Уравнение тока в общем виде

Уравнение тока в общем виде

Повторим еще раз уравнения (1.14):

Согласно методу симметричных составляющих

Разделив левую и правую части последних выражений на wэB, получим

(1.23)

где k = wэВ/wэА— уже известный коэффициент трансформации двигателя. Подставляя (1.23) в выражение B и решая систему двух уравнений относительно IA1, IA2 , получим

(1.24)

Рассчитав IA1 и IA2 , легко определить IB1 и IB2 , а затем найти полные токи фаз А и В.

§ 1.9. Электромагнитная мощность. Вращающий момент несимметричного двухфазного микродвигателя

Поскольку в рассматриваемых микродвигателях имеют место поля токов прямой и обратной последовательностей, электромагнитная мощность — мощность, передаваемая от статора к ротору магнитным полем, должна быть равна сумме мощностей этих последовательностей.

Как известно, при круговом поле электромагнитная мощность равна потерям в активном сопротивлении ротора, деленным на скольжение s для прямого и на 2 — s для обратного полей

Pэм1 = Pэм1А + Pэм1В = I 2 рA1·rрA/s + I 2 pВ1·r/s ,(1.25)
Pэм2 = Pэм2А + Pэм2В = I 2 рA2·rрA/2-s + I 2 pВ2·r/2-s.(1.26)

Если выразить токи и сопротивления фазы В через токи и сопротивления фазы А

подставить в (1.25), (1.26), то после преобразований получим

(1.27)

Выражение (1.27) неудобно для практических расчетов тем, что в него входят токи ротора. Это обстоятельство можно обойти, если воспользоваться схемами замещения рис.1.7. Действительно, в параллельном соединении: “контур намагничивания — цепь ротора” (рис.1.7), существует только одно активное сопротивление rрA. В преобразованных схемах замещения рис.1.8 в состав ZрA1, ZрA2 тоже входит активное сопротивление rрA1, rрA2. Поэтому в соответствии с законом сохранения энергии потери мощности в этих сопротивлениях должны быть одинаковыми, т.е.

С учетом этого выражение электромагнитной мощности приобретает простой вид

(1.28)

Если разделить электромагнитную мощность на синхронную угловую частоту вращения, получим выражение вращающего момента

М = Рэм1 = Рэм11 – Рэм21.(1.29)

При этом перед электромагнитной мощностью обратной последовательности следует поставить знак «минус», ибо обратное поле создает не движущий, а тормозной момент.

На рис. 1.10 представлена механическая характеристика асинхронного двигателя при эллиптическом поле, как результат действия прямого и обратного полей, создающих вращающий М1 и тормозной М2 моменты.

Рис.1.10. Механическая характеристика двухфазного асинхронного двигателя с эллиптическим магнитным полем

Из рис. 1.10 видно негативное действие обратного поля:

  • снижение максимального и пускового моментов,
  • увеличение номинального скольжения и, как следствие, увеличение потерь в роторе, снижение КПД машины.

Задача 1.7. Определить пусковой момент несимметричного двухфазного двигателя, параметры схемы замещения которого

хсA = 26Ом; rсA = 34 Ом; xmA = 430 Ом; m = 2; rрA= 30 Ом; xрA = 22 Ом; f = 50 Гц; U = 220 В.

§ 1.10. Энергетическая диаграмма. Потери мощности

Энергетическая диаграмма несимметричного двухфазного микродвигателя показана на рис. 1.11.

Рис.1.12. Энергетическая диаграмма несимметричного двухфазного асинхронного микродвигателя

рк — потери в конденсаторе. pk = I²сB rк . Активное сопротивление конденсатора rк обычно очень мало, так чтопотерями в нем можно пренебречь.

pст— потери в стали. При эллиптическом поле они равны сумме потерь встали от прямого pст1 и обратного pст2 полей [1]: рст = рст1 + рст2

Потерями в стали ротора при скольженьях, близких к номинальному, можно пренебречь, поскольку частота перемагничивания ротора весьма небольшая ( f2 = f1s ).

Потери в стали статора от поля прямой последовательности рассчитывают обычным порядком [4]. Они пропорциональны квадрату индукции и частоте в степени 1,3:

pст1≡ B² f 1.3 .(1.30)

Потери в стали статора от поля обратной последовательности

рст2 = pст1 (EА2 /EА1)²,(1.31)

где EА1, EА2 — ЭДС в обмотке А от поля прямой и обратной последовательностей.

