Уравнение тока в цепи с индуктивностью

Электрические цепи синусоидального тока

Содержание:

Электрические цепи синусоидального тока:

В общем случае цепь переменного тока характеризуется тремя параметрами: активным сопротивлением R, индуктивностью L и емкостью С. В технике часто применяются цепи переменного тока, в которых преобладает один или два из этих параметров.

При анализе работы и расчетах цепей исходят из того, что для мгновенных значений переменного тока можно использовать все правила и законы постоянного тока.

Цепь с активным сопротивлением

Активным сопротивлением R обладают элементы, которые нагреваются при прохождении через них тока (проводники, лампы накаливания, нагревательные приборы и т.д.).

Если к активному сопротивлению R (рис. 11.1) приложено синусоидальное напряжение

где

Ток в цепи с активным сопротивлением совпадает по фазе с напряжением, так как начальные фазы их равны ( = 0). Векторная диаграмма для цепи с активным сопротивлением изображена на рис. 11.16, временная диаграмма изображена на рис. 11.1в.

Математическое выражение закона Ома для цепи переменного тока с активным сопротивлением имеет вид:

Это вытекает из выражения (11.1), если левую и правую части уравнения разделить на =1,41.

Таким образом, действующее значение синусоидального тока I пропорционально действующему значению синусоидального напряжения U и обратно пропорционально сопротивлению R участка цепи, к которому приложено напряжение U. Такая интерпретация закона Ома справедлива как для мгновенных, так и для действующих и амплитудных значений синусоидального тока.

Активная мощность

Мгновенная мощность в цепи с активным сопротивлением определяется произведением мгновенных значений напряжения ка, т. е. р = ui. Это действие производится над кривыми тока и ряжения в определенном масштабе (рис. 11.1в). В результате учена временная диаграмма мгновенной мощности р. Как видно из временной диаграммы, мощность в цепи с активным сопротивлением изменяется по величине, но не изменяется по направлению (рис. 11.1в). Эта мощность (энергия) необратима. От источника она поступает на потребитель и полностью преобразуется в другие виды мощности (энергии), т.е. потребляется. Такая потребляемая мощность называется активной.

Поэтому и сопротивление R, на котором происходит подобное образование, называется активным сопротивлением, цепи с активным сопротивлением мгновенная мощность характеризует скорость преобразования электрической энергии в другие виды энергии.

Количественно мощность в цепи с активным сопротивлением определяется следующим образом:

Мгновенная мощность в цепи синусоидального тока с активным сопротивлением представляет собой сумму двух величин -постоянной мощности UI и переменной , изменяющейся с двойной частотой.

Средняя за период мощность, равная постоянной составляющей мгновенной мощности UI, является активной мощностью Р. Среднее за период значение переменной составляющей, как и всякой синусоидальной величины, равно нулю, то есть

Таким образом, величина активной мощности в цепи синусоидального тока с активным сопротивлением с учетом закона Ома определяется выражением:

где U- действующее значение напряжения; I— действующее значение тока.

Единицей активной мощности является ватт:

Поверхностный эффект и эффект близости

Сопротивление проводника постоянному току называют омическим сопротивлением и определяют выражением (2.8) Сопротивление проводника переменному току R называют активным.

Оказывается, что сопротивление проводника переменному току больше его омического сопротивления за счет так называемого поверхностного эффекта и эффекта близости, т. е.

Увеличение активного сопротивления вызвано неодинаковой плотностью тока в различных сечениях проводника (рис. 11.2а).

На рис. 11.2а изображено магнитное поле проводника цилиндрического сечения. Если по проводнику проходит переменный ток, то он создает переменный магнитный поток внутри и вне проводника. Этот поток в различных сечениях проводника индуктирует ЭДС самоиндукции, которая, согласно правилу Ленца. противодействует изменению тока как причине создания ЭДС Очевидно, центр проводника охвачен большим количеством магнитных линий (большее потокосцепление), чем слои, близкие к поверхности. Следовательно, в центре проводника ЭДС (сопротивление) больше, чем на поверхности проводника. Плотность на поверхности больше, чем в центре. Поэтому это явление и называется поверхностным эффектом.

