Уравнение точки дано в виде

Уравнение точки дано в виде

Гармоническое колебательное движение и волны

Уравнение движения точки дано в виде . Найти период колебаний Т, максимальную скорость vmax и максимальное ускорение amax точки.

Дано:

Решение:

Уравнение колебаний запишем в виде

Скорость колеблющейся точки

Ускорение колеблющейся точки

Период колебаний Т выразим через циклическую частоту

Уравнение движения точки дано в виде x = 0,2 sin(пt + п/3), м. Найти максимальные значения скорости и ускорения.

Готовое решение: Заказ №8366

Тип работы: Задача

Статус: Выполнен (Зачтена преподавателем ВУЗа)

Предмет: Физика

Дата выполнения: 21.08.2020

Цена: 209 руб.

Чтобы получить решение , напишите мне в WhatsApp , оплатите, и я Вам вышлю файлы.

Кстати, если эта работа не по вашей теме или не по вашим данным , не расстраивайтесь, напишите мне в WhatsApp и закажите у меня новую работу , я смогу выполнить её в срок 1-3 дня!

Описание и исходные данные задания, 50% решения + фотография:

№3 2.1. Уравнение движения точки дано в виде x = 0,2 sin(пt + п/3), м. Найти максимальные значения скорости и ускорения.

Уравнение гармонических колебаний точки: , где – амплитуда колебаний; – круговая частота колебаний; – начальная фаза колебаний. Из заданного уравнения колебаний точки делаем вывод: м, рад/с, рад. Найдём зависимость скорости точки от времени:

Если вам нужно решить физику, тогда нажмите ➔ заказать контрольную работу по физике.
Похожие готовые решения:
  • Гармоническое колебание материальной точки задано уравнением x = 0,2 sin(10пt + п/4) м. Определить момент времени, при котором точка будет находиться в положении равновесия, и максимальную скорость колебания.
  • Материальная точка совершает гармонические колебания по закону x = 0,9 cos (2п/3 t + п/4). Максимальное значение ускорения точки равно … 1) 0,6п м/с2; 2) 2/3 п м/с2; 3) 4п2 м/с2; 4) 0,4п2 м/с2.
  • Уравнение движения точки дано в виде x = 2 sin(п/2 t + п/4), см. Определить период колебаний, максимальную скорость аmax и максимальное ускорение amax точки.
  • Определить максимальные значения скорости и ускорения материальной точки, колеблющейся по закону: X = 0,04 sin п(t + 1/2) (м). Чему равна фаза колебаний спустя 10 сек после начала движения?

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Координатный способ задания движения точки

Рассматривается движение точки М в неподвижной системе отсчёта OXYZ (рис. 2.1). Единичные векторы (орты) i, j, k показывают положительные направления отсчёта координат X, Y, Z. Движущаяся точка описывает в пространстве некоторую линию, которую называют траекторией движения точки. По виду траектории все движения точки делятся на прямолинейные и криволинейные. Положение точки М в неподвижной системе отсчёта (НСО) определяется тремя координатами X, Y, Z. При движении точки М её координаты изменяются с течением времени. Следовательно, коорди
наты X, Y, Z движущейся точки М являются функциями времени t.

Систему трёх уравнений X = f1(t); Y = f2(t); Z = f3(t) называют уравнениями движения точки в пространстве в декартовых координатах.


Пример: X = 10·t 2 + 1; Y = 7·t 3 + t 2 + 1; Z = 10·sin(p·t). Действительно, имея эти уравнения, можно для любого момента времени найти значения соответствующих координат X, Y, Z и по ним определить положение точки в пространстве в этот момент времени.

Движение точки М на плоскости (рис. 2.2) определяется двумя уравнениями: X = f1(t); Y = f2(t). Эти выражения называют уравнениями движения точки на плоскости в декартовой системе отсчёта.

Пример. Заданы уравнения движения точки в плоскости OXY. X = 3·t 2 + t 2 + t; Y = 7·cos(p·t).

Уравнения движения, определяющие координаты точки в любой момент времени, рассматривают как параметрические уравнения траектории точки. При исключении параметра t из уравнений движения получают уравнение траектории точки в координатной форме (Y = f(t)).


Пример. Заданы уравнения: X = 4·t (см); Y = 16·t 2 – 1 (см) движения точки в плоскости OXY. Определить вид траектории движения точки, построить её график и найти положение точки на траектории движения в момент времени t1 = 0,5 с.

Решение. Из уравнения X = 4·t находим t = X/4. Значение времени t подставляем в уравнение Y = 16·t 2 – 1. Получаем

Y = 16·(X/4) 2 – 1 = X 2 – 1.

Выражение Y = X 2 – 1 есть уравнение параболы (y= a·x 2 +b·x+c) с вершиной в точке с координатами (0, – 1). В момент времени t1 = 0,5 с определяем координаты:

Y(t1) = 16·(t1) 2 – 1 = 16·(0,5) 2 – 1 = 3 см >0.

Показываем положение точки на траектории её движения (рис. 2.3).

Пример. Дано: X = 3·sin(p·t), см (1); Y = 3·cos(p·t), см (2); t1 = 0,25 c. Определить вид траектории движения точки и её положение на траектории движения в момент времени t1.

Решение. Уравнения движения точки представим в следующем виде: (X) 2 = (3·sin(p·t)) 2 (1 I ); (Y) 2 = (3·cos(p·t)) 2 (2 I ). Для решения используем тригонометрическую формулу sin 2 (α) + cos 2 (α) = 1.

Складывая левые и правые части уравнений (1 I ) и (2 I ), получим (X) 2 + (Y) 2 = 3 2 ·(sin 2 (p·t) + cos 2 (p·t)) = 3 2 ·1 или (X) 2 + (Y) 2 = 3 2 . Известно, что уравнение (X) 2 + (Y) 2 = R 2 есть уравнение окружности радиусом R с центром в начале координат. Таким образом, точка
движется по окружности радиусом R = 3 см (рис. 2.4).

Определяем положение точки на траектории движения в момент времени t1.

X(t1) = 3·sin(p·t1) = 3·sin(p·0,25) = 3·0,707 = 2,121 см > 0.

Y(t1) = 3·cos(p·t1) = 3·cos(p·0,25) = 3·0,707 = 2,121 см > 0.

Показываем точку на траектории её движения (см. рис. 2.4).

ВНИМАНИЕ! Если точка не попадает на траекторию её движения, то:

1) неверно определен вид траектории движения;

2) неверно рассчитаны значения координат X(t1), Y(t1).

Прямолинейное движение точки М определяется одним уравнением движения X = f(t).

Пример. Дано: X = 10·t 2 + sin(2·p·t) + 3, см (рис. 2.5).

Определить положение точки на траектории движения в начальный момент времени t0 = 0 и в момент времени t1 = 1 c.

Решение.

X(t0) = 10·(t0) 2 + sin(2·p·t0) + 3 = 10·0 2 + sin(2·p·0) + 3 = 3 см > 0.

X(t1) = 10·(t1) 2 + sin(2·p·t1) + 3 = 10·1 2 + sin(2·p·1) + 3 = 13 см > 0.

Значения координат X(t0), X(t1) наносим на рис. 2.5.


источники:

http://natalibrilenova.ru/uravnenie-dvizheniya-tochki-dano-v-vide-x—02-sinpt—p3-m-najti-maksimalnyie-znacheniya-skorosti-i-uskoreniya-/

http://helpiks.org/3-65462.html