Потери в обмотках А и В статора

В формуле (1.32) должны присутствовать токи статора, полученные сучетом потерь в стали. Эти токи определяются следующим образом [1,5].

Для покрытия потерь в стали двигатель потребляет из сетидополнительный ток, что приводит к увеличению активных составляющихтоков статора. Эти увеличения можно рассчитать по следующим формулам:

IстА1 = pст1 /(2EА1 ) ; IстА2 = pст2 /(2EА2 );(1.33)

IстВ1 = IстА1 /k ; IстВ2 = IстА2 /k.(1.34)

Прибавляя «добавки» к активным составляющим токов, рассчитанным без учета потерь в стали, получим полные токи фаз статора:

(1.35)

Здесь индексы 1 и 2 означают прямую и обратную последовательности.

Потери в обмотке ротора можно определить через электромагнитнуюмощность (1.28) и скольжение ротора

рэр = pэр1 + pэр2 = 2[I²A1rрA1s + I²A2rpA2(2 — s)].(1.36)

Из энергетической диаграммы видно, что электрические потери в обмотке ротора от токов обратной последовательности рэр2 больше электромагнитной мощности обратной последовательности Рэм2, чего казалось бы не должно быть. Этот парадокс объясняется следующим образом.

По отношению к полю обратной последовательности машина работает в режиме электромагнитного тормоза, поэтому вся энергия (Рэм2) превращается в тепло, т.е. в потери в обмотке ротора. Но для вращения ротора против поля требуется еще и механическая энергия, источником которой является электромагнитная мощность прямой последовательности Рэм1. Часть этой мощности (Dpэр2) также превращается в тепло. Эта часть равна

Механическая мощность, развиваемая несимметричным двухфазным микродвигателем равна:

Механические потери pмех — потери на трение и вентиляцию, определяют по эмпирическим формулам [4], суть которых заключается в том, что эти потери пропорциональны квадрату скорости вращения рмех

Полезная мощность на валу микродвигателя

(1.37)

Потребляемая электрическая мощность

P1 = PЭМ + pэс + pст + pк.(1.38)
η = P2 /P1.(1.39)
cosφA = IcAa /IcA; cosφB = IcBa /IcB.(1.43)

Ни в энергетической диаграмме, ни в расчетах не упоминалисьдобавочные потери. Согласно ГОСТ 183-74 они составляют 0,5 % отпотребляемой мощности, что практически выходит за пределы точностирасчетов микромашин.

Синусоидальные Э.Д.С. и ток

Содержание:

Синусоидальные э.д.с. и ток:

Получение, передача и использование электрической энергии осуществляются в основном с помощью устройств и сооружений переменного тока. Для этого применяют генераторы, трансформаторы, линии передачи и распределительные сети переменного тока. Наиболее широко применяют приемники электрической энергии, работающие на переменном токе.
Переменным электрическим током называется электрический ток, изменяющийся с течением времени (см. рис. 2.1, кривые 2, 3).

Периодический электрический ток, являющийся синусоидальной функцией времени, называется синусоидальным электрическим током.

Такой ток в практике обычно имеют в виду, когда говорят о переменном токе. В некоторых случаях ток изменяется по периодическому несинусоидальному закону.

В линейных электрических цепях переменный синусоидальный ток возникает под действием э. д. с. такой же формы. Поэтому для изучения электрических устройств и цепей переменного тока необходимо прежде рассмотреть способы получения синусоидальной э. д. с. и основные понятия, относящиеся к величинам, которые изменяются по синусоидальному закону.

Получение синусоидальной э.д.с.

Для получения э. д. с. синусоидальной формы генератор переменного тока промышленного типа имеет определенные конструктивные особенности. Однако принципиально синусоидальную зависимость э. д. с. от времени можно получить, вращая с постоянной частотой в равномерном магнитном поле проводник в виде прямоугольной рамки (рис. 12.1).

Рис. 12.1. Прямоугольная рамка в магнитном поле

Вращение витка в равномерном магнитном поле

Согласно формуле (10.5), э. д. с. в рамке, имеющей два активных проводника длиной l,

При равномерном вращении рамки линейная скорость проводника не изменяется:

а угол между направлением скорости и направлением магнитного поля изменяется пропорционально времени:

Угол β определяет положение вращающейся рамки относительно плоскости, перпендикулярной направлению магнитной индукции. (Положение рамки в момент начала отсчета времени t = 0 характеризуется углом β = 0.) Поэтому э. д. с. в рамке является синусоидальной функцией времени

Наибольшей величины э. д. с. достигает при угле


В рассмотренном случае синусоидальное изменение э. д. с. достигается за счет непрерывного изменения угла, под которым проводники пересекают линии магнитной индукции. Однако такой способ получения э. д. с. в практике не применяется, так как трудно создать равномерное поле в достаточно большом объеме.

