимний период зависят напрямую от того соответствует ли мощность системы отопления здания количеству потерь тепла. В устоявшемся режиме здания все теплопотери должны быть равны мощности системы отопления. Это и называется тепловым балансом здания.

Тепловой баланс здания

Если в помещении есть много источников выделения тепла (тепловыделения от большого количества людей, от солнечной радиации или иных процессов, сопровождающихся выделением тепла), то данные показатели также должны быть учтены в тепловом балансе здания.

Теплопотери и теплопоступления в помещении общественного здания.

Но, как правило, в условиях континентального климата для жилых зданий этими показателями пренебрегают, устанавливая системы автоматики на системы отопления здания или термостатические вентиля на приборы отопления. Этими мероприятиями можно поддерживать постоянную температуру в помещениях независимо от колебаний температуры наружного воздуха или внутренних тепловых возмущений. В производственных или административных зданиях такие теплопоступления обычно компенсируются системами вентиляции.

Итоговый тепловой баланс здания определяется следующим образом:

Тепловой баланс здания определяется по максимальным значениям потерь тепла в зимний период года при минимальных расчетных температурах наружного воздуха, влажности и скорости ветра для конкретного региона строительства. Все расчетные параметры регламентируются в нормативной документации, а, в частности, в СНиП 23-01-99 «Строительная климатология».

Для рассматриваемого примера теплопотери здания, а конкретно нагрузка на систему отопления, могут значительно отличаться по каждому помещению, поэтому использование удельных показателей, рассчитанных ранее носит чисто информационный характер. На практике следует выполнить точный теплотехнический расчет.

Итак, тепловой баланс для помещения площадью 8,12 м? выглядит следующим образом:

Расчет и подбор радиаторов отопления.

Радиаторы или конвекторы являются главными элементами отопительной системы, так как их основной функцией является передача тепла от теплоносителя воздуху в помещении или поверхностям комнаты. Мощность радиаторов при этом должна четко соответствовать тепловым потерям по помещениям. Из предыдущих разделов цикла статей видно, что укрупнено мощность радиаторов можно определить по удельным показателям по площади или объему комнаты.

Так, для отопления помещения в 20 м? с одним окном требуется в среднем установить прибор отопления мощностью 2 кВт, а если учесть небольшой запас на поверхность в размере 10-15%, то мощность радиатора составит 2,2 кВт ориентировочно. Этот метод подбора радиаторов является достаточно грубым, так как не учитывает много значимых особенностей и строительных характеристик здания. Более точным является подбор радиаторов на основании теплотехнического расчета жилого дома, который выполняется специализированными проектными организациями.

Основным параметром для подбора типоразмера прибора отопления является его тепловая мощность. А в случае с секционными алюминиевыми или биметаллическими радиаторами указывается мощность одной секции. Наиболее часто используемыми в системах отопления радиаторами являются приборы с межосевым расстоянием 350 или 500 мм, выбор которых основан, прежде всего на конструкции окна и отметке подоконника относительно финишного напольного покрытия.

Мощность 1 секции
радиатора
по паспорту, Вт
Площадь комнаты, м2
10121416182022
Количество секций
140891012131516
150781011121415
16078910121314
1806789101213
1906789101112
200567891011

В техническом паспорте на приборы отопления производители указывают тепловую мощность применительно к каким-либо температурным условиям. Стандартными являются параметры теплоносителя 90-70 °C, в случае низкотемпературного отопления тепловую мощность следует корректировать согласно коэффициентам, указанных в технической документации.

В этом случае мощность приборов отопления определяется следующим образом:

?T является средней величиной между температурой подающего и обратного теплоносителя и определяется по формуле:

Паспортными данными является мощность радиатора Q и температурный напор, определенные в стандартных условиях. Произведение коэффициентов k*A является величиной постоянной и определяется сначала для стандартных условий, а затем можно подставить в формулу для определения фактической мощности радиатора, который будет работать в системе отопления с параметрами, отличающимися от принятых.

Для каркасного дома, рассматриваемого в качестве примера с толщиной изоляции 150 мм, подбор радиатора для помещения площадью 8,12 м2 будет выглядеть следующим образом.

Ранее мы определили, что удельные теплопотери для углового помещения с учетом инфильтрации 125 Вт/м2, значит, мощность радиатора должна составлять не менее 1 015 Вт, а с запасом в 15% 1 167 Вт.

Для установки доступен радиатор мощностью 1,4 кВт при параметрах теплоносителя 90/70 градусов, что соответствует температурному напору ?T= 60 градусов. Планируемая система отопления будет работать на параметрах воды 80/60 градусов (?T=50) Следовательно, чтобы удостовериться в том, что радиатор сможет полностью перекрыть теплопотери помещения необходимо определить его фактическую мощность.

