Уравнение траектории движения материальной точки по окружности

Движение по окружности

Движение по окружности — простейший случай криволинейного движения тела. Когда тело движется вокруг некоторой точки, наряду с вектором перемещения удобно ввести угловое перемещение ∆ φ (угол поворота относительно центра окружности), измеряемое в радианах.

Зная угловое перемещение, можно вычислить длину дуги окружности (путь), которую прошло тело.

Если угол поворота мал, то ∆ l ≈ ∆ s .

Угловая скорость

При криволинейном движении вводится понятие угловой скорости ω , то есть скорости изменения угла поворота.

Определение. Угловая скорость

Угловая скорость в данной точке траектории — предел отношения углового перемещения ∆ φ к промежутку времени ∆ t , за которое оно произошло. ∆ t → 0 .

ω = ∆ φ ∆ t , ∆ t → 0 .

Единица измерения угловой скорости — радиан в секунду ( р а д с ).

Существует связь между угловой и линейной скоростями тела при движении по окружности. Формула для нахождения угловой скорости:

Нормальное ускорение

При равномерном движении по окружности, скорости v и ω остаются неизменными. Меняется только направление вектора линейной скорости.

При этом равномерное движение по окружности на тело действует центростремительное, или нормальное ускорение, направленное по радиусу окружности к ее центру.

a n = ∆ v → ∆ t , ∆ t → 0

Модуль центростремительного ускорения можно вычислить по формуле:

a n = v 2 R = ω 2 R

Докажем эти соотношения.

Рассмотрим, как изменяется вектор v → за малый промежуток времени ∆ t . ∆ v → = v B → — v A → .

В точках А и В вектор скорости направлен по касательной к окружности, при этом модули скоростей в обеих точках одинаковы.

По определению ускорения:

a → = ∆ v → ∆ t , ∆ t → 0

Взглянем на рисунок:

Треугольники OAB и BCD подобны. Из этого следует, что O A A B = B C C D .

Если значение угла ∆ φ мало, расстояние A B = ∆ s ≈ v · ∆ t . Принимая во внимание, что O A = R и C D = ∆ v для рассмотренных выше подобных треугольников получим:

R v ∆ t = v ∆ v или ∆ v ∆ t = v 2 R

При ∆ φ → 0 , направление вектора ∆ v → = v B → — v A → приближается к направлению на центр окружности. Принимая, что ∆ t → 0 , получаем:

a → = a n → = ∆ v → ∆ t ; ∆ t → 0 ; a n → = v 2 R .

При равномерном движении по окружности модуль ускорения остается постоянным, а направление вектора изменяется со временем, сохраняя ориентацию на центр окружности. Именно поэтому это ускорение называется центростремительным: вектор в любой момент времени направлен к центру окружности.

Запись центростремительного ускорения в векторной форме выглядит следующим образом:

Здесь R → — радиус вектор точки на окружности с началом в ее центре.

Тангенциальное ускорение

В общем случае ускорение при движении по окружности состоит из двух компонентов — нормальное, и тангенциальное.

Рассмотрим случай, когда тело движется по окружности неравномерно. Введем понятие тангенциального (касательного) ускорения. Его направление совпадает с направлением линейной скорости тела и в каждой точке окружности направлено по касательной к ней.

a τ = ∆ v τ ∆ t ; ∆ t → 0

Здесь ∆ v τ = v 2 — v 1 — изменение модуля скорости за промежуток ∆ t

Направление полного ускорения определяется векторной суммой нормального и тангенциального ускорений.

Движение по окружности в плоскости можно описывать при помощи двух координат: x и y. В каждый момент времени скорость тела можно разложить на составляющие v x и v y .

Если движение равномерное, величины v x и v y а также соответствующие координаты будут изменяться во времени по гармоническому закону с периодом T = 2 π R v = 2 π ω

Движение по окружности

Значимым частным случаем перемещения материальной точки по заданной траектории служит движение по окружности. Местоположение точки на окружности можно задавать не при помощи расстояния от некоторой начальной точки (допустим A), а с помощью угла $\varphi $, который образуют радиусы, которые провели из центра окружности (O) к рассматриваемой частице (точка M) и из О в точку начала отсчета (A) (рис.1).