Генератор переменного тока

В электромашинных генераторах переменного тока промышленного типа синусоидальная э. д. с. получается при постоянном угле, но в неравномерном магнитном поле.

Магнитное поле генератора (радиальное) в воздушном зазоре между статором и ротором направлено по радиусам окружности ротора (рис. 12.2, а). Магнитная индукция вдоль воздушного зазора распределена по закону, близкому к синусоидальному. Такое распределение достигается соответствующей формой полюсных наконечников. Синусоидальный закон распределения магнитной индукции вдоль воздушного зазора показан на рис. 12.2, б в развернутом виде.

Рис. 12.2. Схема генератора переменного тока. Распределение магнитной индукции вдоль воздушного зазора

Рис. 12.3. Схема генератора переменного тока с двумя парами полюсов на роторе

Рис. 12.4. Схема генератора с тремя витками (обмотками)

В любой точке воздушного зазора, положение которой определяется углом β, отсчитанным от нейтральной плоскости (нейтрали) против движения часовой стрелки, магнитная индукция выражается уравнением

Нейтральная плоскость перпендикулярна оси полюсов и делит магнитную систему на симметричные части, из которых одна относится к северному полюсу, а другая — к южному.

Наибольшую величину магнитная индукция имеет под серединой полюсов, т. е. при углах и
На нейтрали (при β = 0 и β = 180°) магнитная индукция равна нулю (В = 0).
На рис. 12.3 показана конструктивная схема генератора переменного тока с двумя парами полюсов, расположенных на роторе, а проводники обмотки, где наводится э. д. с., помещены в пазах сердечника статора.

Отметим еще одну разновидность генераторов переменного тока — генератор с тремя обмотками (трехфазный генератор), которые на схеме рис. 12.4 представлены тремя витками на роторе (у турбогенераторов и гидрогенераторов эти обмотки находятся на статоре). Плоскости витков находятся под углом 120° друг к другу.

Э.Д.С. в обмотке генератора

При равномерном вращении ротора в его обмотке (на рис. 12.2, а — в витке) наводится э. д. с., определяемая формулой (10.4),

Подставляя выражение магнитной индукции (12.3), получим


При β = 90°, т. е. в положении проводника под серединой полюса, наводится наибольшая э. д. с.

Уравнение э. д. с. можно записать так:

Учитывая формулу (12.1), получим такую же зависимость э.д.с. от времени, как при вращении рамки (см. рис. 12.1), считая начальным положение витка (t = 0), когда его плоскость совпадает с нейтралью:

Таким образом, и в данном случае э. д. с. является синусоидальной функцией времени (рис. 12.5). Такой же результат получается, если вращать полюса, а проводники оставить неподвижными.

Рис. 12.5. График синусоидальной э. д. с.

В прямоугольной системе координат э. д. с. можно изобразить в функции угла или в функции времени t. Зависимость и можно изобразить одной кривой, но при разных масштабах по оси абсцисс, отличающихся в ω раз.
Если обмотку генератора замкнуть через сопротивление, то в образовавшейся цепи возникает синусоидальный ток, повторяющий по форме кривую э. д. с.
Полагая сопротивление цепи линейным, равным R, получим для тока такое выражение:

где — наибольшая величина тока.
Напряжение и ток синусоидальной формы можно получить при помощи генераторов, не имеющих вращающихся частей и магнитных полюсов, например ламповых генераторов.

Задача 12.1.