Таким образом, поверхностный эффект уменьшает сечение проводника для переменного тока, а следовательно, увеличивает активное сопротивление R.

Отношение активного сопротивления проводника к его сопротивлению определяет коэффициент поверхностного эффекта (кси)

График зависимости коэффициента поверхностного эффекта от параметра проводника d, его удельной проводимости , магнитной проницаемости материала проводника и частоты переменного тока , проходящего по проводнику, показан на рис. 11.26.

При токах большой частоты (радиочастотах) ток в центре проводника отсутствует. Поэтому такие проводники делают трубчатыми, т.е. полыми.

На величину активного сопротивления проводника R оказывает влияние и эффект близости.

Если токи в двух параллельных проводах, расположенных близко друг к другу, направлены в одну сторону, то элементы сечения водников, удаленных на большее расстояние друг от друга, цепляются с меньшим магнитным потоком и имеют большую плотность тока (заштриховано на рис. 11.3а), чем элементы сечения проводников, расположенные близко друг к другу.

Если же токи в близко расположенных параллельных проводах направлены в различные стороны, то большая плотность тока на-дается в элементах сечения проводников, расположенных ближе друг к другу (заштриховано на рис. 11.36).

Таким образом, эффект близости в проводниках также влияет активное сопротивление проводников за счет наведения в различных элементах сечений проводников различных ЭДС взаимоиндукции, направление которых определяется правилом Ленца.

Цепь с идеальной индуктивностью

Идеальной называют индуктивность L такой катушки, активным сопротивлением R и емкостью С которой можно пренебречь, т.е. R= О и С=0.

Если в цепи идеальной катушки индуктивностью L (рис. 11.4а) проходит синусоидальный ток , то этот ток создает в катушке синусоидальный магнитный поток , который индуктирует в катушке ЭДС самоиндукции, равную согласно (9.11)

так как

Очевидно, эта ЭДС достигает своего амплитудного значения тогда, когда :

Тогда

Таким образом, ЭДС самоиндукции в цепи с идеальной индуктивностью L, как и ток, вызвавший эту ЭДС, изменяется по синусоидальному закону, но отстает от тока по фазе на угол 90° = (рис. 11.46, в).

По второму закону Кирхгофа для мгновенных значений можно записать

Откуда

Тогда напряжение, приложенное к цепи с идеальной индуктивностью (см. (11.5)):

Очевидно, напряжение достигает своего амплитудного значения Um тогда, когда :

Следовательно,

Таким образом, напряжение, приложенное к цепи с идеальной ин-ивностью, как и ток в этой цепи, изменяется по синусоидально-жону, но опережает ток по фазе на угол 90°= (рис. 11.46, в).

Резюмируя все вышесказанное, можно сделать вывод: для существования тока в цепи с идеальной индуктивностью необходимо ожить к цепи напряжение, которое в любой момент времени но по величине, но находится в противофазе с ЭДС, вызванной таким током (рис. 11.46, в).

Временная диаграмма (рис. 11.4в) еще раз иллюстрирует правило Ленца: ЭДС противодействует изменению тока.

Если уравнение (11.10) разделить на =1,41, то получается =, откуда

Это уравнение (11.12а) и есть математическое выражение закона Ома для цепи синусоидального тока с идеальной индуктивностью. Очевидно, знаменатель этого уравнения есть не что иное, как сопротивление, которое называют индуктивным сопротивлением XL.

Закон Ома для этой цепи можно записать иначе:

Индуктивное сопротивление XL — это противодействие, которое ЭДС самоиндукции eL оказывает изменению тока.

Реактивная мощность в цепи с индуктивностью

Мгновенная мощность для цепи синусоидального тока с идеальной катушкой равна произведению мгновенных значений напряжения и тока

где

Следовательно,

Полученное уравнение умножают и делят на 2:

Таким образом, мощность в цепи синусоидального тока с идеальной катушкой индуктивности изменяется по синусоидальному закону с двойной частотой.