Скорость при движении по окружности

При движении по окружности вместе со скоростью движения по траектории ($v$- линейная скорость) вводят угловую скорость ($\omega $), которая характеризует быстроту изменения угла $\varphi $:

Определим, какова связь между линейной и угловой скоростями. Длину дуги АМ ($s$) (рис.1) можно найти как:

тогда изменение длины дуги за время$\ \Delta t$ равно$\ \Delta s$:

\[\Delta s=R\Delta \varphi \ \left(3\right).\]

Найдем отношение $\frac<\Delta s><\Delta t>$, разделив обе части выражения (3) на $\Delta t$:

Перейдем к пределу в правой и левой частях равенства (4) при $\Delta t\to 0$, получим:

Ускорение материальной точки при движении по окружности

Величина нормальной (центростремительной) компоненты ускорения вычисляется при помощи формулы:

При равномерном перемещении по окружности величина центростремительного ускорения постоянна ($a_n=const).\ $Угловая скорость при равномерном движении по окружности является постоянной величиной, в этом случае ее называют циклической частотой.

Тангенциальное ускорение при движении по окружности вычисляют, как и при любом криволинейном движении:

Период и частота — характеристики равномерного движения по окружности

Равномерное движение по окружности можно характеризовать при помощи такой физической величины как период обращения ($T$), который определяют как время совершения материальной точкой полного оборота. Используют и частоту ($\nu$) обращения, которую определяют как величину обратную периоду, равную количеству оборотов за единицу времени:

При равномерном движении по окружности угловая скорость, частота и период связаны как:

Формула (9) дает возможность центростремительное ускорение определить как:

Отметим, что при неравномерном движении по окружности период ($T$) и частота ($\nu$) свой смысл теряют, о них можно говорить только при равномерном движении по окружности.

Примеры задач с решением

Задание. Центростремительное ускорение материальной точки, перемещающейся по окружности, имеющей радиус R, задано уравнением: $a_n=A+Bt+Ct^2(\frac<м><с^2>)$. Каково тангенциальное ускорение точки? Как направлены ускорения точки?

Решение. Сделаем рисунок.

Нормальное ускорение материальной точки, движущейся по окружности можно найти как:

Следовательно, скорость точки:

Используя заданный в условии задачи закон изменения нормального ускорения $a_n=A+Bt+Ct^2(\frac<м><с^2>)$, выражение (1.3) преобразуем к виду:

Величина тангенциального ускорения определена как:

Подставим правую часть выражения (1.4) в уравнение (1.5), имеем:

Задание. Чему равен путь (s), который проходит точка в примере 1 за время $t_1$, если A= 1 $\frac<м><с^2>$, $B=6\ \frac<м><с^3>$; $С=9\frac<м><с^4>$.

Решение. Путь, пройденный точкой можно найти как:

Используем выражение для величины скорости, которое мы получили в первом примере:

Подставим известные нам из условия задачи коэффициенты, преобразуем полученное выражение $v\ \left(t\right):$

Вычислим интеграл (2.1), принимая во внимание выражение (2.3):

Ответ. $s=\sqrt\left(t_1+\frac<3><2>^2\right)$

Движение тела по криволинейной траектории. Движение по окружности. Характеристики вращательного движения. Центростремительное ускорение

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Вам хорошо известно, что в зависимости от формы траектории движение делится на прямолинейное и криволинейное. С прямолинейным движением мы научились работать на предыдущих уроках, а именно решать главную задачу механики для такого вида движения.

Однако ясно, что в реальном мире мы чаще всего имеем дело с криволинейным движением, когда траектория представляет собой кривую линию. Примерами такого движения является траектория тела, брошенного под углом к горизонту, движение Земли вокруг Солнца и даже траектория движения ваших глаз, следящих сейчас за этим конспектом.

Вопросу о том, как решается главная задача механики в случае криволинейного движения, и будет посвящен этот урок.


источники:

http://www.webmath.ru/poleznoe/fizika_44_dvizhenie_po_okruzhnosti.php

http://interneturok.ru/lesson/physics/10-klass/mehanikakinematika/dvizhenie-tela-po-krivolineynoy-traektorii-dvizhenie-po-okruzhnosti-harakteristiki-vraschatelnogo-dvizheniya-tsentrostremitelnoe-uskorenie