Э. д. с. электромашинного генератора выражается уравнением .
Определить число пар полюсов этого генератора, если известна частота вращения ротора n = 75 об/мин.
На какой угол в пространстве поворачивается ротор генератора за 1/4 периода?
Решение. Период э. д. с., наводимой в обмотке генератора (см. рис. 12.2), имеющего одну пару полюсов, равен времени полного оборота ротора. Угловую скорость вращения ротора можно определить отношением полного угла, соответствующего одному обороту ротора, к периоду:

Однако генератор может иметь не одну, а p пар полюсов (на рис. 12.3 p = 2). Полный цикл изменения э. д. с. в этом случае совершается при движении проводника мимо одной пары полюсов (как за полный оборот ротора в генераторе с p = 1), поэтому при одинаковой частоте вращения ротора период э.д. с. будет в p раз короче, а частота в р раз больше.
Уменьшение периода и соответствующее увеличение частоты при данном числе пар полюсов можно получить, увеличивая частоту вращения ротора.
Частота синусоидальной э. д.с. при р = 1 равна числу оборотов ротора в секунду, а при р > 1

где n — частота вращения ротора, об/мин.
Из уравнения э. д. с. известна угловая частота ω = 314 рад/с; при этом

При частоте вращения ротора n = 75 об/мин


При р = 1 за 1/4 периода ротор повернется на 1/4 окружности, т. е. в угловой мере на 90º. При р = 40 угол поворота ротора за 1/4 периода будет в р раз меньше:

Уравнения и графики синусоидальных величин

Анализ электрических цепей переменного тока невозможно проводить без выражения э. д. с. токов, напряжений их уравнениями. Для наглядности применяются графики этих величин в прямоугольной системе координат. Поэтому рассмотрим уравнения и графики синусоидальных величин более подробно.

Уравнения и графики

Уравнение (12.4) записано для случая, когда начало отсчета времени (t = 0) совпадает с моментом прохождения витка через нейтраль (на рис. 12.2, а положение 1, в котором плоскость витка совпадает с нейтралью).

На рис. 12.4 положение витков тоже соответствует началу отсчета времени (t = 0) и определяется для каждого из них углом, отсчитанным от нейтрали до плоскости витка: для первого витка этот угол для второго — и третьего —
При вращении ротора э. д. с. будет наводиться во всех витках, но уравнения э.д.с. не будут одинаковыми. Действительно, при = 0 э. д. с. в витках:



Эта зависимость э. д. с. от начального положения витка учитывается введением в уравнение начального угла.
С учетом начального угла э. д. с. витка С выражается уравнением

Таким образом, в общем виде, уравнение э. д. с. должно быть записано так:

Из этого уравнения можно определить величину э. д. с. в любой момент при произвольном начальном положении витка.
На рис. 12.6 в соответствии с уравнением (12.6) построены графики э.д.с.трех витков, отличающихся в момент начала отсчета времени расположением относительно нейтральной плоскости (eA при eC при eB при ).

Рис. 12.6. Графики э. д. с., сдвинутых по фазе

Характеристики синусоидальных величин

Уравнением и графиком задаются все характеристики синусоидально изменяющейся величины: амплитуда, угловая частота, начальная фаза, период, частота и для любого момента времени мгновенная величина.

Далее приведены определения этих характеристик, и они показаны на рис. 12.7 применительно к синусоидальной э. д. с. Определения распространяются на все величины, изменяющиеся по синусоидальному закону (ток, напряжение и др.).

Рис. 12.7. К вопросу о характеристиках периодической э. д. с.

Мгновенная величина (или мгновенное значение) э. д. с. е — величина э. д. с. в рассматриваемый момент времени. Мгновенная э. д. с. определяется уравнением (12.6) при подстановке в него времени t, прошедшего от начала отсчета до данного момента.

Период Т — наименьший интервал времени, по истечении которого мгновенные величины периодической э. д. с.. повторяются. Если аргумент синусоидальной функции выражается в углах, то период выражается постоянной величиной 2π.
Частота f — величина, обратная периоду:

т. е. частота равна числу периодов переменной э. д. с. в секунду. Частота выражается в герцах (Гц): 1 Гц = 1/с.
Амплитуда Еm — наибольшая величина, которую принимает э. д. с. в течение периода. Амплитуда является одной из мгновенных величин, которая соответствует аргументу равному , где k — любое целое число или нуль.
Фаза (фазовый угол ) — аргумент синусоидальной э.д.с., отсчитываемый от ближайшей предшествующей точки перехода э. д. с. через нуль к положительному значению. Фаза в любой момент времени определяет стадию гармонического изменения синусоидальной э. д. с.
Начальная фаза ψ — фаза синусоидальной э.д.с. в начальный момент времени.
Две синусоидальные величины, имеющие разные начальные фазы, называются сдвинутыми по фазе.
Угловая частота ω — скорость изменения фазы. За время одного периода Т фазовый угол равномерно изменяется на 2π, поэтому

Задача 12.4.