Следовательно, среднее значение этой мощности за период Яс, как и любой синусоидальной величины, т. е. активная потребляемая мощность, в этой цепи равна нулю, Р= 0.

Временная диаграмма (рис. 11,4в) подтверждает этот вывод. На диаграмме видно, что мгновенная мощность () в рассматриваемой цепи изменяется по синусоидальному закону с двойной частотой.

То есть в 1-ю и 3-ю четверти периода мощность (энергия) источника накапливается в магнитном поле индуктивности. Максимальное значение накапливаемой в магнитном поле идеальной катушки энергии по (9.12) равно

Во 2-ю и 4-ю четверти периода эта мощность (энергия) из магнитного поля идеальной катушки возвращается к источнику.

Таким образом, в цепи переменного тока с идеальной катушки мощность не потребляется (Р= 0), а колеблется между источником и магнитным полем индуктивности, загружая источник и провода.

Такая колеблющаяся мощность (энергия), в отличие от активной, потребляемой, называется реактивной.

Обозначается реактивная мощность буквой Q и измеряется в варах, т.е. [Q]=вар (вольт-ампер реактивный).

Величина реактивной мощности в рассматриваемой цепи определяется выражением

Так как реактивная мощность QL имеет место в цепи с индуктивным сопротивлением, то индуктивное сопротивление считается реактивным сопротивлением X индуктивного характера, т. е. XL.

Цепь с емкостью

Если конденсатор емкостью С подключить к источнику с постоянным напряжением U (рис. 11.5а), то ток зарядки конденсатора ходит в цепи очень короткое время, пока напряжение на конденсаторе Uc не станет равным напряжению источника U.

Ток в рассматриваемой цепи (рис. 11.5а) практически отсутствует (амперметр А покажет I=0).

Если же конденсатор подключить к источнику с синусоидальным напряжением (рис. 11.56), то ток в цепи конденсатора существует все время, пока цепь замкнута, и амперметр А покажет этот ток. Ток в цепи конденсатора, подключенного к источнику с синусоидальным напряжением, имеет место потому, что напряжена конденсаторе Uc отстает по фазе от напряжения источника и зарядке, и при разрядке конденсатора. Например, пока напряжение на конденсаторе достигает значения 1, напряжение источника достигнет значения 2 (рис. 11.5в), т. е. конденсатор заряжается; пока конденсатор зарядится до напряжения 2, напряжение источника уменьшится до напряжения 3 — конденсатор разряжается на источник и т.д. Однако ток проходит только в цепи конденсатора. Через диэлектрик конденсатора ток не проходит.

Таким образом, если к конденсатору емкостью С приложено синусоидальное напряжение , то в цепи конденсатора проходит ток i (рис. 11.6а):

где q= Си согласно (6.3).

Очевидно, ток в цепи конденсатора достигает амплитудного значения тогда, когда :

Тогда

Как видно, ток в цепи конденсатора, как и напряжение, приложенное к его обкладкам, изменяется по синусоидальному закону, однако опережает это напряжение по фазе на угол 90°=

Следовательно, напряжение отстает по фазе от тока на 90° = (рис. 11.66).

Если уравнение (11.17) разделить на = 1,41, то получится равенство или

Это равенство (11.19а) и является математическим выражением закона Ома для цепи переменного тока с емкостью.

Очевидно, знаменатель этого равенства является сопротивлением конденсатора Хс, которое называется емкостным сопротивлением:

Когда закон Ома для цепи с конденсатором можно записать:

Емкостное сопротивление — это противодействие, которое оказывает напряжение заряженного конденсатора напряжению, приложенному к нему (рис. 11,5а).

Реактивная мощность в цепи с конденсатором

Если в цепи конденсатора емкостью = 0 (рис. 11.6а) проходит ток i, изменяющийся по синусоидальному закону:

Напряжение и, приложенное к этому конденсатору (рис. 11.6), будет равно

Мгновенная мощность в цепи с конденсатором

Мощность в цепи с конденсатором, подключенным к источнику с синусоидальным напряжением, изменяется по синусоидальному закону с двойной частотой (рис. 11.6в).