Для этого, определив значение k*A=1400/60=23,3 Вт/град, определяем фактическую мощность Qфакт=23,3*50=1167 Вт, что полностью удовлетворяет требуемой тепловой мощности прибора отопления, который должен быть установлен в данном помещении.

Видео ролик на тему расчета мощности радиатора:

Влияние способов подключения и места установки на теплоотдачу радиаторов

При расчете фактической мощности радиаторов следует знать, что теплоотдача приборов также зависит и от способа размещения. Фактическая мощность, полученная в результате расчетов, показывает какое количество тепла радиатор отдаст при расчетных параметрах теплоносителя, грамотной схеме подключения, сбалансированной системе отопления, а также при установке открыто на стене или под окном без использования декоративных экранов.

Как правило, оконные проемы являются строительными элементами с максимальными потерями тепла вне зависимости от количества камер и прочих энергоэффективных показателей. Поэтому радиаторы отопления принято размещать в пространстве под окном. В таком случае радиатор, нагревая воздух в зоне установки, создает некую душирующую завесу вдоль окна, направленную вверх помещения и позволяющую отсекать поток холодного воздуха. При смешивании холодного воздуха с теплыми потоками от радиатора возникают конвективные потоки в помещении, которые позволяют увеличить скорость прогрева.

Рекомендуется устанавливать радиаторы шириной не меньше половины ширины оконного проема.

Еще одним требованием увеличить эффективность обогрева комнаты является подбор габарита радиатора относительно ширины оконного проема. Длину радиатора рекомендуется подбирать не мене половины ширины оконного проема. В противном случае будет велика вероятность образования холодных зон в непосредственной близости к окну и будет заметно снижена конвективная составляющая обогрева помещения.

Если в здании присутствует большое количество угловых комнат, то следует размещать такое количество приборов отопления, равное количеству наружных ограждающих конструкций.

Например, для помещения 1-го этажа рассматриваемого в качестве примера жилого дома площадью 8, 12 м2 следует предусматривать по 2 радиатора. Один располагается под оконными конструкциями, второй или у противоположного окна или у глухой стены, но в максимальном приближении к углу помещения. Таким образом, будет соблюден максимально равномерный прогрев всех комнат.

Если система отопления дома проектируется по вертикальной схеме, то прокладку стояков для подводки к радиаторам угловых комнат следует производить непосредственно в угловых стыках стен. Это позволит дополнительно прогревать наружные строительные конструкции и предотвратить отсыревание и порчу отделочных материалов в углах.

В случае установки радиаторов под окнами с использованием дополнительных декоративных элементов (экранов, широких подоконников) или установки в нишах для расчета фактической мощности отопительных приборов необходимо пользоваться следующими поправочными коэффициентами:

  • Узкий подоконник не перекрывает радиатор по глубине, но лицевая панель прибора отопления закрыта декоративным экраном (расстояние между стеной и экраном не менее 250 мм) – Ккорр=0,9.
  • Широкий подоконник полностью перекрывает глубину радиатора, декоративный экран закрывает лицевую панель (расстояние между стеной и экраном не менее 250 мм), но в верхней части оставлена щель, равная 100 мм по вертикали – Ккорр=1,12.
  • Широкий подоконник полностью перекрывает радиатор по глубине, дополнительные декоративные конструкции отсутствуют – Ккорр=1,05.

Из рассмотренных выше вариантов установки приборов отопления видно, что для того чтобы уровень конвекции не был снижен следует оставлять воздушные зазоры со всех сторон приборов отопления. Минимальными расстояниями от финишного уровня напольного покрытия и от подоконника до прибора отопления должно составлять не менее 100 мм, а зазор между стеной и задней поверхностью радиатора не менее 30 мм.

Способы подключения приборов отопления и варианты подвода подающего трубопровода также влияют на конечную мощность и теплоотдачу радиатора.

Различают одностороннее подключение радиаторов к системам отопления и разностороннее, когда трубопроводы подводят к прибору с противоположных сторон. Односторонний способ является наиболее экономичным и удобным с точки зрения дальнейшей эксплуатации приборов отопления. Подключение радиаторов с разных сторон немного увеличивает их теплоотдачу, но на практике этот способ используют при установке отопительных приборов более 15-ти секций или при подключении нескольких радиаторов в связке.

Теплосъем от радиаторов зависит также и от точки подвода подающего трубопровода. При подключении по схеме «сверху-вниз», когда горячая вода подводится к верхнему патрубку, а обратка к нижнему, теплопередача от радиатора увеличивается. При подключении «снизу-вверх» тепловой поток снижается, при этом прогрев радиаторов осуществляется неравномерно, а типоразмер приборов должен быть значительно увеличен для достижения расчетной мощности.


источники:

http://www.c-o-k.ru/articles/energoeffektivnost-sistem-obespecheniya-parametrov-mikroklimata-teplovoy-balans-pomescheniy

http://santech-info.ru/otoplenie/raschet-moshhnosti-radiatorov.html