Переменный электрический ток задан уравнением


Определить период, частоту этого тока и мгновенные величины его при t = 0; t1 = 0,152 с. Построить график тока.
Решение. Уравнение синусоидального тока в общем случае имеет вид

Сопоставляя это уравнение с заданным частным уравнением тока, устанавливаем, что амплитуда Im = 100 А, угловая частота ω = 628 рад/с, начальная фаза ψ = —60°. Период

Частота

Рис. 12.8. К задаче 12.4

Мгновенные величины тока найдем, подставив в уравнение тока заданные значения времени:

при t = 0

при t1 = 0,152 с

Синусоидальная величина через 360° повторяется, поэтому мгновенный ток при угле будет таким же, как и при угле :

Для построения графика нужно определить ряд мгновенных токов, соответствующих различным моментам времени (рис. 12.8).

Векторные диаграммы

До сих пор величины, изменяющиеся по синусоидальному закону, задавали уравнениями и изображали графиками в прямоугольной системе координат. При расчете электрических цепей переменного тока пользуются весьма простым и наглядным способом графического изображения синусоидальных величин при помощи вращающихся векторов.

Обоснование векторной диаграммы

Предположим, что ток задан уравнением

Проведем две взаимно перпендикулярные оси и из точки пересечения осей проведем вектор Im, длина которого в определённом масштабе Mi выражает амплитуду тока Im:

Рис. 12.10. К вопросу о векторной диаграмме

Направление вектора выберем так, чтобы с положительным направлением горизонтальной оси вектор составлял угол, равный начальной фазе ψ (рис. 12.10).

Проекция этого вектора на вертикальную ось определяет мгновенный ток в начальный момент времени:
Представим себе, что вектор Im вращается против движения часовой стрелки с угловой скоростью, равной угловой частоте ω. Его положение в любой момент времени определяется углом
Тогда мгновенный ток для произвольного момента времени t можно определить проекцией вектора Im на вертикальную ось в этот момент времени.
Например, для t = t1

в общем случае

Получили такое же уравнение, каким был задан переменный ток, что свидетельствует о возможности изображения тока вращающимся вектором при нанесении его на чертеж: в начальном положении.

Построение векторной диаграммы

Вращая вектор Im‘ против движения часовой стрелки, в прямоугольной системе координат построим график изменения проекции его на вертикальную ось в пределах одного оборота (одного периода). Получим известный уже график синусоидальной функции, соответствующий заданному уравнению.

При построении векторов положительные углы отсчитывают от положительного направления горизонтальной оси против вращения часовой стрелки, а отрицательные — по ее движению.

В процессе расчета электрической цепи определяется ряд синусоидальных величин. Все их можно изобразить на одном чертеже при помощи вращающихся векторов, привязав к одной паре взаимно перпендикулярных осей.

Совокупность векторов, изображающих на одном чертеже несколько синусоидальных величин одинаковой частоты в начальный момент времени, называется векторной диаграммой. Например, напряжение и ток в электрической цепи выражаются уравнениями


Векторная диаграмма такой цепи изображена на рис. 12.11. Если выбрать масштабы напряжения и тока

то

Рис. 12.11. Векторная диаграмма тока и напряжения

Векторная диаграмма содержит векторы синусоидальных величин одинаковой частоты, поэтому они вращаются с одинаковой частотой и их взаимное расположение не меняется.

Начало отсчета времени выбирают произвольно, поэтому один из векторов диаграммы можно направить произвольно; остальные же нужно располагать с учетом сдвига фаз по отношению к первому или предыдущему вектору.

Сложение и вычитание векторов

Простота и наглядность векторных диаграмм — не единственное и не главное достоинство способа изображения синусоидальных величин. Требуется сложить, например, два тока, заданных уравнениями

Выражение суммы

оказывается громоздким, из него не видны амплитуда и начальная фаза результирующего тока.

Можно графически сложить два заданных тока, построив их в одной системе координат и для ряда аргументов, найдя сумму двух ординат. Через полученные точки проведем кривую суммы, увидим, что эта кривая тоже синусоида с таким же периодом, как и слагаемые. По кривой общего тока можно найти амплитуду и начальную фазу. Громоздкость и неудобство такого сложения очевидны.

Очень просто сложение и вычитание синусоидальных величин осуществляется по правилам сложения и вычитания векторов.