Следовательно, активная мощность Р в рассматриваемой цепи 1С. 11.6а), равная среднему значению мгновенной мощности за период, имеет нулевое значение, Р= 0.

Это следует и из временной диаграммы (рис. 11.6в). На временной диаграмме видно, что изменение мгновенной мощности р по синусоидальному закону происходит с двойной частотой: 2-ю и 4-ю четверти периода мощность (энергия) источника накапливается в электрическом поле конденсатора.

Максимальное значение энергии, накапливаемой в электрическом поле конденсатора, равно

В 1-ю и 3-ю четверти периода эта мощность (энергия) из электрического поля конденсатора возвращается к источнику.

Таким образом, в цепи переменного тока с конденсатором происходит колебание мощности (энергии) между источником и электрическим полем конденсатора. Такая колеблющаяся, но не потребляемая мощность называется реактивной мощностью.

Величина реактивной мощности в цепи конденсатора определяется выражением

Из временных диаграмм (рис. 11.4в, 11.6в) видно, что реактивная мощность в цепи конденсатора изменяется в противофазе с реактивной мощностью в цепи с идеальной катушкой. Отсюда и знак «минус» в уравнении (11.21) — аналитическом выражении мгновенной мощности в цепи с конденсатором.

Так как реактивная мощность Qc имеет место в цепи с емкостным сопротивлением, то это емкостное сопротивление считается реактивным сопротивлением Х емкостного характера (Хс).

Расчет линейных электрических цепей синусоидального тока

Расчет электрических цепей синусоидального тока производится преимущественно с помощью векторных диаграмм. В нашей главе рассматривается расчет неразветвленных цепей синусоидального тока, содержащих активное сопротивление R, активность L и емкость С в различных сочетаниях.

Цепь с активным сопротивлением и индуктивностью

Если по цепи с реальной катушкой, обладающей активным сопротивлением R и индуктивностью L, проходит синусоидальный ток (рис. 12.1а), то этот ток создает падение напряжения на активном сопротивлении проводников катушки и индуктивном сопротивлении катушки

Следовательно, по второму закону Кирхгофа, для мгновенных значений, приложенное к реальной катушке напряжение можно записать

Это равенство справедливо для неразветвленной цепи синусоидального тока с последовательно включенными активным сопротивлением R и индуктивным сопротивлением XL (рис. 12.16).

Активное напряжение (рис. 11.16) совпадет по фазе с током и может быть записано . Индуктивное напряжение опережает ток на угол 90° = .

Мгновенное значение напряжения, приложенного к цепи, определяется алгебраической суммой мгновенных значений напряжений согласно (12.1). А действующее значение этого напряжения U определяется геометрической суммой их действующих значений

Это равенство лежит в основе построения векторной диаграммы (рис. 12.1 в).

Из векторной диаграммы (рис. 12.1 в) видно, что напряжение U, приложенное к реальной катушке, опережает по фазе ток на угол ф. Мгновенное значение этого напряжения может быть записано:

где ф — это международное обозначение угла сдвига фаз между током и напряжением для любой цепи переменного тока.

Воспользовавшись теоремой Пифагора для определения гипотенузы прямоугольного треугольника, по векторной диаграмме (рис. 12.1 в) определяется напряжение

Равенство (12.4) является математическим выражением закона Ома для цепи синусоидального тока с активным R и индуктивным XL сопротивлениями в неразветвленной цепи.

Знаменатель этого равенства является сопротивлением этой цепи, которое называется полным, или кажущимся, сопротивлением цепи синусоидального тока. Обозначается кажущееся (полное) сопротивление любой цепи переменного тока буквой Z:

где Zk — полное, или кажущееся, сопротивление реальной катушки.

Тогда закон Ома для любой цепи переменного тока в общем виде можно записать

где Z — кажущееся сопротивление этой цепи.

Треугольники напряжений, сопротивлений, мощностей

Треугольник, все стороны которого изображены векторами напряжений, называется треугольником напряжений. Пользуясь векторной диаграммой для неразветвленной цепи с активным и индуктивным сопротивлениями (рис. 12.1в), выделяем треугольник напряжений (рис. 12.2а).

Связь между напряжениями в данной цепи можно рассматривать как соотношение между сторонами и углами прямоугольного треугольника:

Если все стороны треугольника напряжений разделить на ве-1ину тока в цепи, то получится подобный прямоугольный треугольник, все стороны которого в определенном масштабе изображают сопротивления цепи, т. е. получится треугольник составлений (рис. 12.16). Сопротивления не являются векторными величинами. Из треугольника сопротивлений можно определить:

Обычно тригометрические функции угла ф определяются из треугольника сопротивлений отношением (12.9).

Если все стороны треугольника напряжений умножить на величину тока цепи, то получится подобный прямоугольный треугольник, все стороны которого в определенном масштабе изображают мощности цепи, т.е. получится треугольник мощностей (рис. 12.2в).

Произведение напряжения и тока цепи характеризует полную мощность цепи

которая измеряется в вольт-амперах, т.е.

Однако потребляется в цепи только часть полной мощности — активная мощность

где cos ф показывает, какая часть полной мощности потребляется в цепи, поэтому cos ф называют коэффициентом мощности:

Полная мощность цепи S называется кажущейся. Из того же треугольника мощностей (рис. 12.2в) записать:

Построив треугольники напряжений, сопротивлений и мощностей для любой цепи синусоидального тока, по выражениям (12.7)—(12.14) можно рассчитать параметры этой цепи.

Цепь с активным сопротивлением и емкостью

Если в цепи с последовательно включенными активным сопротивлением R и емкостью С протекает синусоидальный ток , то он создает падение напряжения на активном сопротивлении и на емкостном сопротивлении . Векторная диаграмма для этой цепи изображена на рис. 12.36.

Напряжение цепи изменяется, как и ток, по синусоидальному закону и отстает по фазе от тока на угол ф

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ С ИНДУКТИВНОСТЬЮ

Рассмотрим идеальную катушку индуктивности, для которой Rk =C = 0 (Rk – активное сопротивление катушки, С – межвитковая емкость). L – индуктивность катушки. Пусть напряжение u = Um . По цепи протекает переменный ток. Так как ток в цепи изменяется, следовательно в катушке индуцируется эдс индукции eL = -L di/dt. Уравнение электрического

Рис. 69 Цепь переменного тока с индуктивным элементом: а – схема, б.в – временная и векторная диаграммы.

состояния имеет вид

Откуда следует, что u = — eL = L di/dt.

Из уравнения следует, что для любого момента времени (u) численно равна (eL) и эти величины находятся в противофазе.

di = u/L dt = Um . (6-11)

Проинтегрируем последнее выражение

А – постоянная интегрирования, которая при отсутствии постоянной составляющей тока равна нулю.

Заменим — = .

Тогда мгновенное значение тока приобретает вид:

В окончательном виде выражение для тока в цепи с индуктивным элементом

i = Im . (6-12)

Из сравнения аналитических уравнений напряжения и тока следует, что в результате возникновения в цепи эдс индукции между этими характеристиками возникает фазовый сдвиг равный π/2 или напряжение опережает ток на угол π/2. Это означает, что с нарастанием напряжения от нуля до максимума ток падает по абсолютной величине от максимума до нуля и наоборот (рис. б).

На векторной диаграмме (рис. в), если вектор тока располагается горизонтально, то вектор напряжения – с опережением по фазе на угол π/2.

Индуктивное сопротивление. Произведение — называется индуктивным сопротивлением, которое пропорционально частоте тока (ω =2πν) и индуктивности элемента цепи.

Измеряется индуктивное сопротивление в омах (Ом).