Рис. 12.12. Сложение векторов

Сложим два заданных тока i1 и i1 по известному правилу сложения векторов (рис. 12.12, а). Для этого изобразим токи в виде векторов из общего начала 0. Результирующий вектор найдем как диагональ параллелограмма, построенного на слагаемых векторах:

Сложение векторов, особенно трех и более, удобнее вести в таком порядке: один вектор остается на месте, другие переносятся параллельно самим себе так, чтобы начало последующего вектора совпало с концом предыдущего.
Вектор Im, проведенный из начала первого вектора в конец последнего, представляет собой сумму всех векторов (рис. 12.12, б).

Вычитание одного вектора из другого выполняют сложением прямого вектора — уменьшаемого и обратного — вычитаемого (рис. 12.13):

Рис. 12.13. Вычитание векторов

Рис. 12.14. Частные случаи сложения векторов

При сложении синусоидальных величин в отдельных случаях можно применить аналитическое решение: применительно к рис. 12.12, а — по теореме косинусов; к рис. 12.14, а — сложение модулей векторов; б — вычитание модулей векторов, в — по теореме Пифагора.

Задача 12.7. Два тока заданы уравнениями



Найти уравнения токов:

Решение. Решение задачи проще всего выполнять графически в векторной форме. Для этого изобразим векторы заданных токов. Масштаб тока выбираем так, чтобы наибольший вектор поместился на имеющемся листе бумаги, одновременно учитывая возможность отчетливого изображения наименьшего вектора.
При разборе решения рекомендуется провести построения по рис. 12.15 на листе миллиметровой бумаги в масштабе В этом масштабе длина векторов

Длину вектора суммы определяют графически (рис. 12.15, а):

Рис. 12.15. К задаче 12.7

Начальная фаза этого вектора по чертежу
Уравнение суммы токов

В таком же порядке найдены векторы разностей токов (рис. 12.15, б, в). Вычитаемые векторы взяты в противофазе с заданными.
После измерения длин векторов и начальных фаз напишем уравнения разностей токов:

Действующая и средняя величины переменного тока

О переменном токе все известно, если задано его уравнение или график. Однако в практике пользоваться уравнениями или графиками токов затруднительно.
Переменный ток обычно характеризуется его действующей величиной I. При изучении выпрямительных устройств и электрических машин пользуются средними величинами э. д. с., тока, напряжения.

Действующая величина переменного тока

При определении действующей величины переменного тока можно исходить из какого-либо его действия в электрической цепи (теплового, механического взаимодействия проводов с токами).

На рис. 12.18 изображены графики двух токов: постоянного 1 и переменного 2, причем величина постоянного тока равна амплитуде переменного.
Постоянный ток, равный амплитуде переменного, выделит больше тепла в одном и том же элементе цепи за однj и то же время, так как переменный ток в течение полупериода меньше постоянного, и лишь одно мгновение эти токи равны.

Действующая величина переменного тока I численно равна величине постоянного тока, который в одном и том же элементе цепи за время периода Т выделяет столько же тепла, сколько при тех же условиях выделяет переменный ток.

Действующая величина переменного тока I меньше амплитуды (прямая 3 на рис. 12.18).

Рис. 12.18. К определению действующей величины переменного тока

Определим количество тепла, выделяемого за период Т постоянным током, равным I, и переменным током (см. рис. 12.18) в элементе цепи с сопротивлением R:

Приравнивая найдем

Действующая величина периодического тока является его средней квадратичной за период.

Ее можно найти из уравнения (12.9), но для наглядности воспользуемся графическим решением поставленной задачи.

Среднеквадратичную величину переменного тока за период можно представить в виде квадратного корня из суммы очень большого числа ординат кривой i 2 (t), разделенной на число ординат n:

где в числителе подкоренного выражения представлена сумма квадратов ряда мгновенных токов в течение периода, n — число этих значений, стремящееся к ∞.
На рис. 12.19 показаны ряд положений вращающегося с угловой скоростью ω вектора тока Im и соответствующие им мгновенные токи i. Эти положения отмечены точками 0, 1, 2 и т. д. на окружности, которую описывает конец вектора Im.

Рассмотрим два положения вектора Im (отмечены точками 2 и 8), отстоящие по окружности на 90°, т. е. находящиеся соответственно в первой и второй четвертях окружности. Прямоугольные треугольники 6′-2-2′ и 6′-8-8′ равны, так как равны их стороны: 2-2′ = 6′-8′ и 2′-6′ = 8-8′. Из этих треугольников следует:

Рис. 12.19. К определению действующей и средней величины синусоидального тока

Каждому положению вектора Im в первой четверти соответствует другое его положение во второй, для которых можно написать аналогичное выражение. Такие рассуждения можно провести для другой полуокружности, т. е. распространить их на второй полупериод тока, причем квадраты отрицательных мгновенных токов будут положительны, поэтому

Подставляя это выражение в (12.10), получим

Таким образом, действующая величина синусоидального тока меньше его амплитуды в раза.

Понятие о действующей величине можно распространить на все синусоидальные функции и, следовательно, говорить о действующей величине напряжения, э. д. с.

Действующие величины тока, напряжения измеряются электроизмерительными приборами. Номинальные токи и напряжения электротехнических устройств выражаются действующими величинами. Введя понятие о действующей величине, в дальнейшем векторные диаграммы будем строить для действующих величин напряжений и токов.

Отношение амплитуды к действующей величине называется коэффициентом амплитуды Ка. Для синусоидальной функции этот коэффициент равен ; если кривая тока или напряжения имеет более острую форму, чем синусоида, то Ка > , в противном случае Ка

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Переменный электрический ток

теория по физике 🧲 колебания и волны

Свободные электромагнитные колебания в контуре быстро затухают. Поэтому они практически не используются. Наиболее важное практическое значение имеют незатухающие вынужденные колебания.

Переменный ток — вынужденные электромагнитные колебания.

Ток в осветительной сети квартиры, ток, применяемый на заводах и фабриках, представляет собой переменный ток. В нем сила тока и напряжение изменяются со временем по гармоническому закону. Колебания легко обнаружить с помощью осциллографа. Если на вертикально отклоняющие пластины осциллографа подать напряжение от сети, то временная развертка на экране будет представлять сбой синусоиду:

Зная скорость движения луча в горизонтальном направлении (она определяется частотой пилообразного напряжения), можно определить частоту колебаний.

Частота переменного тока — это количество колебаний за 1 с.

Стандартная частота переменного промышленного тока составляет 50 Гц. Это значит, что на протяжении 1 секунды ток 50 раз течет в одну сторону и 50 раз — в другую. Частота 50 Гц принята для промышленного тока во многих странах мира. В США принята частота 60 Гц.

Если напряжение на концах цепи меняется по гармоническому закону, то напряженность электрического поля внутри проводника будет также меняться гармонически. Эти гармонические изменения напряженности поля вызовут гармонические колебания скорости упорядоченного движения заряженных частиц, и, следовательно, гармонические колебания силы тока.

При изменении напряжения на концах цепи электрическое поле не меняется мгновенно во всей цепи. Изменение поля происходит с большой скоростью, но она не бесконечно большая. Она равна скорости света (3∙10 8 м/с).

Переменное напряжение в гнездах розетки осветительной сети создается генераторами на электростанциях. Проволочную рамку, вращающуюся в постоянном однородном магнитном поле, можно рассматривать как простейшую модель генератора переменного тока (см. рисунок ниже).

Поток магнитной индукции Ф, пронизывающий проволочную рамку площадью S, пропорционален косинусу угла α между нормалью к рамке и вектором магнитной индукции.

Численно магнитный поток определяется формулой:

При равномерном вращении рамки угол α увеличивается пропорционально времени:

где n — частота вращения. Поэтому поток магнитной индукции меняется гармонически:

Φ = B S cos . 2 π n t

Здесь множитель 2 π n представляет собой число колебаний магнитного потока за 2 π секунд. Это не что иное, как циклическая частота колебаний:

Φ = B S cos . ω t

Согласно закону электромагнитной индукции ЭДС индукции в рамке равна взятой со знаком «минус» скорости изменения потока магнитной индукции, т.е. производной потока магнитной индукции по времени:

e = − Φ ´ = − B S ( cos . ω t ) ´ = B S ω sin . ω t = ε m a x sin . ω t

ε m a x — амплитуда ЭДС индукции, равная:

Напряжение в цепи переменного тока может меняться по закону синуса или по закону косинуса:

u = U m a x sin . ω t

u = U m a x cos . ω t

где U m a x — амплитуда напряжения (максимальное по модулю значение напряжения).

Сила тока меняется с той частотой, что и напряжение — ω . Но колебания тока необязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае сила тока i в любой момент времени определяется по формуле:

i = I m a x sin . ( ω t + φ с )

где I m a x — амплитуда силы тока (максимальное по модулю значение силы тока), φ с — разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Пример №1. Найти напряжение в цепи переменного тока в момент времени t = π, если циклическая частота электромагнитных колебаний равна 300,25 Гц, а амплитуда напряжения составляет 12В. Считать, что напряжения меняется по закону косинуса.

u = U m a x cos . ω t = 12 cos . 300 , 25 π = 12 √ 2 2 . . ≈ 8 , 5 ( В ) .