Таким образом, любой элемент цепи, обладающий индуктивностью, создает определенное сопротивление при прохождении через него переменного тока. Это можно пояснить тем, что в индуктивном элементе при прохождении переменного тока происходит возбуждение эдс индукции eL, которая согласно правила Ленца своим действием направлена против причины, ее порождающей, следовательно, она создает препятствие на пути движения тока. Хотя индуктивное и активное сопротивления имеют одинаковые размерности, причины, их порождающие, различны.

Индуктивное сопротивление – это сопротивление, которое оказывает току индуктированная эдс, возникающая в этом элементе при прохождении через него переменного тока.

Для постоянного тока ν=0 и, следовательно, =0. Для переменного тока, с изменяющейся

Рис. 70 Частотная зависимость индуктивного сопротивления.

частотой от нуля до бесконечности величина увеличивается по линейному закону от = 0 до = ∞ (рис. )

Уравнение мощности. В цепи с индуктивным элементом мгновенное значение мощности

p = ui = Im ,sin-(𝜔𝑡− 𝜋/2). Um = — Im Um ,sin-𝜔𝑡. (6-13)

Заменим =

Получим p = — UmIm/2 ∙ = — UI . (6-14)

Это выражение показывает, что кривая мощности изменяется по закону синуса, но с двойной частотой 2ω.

Рис. 71 Кривые мгновенных значений напряжения, тока и мощности для цепи, содержащей индуктивность.

Когда u и i имеют одинаковые знаки (рис.71 ), то кривая р положительна и располагается выше оси абсцисс. Если же u и i имеют разные знаки, то кривая р отрицательна и располагается ниже оси абсцисс.

В первую четверть периода ток, а вместе с ним и магнитный поток катушки увеличивается. Катушка забирает от источника энергии мощность. В это время энергия забираемая от источника идет на создание магнитного поля (мощность положительна). Количество энергии, запасаемое в магнитном поле за время роста тока, можно определить как :

(6-15)

За вторую четверть периода ток убывает. ЭДС индукции, которая в первую четверть периода стремилась помешать возрастанию тока, теперь, когда ток начинает убывать, будет мешать ему уменьшаться. Сама катушка становится как бы генератором электрической энергии. Она возвращает источнику энергию, запасенную в ее магнитном поле. Мощность отрицательна и кривая р располагается ниже оси абсцисс.

За вторую половину периода явление повторяется. Таким образом, между источником переменного напряжения и катушкой, содержащей индуктивность, происходит обмен мощностью. В течение первой и третьей четвертей периода мощность поглощается катушкой, в течение второй и четвертой четвертей мощность, в равной степени, возвращается источнику.

В этом случае, в среднем, расхода мощности не будет, несмотря на то, что на зажимах цепи есть напряжение U и в цепи протекает ток I.

Вычислим активную мощность за время равное периоду

P = 1/T

(интеграл от синусоидальной функции в пределах двух периодов равен нулю).

Тот же результат мы получим, если вычислим активную мощность по формуле

. (6-16)

Так как между напряжением и током существует фазовый сдвиг равный 90 0 и .

Поэтому активная мощность также равна нулю, т.е. расхода мощности нет.

Реактивная (индуктивная) мощность количественно оценивается амплитудой кривой мощности:

QL = U I = I 2 XL. (6-17)

и измеряется — вольт-ампер реактивный (вар).

Цепь с индуктивностью

Напряжение и ток

Цепь, изображенная на рис. 5-14, обладает индуктивностью и ничтожно малым активным сопротивлением

При прохождении по цепи тока

i = I м sin ωt в ней индуктируется э. д. с. самоиндукции;

Для замкнутой цепи согласно второму правилу Кирхгофа u + eL = i r = 0 следовательно, напряжение на зажимах индуктивности

Рис. 5-14. Цепь с индуктивностью.

Написанное уравнение, с од ной стороны, показывает, что под действием приложенного

напряжения в цепи устанавливается такой ток , который в каждый момент времени индуктирует э. д. с. самоиндукции, равную по величине и противоположную по направлению приложенному напряжению, т. е. э. д. с, уравновешивающую напряжение.

С другой стороны, уравнение показывает, что напряжение на индуктивности пропорционально скорости изменения тока по времени.