Активное сопротивление в цепи переменного тока

Пусть цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R (см. рисунок ниже).

Внимание! Ранее под величиной R мы понимали электрическое сопротивление. Но правильно его называть сопротивлением активным. Дело в том, что в цепи переменного тока могут быть сопротивления иного характера. Сопротивление же R называется активным, потому что при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от генератора. Эта энергия превращается во внутреннюю энергию проводников — они нагреваются.

Будем считать, что напряжение на зажимах цепи меняется по закону косинуса:

u = U m a x cos . ω t

Для нахождения мгновенного значения силы тока мы можем воспользоваться законом Ома, так как эта величина прямо пропорционально мгновенному значению напряжения:

i = u R . . = U m a x cos . ω t R . . = I m a x cos . ω t

В проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения, а амплитуда силы тока определяется равенством:

I m a x = U m a x R . .

Мощность в цепи с резистором

В цепи переменного тока сила тока и напряжения меняются быстро, поэтому количество выделяемой энергии меняется так же быстро. Но заметить эти изменения невозможно. Чтобы найти среднюю мощность на участке цепи за много периодов, достаточно найти среднюю мощность за один период.

Средняя за период мощность переменного тока — отношение суммарной энергии, поступающей в цепь за период, к этому периоду.

Мощность постоянного тока определяется формулой:

Следовательно, мгновенная мощность в цепи переменного тока на участке с активным сопротивлением R равна:

Подставим в это выражение полученное ранее значение мгновенной силы переменного тока и получим:

p = ( I m a x cos . ω t ) 2 R

Вспомним из курса математики:

cos 2 . α = 1 + cos . 2 α 2 . .

p = I 2 m a x 2 . . R ( 1 + cos . 2 ω t ) = I 2 m a x R 2 . . + I 2 m a x R 2 . . cos . 2 ω t

График зависимости мгновенной мощности от времени:

На протяжении первой четверти периода, когда cos . 2 ω t > 0 , мощность в любой момент времени больше величины I 2 m a x R 2 . . . На протяжении второй четверти периода, когда cos . 2 ω t 0 , мощность в любой момент времени меньше этой величины. Среднее за период значение cos . 2 ω t = 0 , следовательно, средняя за период мощность равна I 2 m a x R 2 . . .

Средняя мощность − p равна:

− p = I 2 m a x R 2 . . = − i 2 R

Пример №2. Сила переменного тока в цепи меняется по закону i = I m a x cos . ω t . Определить мгновенную мощность в момент времени t = 1 с, если циклическая частота колебаний ω = 100π Гц при сопротивлении R = 10 Ом. Амплитуда силы тока равна 1 А.

p = ( I m a x cos . ω t ) 2 R = 10 ( 1 · cos . ( 100 π · 1 ) 2 = 10 ( Д ж )

Действующие значения силы тока и напряжения

Из предыдущей формулы видно, что среднее значение квадрата силы тока равно половине квадрата амплитуды силы переменного тока:

− i 2 = I 2 m a x 2 . .

Действующее значение силы переменного тока — величина, равная квадратному корню, взятому из среднего значения квадрата тока. Обозначается как I.

I = √ − i 2 = I m a x √ 2

Смысл действующего значения силы переменного тока заключается в том, что оно равно силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за это же время.

Аналогично определяется действующее значение напряжения U:

U = √ − u 2 = U m a x √ 2 . .

Именно действующие значения силы тока и напряжения определяют мощность P переменного тока:

Пример №3. Найти мощность переменного тока, если амплитуда силы тока равна 2 А, а сопротивление цепи равно 5 Ом.

P = ( I m a x √ 2 . . ) 2 R = I 2 m a x 2 . . R = 2 2 2 . . · 5 = 10 ⎛ ⎝ Д ж ⎞ ⎠

В идеальном колебательном контуре (см. рисунок) напряжение между обкладками конденсатора меняется по закону UC = U0cos ωt, где U0 = 5 В, ω = 1000π с – «> – 1 . Определите период колебаний напряжения на конденсаторе.


источники:

http://www.evkova.org/sinusoidalnyie-eds-i-tok

http://spadilo.ru/peremennyj-elektricheskij-tok/