При синусоидальном токе (рис. 5-15) скорость изменения его

т. е. скорость изменения пропорциональна косинусу. Следовательно, при прохождении тока через максимум скорость его изменения равна нулю, а при прохождении тока через нулевое значение скорость его изменения наибольшая (рис. 5-15).

Рис. 5-15. Графики тока, магнитного потока, напряжения и мощности цепи с индуктивностью.

Напряжение на индуктивности

Таким образом, при синусоидальном токе напряжение на индуктивности также синусоидально, но по фазе опере жает ток на угол π /2 (рис. 5-16).

Индуктированная в цепи э. д. с. самоиндукции

сдвинута по фазе от напряжения на половину периода.

Векторная диаграмма цепи с индуктивностью дана на рис. 5-16.

Рис. 5-16. Векторная диаграмма цепи с индуктивностью.

Индуктивное сопротивление

Из выражений следует, что максимальное значение, напряжения и равное ему максимальное значение э. д. с.

Разделив написанные выражения на √2, получим действующие значения напряжения и э. д. с.

откуда действующее значение тока I = U : ωL = U : xL

Величина, определяемая отношением напряжения к току цепи:

называется реактивным сопротивлением индуктивности или просто индуктивным сопротивлением.

Индуктивное сопротивление пропорционально индуктивности и частоте переменного тока. При изменении частоты от f = 0 (постоянный ток) до f = ∞ оно изменяется от xL = 0 до xL = ∞.

Мощность

Мгновенное значение мощности

Приняв во внимание, что sin ωt cos ωt = 1/2 sin 2 ωt, получим: p = 1/2U м I м sin 2ωt = U I sin 2ωt

На рис. 5-15 показан график мгновенной мощности. Мгновенная мощность в цепи с индуктивностью изменяется с двойной частотой,; достигая то положительного максимума U I = I 2 ωL, то такого же по величине отрицательного максимума.

При нарастании тока, а следовательно, и магнитного потока (первая и третья четверти периода, рис. 5-15), независимо от его направления, происходит: накопление энергии магнитного поля от пуля до максимального значений: Wм = 1/2 L I 2 м = L I 2

которая получается от генератора; таким образом, цепь работает в режиме потребителя, что соответствует положительному значению мощности цепи.

При спадании тока, а следовательно, и магнитного потока (вторая и четвертая четверти периода, рис. 5-15) происходит уменьшение энергии магнитного поля от максимального значения до нуля, которая возвращается цепью генератору. Таким образом, в эти части периода цепь работает в режиме генератора, что соответствует отрицательному значению мощности цепи с индуктивностью.

Средняя мощность Р в цепи с индуктивностью равна нулю.

Максимальное значение мощности Q в цепи с индуктивностью принято называть реактивной мощностью.

Единица измерения реактивной мощности носит название вольт-ампер реактивный (вар).

Пример 5-5. Катушка с индуктивностью 0,01 гн включена в сеть

с напряжением 127 в и частотой 50 гц.

1. Определить реактивное сопротивление, ток цепи и реактивную мощность:

Q = U I = 127 • 40,5 = 5143,5 вар.

2. Определить реактивное сопротивление и ток при частоте 500 гц:

Зависимость между э. д. с. и магнитным потоком

При расчете цепей переменного тока со сталью часто индуктированную з. д. с. выражают через магнитный поток. Амплитудное значение потокосцепления самоиндукции

Если все витки контура пронизываются одним магнитным потоком, то Ψм = ɯФм

В этом случае э. д. с. самоиндукции или равное ей напряжение можно выразить:

Статья на тему Цепь с индуктивностью

Похожие страницы:

Понравилась статья поделись ей

Leave a Comment

Для отправки комментария вам необходимо авторизоваться.


источники:

http://helpiks.org/3-86926.html

http://znaesh-kak.com/e/e/%D1%86%D0%B5%D0%BF%D1%8C-%D1%81-%D0%B8%D0%BD%D0%B4%D1%83%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D1%8C%D1%8E