Уравнение траектории движения тела брошенного с высоты

Движение тела, брошенного горизонтально

теория по физике 🧲 кинематика

Если тело бросить горизонтально с некоторой высоты, оно будет одновременно падать и двигаться вперед. Это значит, что оно будет менять положение относительно двух осей: ОХ и ОУ. Относительно оси ОХ тело будет двигаться с постоянной скоростью, а относительно ОУ — с постоянным ускорением.

Кинематические характеристики движения

Графически движение горизонтально брошенного тела описывается следующим образом:

  1. Вектор скорости горизонтально брошенного тела направлен по касательной к траектории его движения.
  2. Проекция начальной скорости на ось ОХ равна v0: vox = v0. Ее проекция на ось ОУ равна нулю: voy = 0.
  3. Проекция мгновенной скорости на ось ОХ равна v0: vx = v0. Ее проекция на ось ОУ равна нулю: vy = –gt.
  4. Проекция ускорения свободного падения на ось ОХ равна нулю: gx = 0. Ее проекция на ось ОУ равна –g: gy = –g.

Модуль мгновенной скорости в момент времени t можно вычислить по теореме Пифагора:

Подставив в эту формулу значения проекций мгновенной скорости в момент времени t, получим:

Минимальная скорость в течение всего времени движения равна начальной скорости: vmin = v0.

Максимальной скорости тело достигает в момент приземления. Поэтому максимальной скоростью тела в течение всего времени движения является его конечная скорость: vmax = v.

Время падения — время, в течение которого перемещалось тело до момента приземления. Его можно выразить через формулу высоты при равноускоренном прямолинейном движении:

h0 — высота, с которой тело бросили в горизонтальном направлении.

Дальность полета — перемещение тела относительно ОХ. Обозначается буквой l. Так как относительно ОХ тело движется с постоянной скоростью, для вычисления дальности полета можно использовать формулу перемещения при равномерном прямолинейном движении:

Выразив время падения через высоту и ускорение свободного падения, формула для определения дальности полета получает следующий

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Горизонтальное смещение тела — смещение тела вдоль оси ОХ. Вычислить горизонтальное смещение тела в любой момент времени t можно по формуле координаты x:

Учитывая, что x0 = 0, и проекция ускорения свободного падения на ось ОХ тоже равна нулю, а проекция начальной скорости есть модуль этой скорости, данная формула принимает вид:

Мгновенная высота — высота, на которой находится тело в выбранный момент времени t. Она вычисляется по формуле координаты y:

Пример №1. Из окна, расположенного 5 м от земли, горизонтально брошен камень, упавший на расстоянии 8 м от дома. С какой скоростью был брошен камень?

Так как нам известна высота места бросания и дальность полета, начальную скорость тела можно вычислить по формуле:

Выразим начальную скорость и вычислим ее:

Горизонтальный бросок тела с горы

Горизонтальный бросок тела с горы — частный случай горизонтального броска. От него он отличается увеличенным расстоянием между местом бросания и местом падения. Это увеличение появляется потому, что плоскость находится под наклоном. И чем больше этот наклон, тем больше времени требуется телу, чтобы приземлиться.

График горизонтального броска тела с горы

α — угол наклона плоскости к горизонту, s — расстояние от места бросания до места падения

Дальность полета — смещение тела относительно оси ОХ от места бросания до места падения. Она равна произведению расстояния от места бросания до места падения и косинуса угла наклона плоскости к горизонту:

Начальная высота — высота, с которой было брошено тело. Обозначается h0. Начальная высота равна произведению расстояния от места бросания до места падения и синусу угла наклона плоскости к горизонту:

Пример №2. На горе с углом наклона 30 о бросают горизонтально мяч с начальной скоростью 15 м/с. На каком расстоянии от точки бросания вдоль наклонной плоскости он упадет?

Выразим это расстояние через дальность полета:

Дальность полета выражается по формуле:

Подставим ее в формулу для вычисления расстояния от точки бросания до точки падения:

Выразим с учетом формулы начальной высоты:

Поделим обе части выражения на общий множитель s:

Подставим известные значения:

Шарик, брошенный горизонтально с высоты H с начальной скоростью υ 0, за время t пролетел в горизонтальном направлении расстояние L (см. рисунок).

В другом опыте на этой же установке шарик массой 2m бросают со скоростью 2 υ 0.

Что произойдёт при этом с временем полёта, дальностью полёта и ускорением шарика? Сопротивлением воздуха пренебречь. Для каждой величины определите соответствующий характер её изменения:

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Алгоритм решения

  1. Записать формулы для каждой из величин.
  2. Определить, как зависит эта физическая величина от начальной скорости и массы.
  3. Определить характер изменения физической величины при увеличении начальной скорости и массы шарика.

Решение

Время полета тела, брошенного горизонтально, определяется формулой:

Исходя из формулы, время никак не зависит от начальной скорости и массы тела. Поэтому оно при увеличении начальной скорости и массы вдвое никак не изменится.

Дальность полета тела, брошенного горизонтально, определяется формулой:

Исходя из формулы, дальность полета зависит от начальной скорости прямо пропорционально. Поэтому, если начальная скорость тела будет увеличена вдвое, дальность полета тоже увеличится (вдвое). От массы дальность полета никак не зависит.

Ускорение свободного падения — величина постоянная для нашей планеты. Поэтому изменение начальной скорости никак не повлияет на него. Ускорение не изменится.

Значит, верный ответ — 313.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Шарик, брошенный горизонтально с высоты H с начальной скоростью υ 0, за время t пролетел в горизонтальном направлении расстояние L (см. рисунок).

Что произойдёт с временем полёта, дальностью полёта и ускорением шарика, если на этой же установке уменьшить начальную скорость шарика в 2 раза? Сопротивлением воздуха пренебречь. Для каждой величины определите соответствующий характер её изменения:

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Алгоритм решения

  1. Записать формулы для каждой из величин.
  2. Определить, как зависит эта физическая величина от начальной скорости.
  3. Определить характер изменения физической величины при уменьшении начальной скорости.

Решение

Время полета тела, брошенного горизонтально, определяется формулой:

Исходя из формулы, время никак не зависит от начальной скорости. Поэтому оно при уменьшении начальной скорости вдвое не изменится.

Дальность полета тела, брошенного горизонтально, определяется формулой:

Исходя из формулы, дальность полета зависит от начальной скорости прямо пропорционально. Поэтому, если начальная скорость тела будет уменьшена вдвое, дальность полета тоже уменьшится (вдвое).

Ускорение свободного падения — величина постоянная для нашей планеты. Поэтому изменение начальной скорости никак не повлияет на него. Ускорение не изменится.

Значит, верный ответ — 323.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Тело брошено горизонтально с высоты h=20 м. Траектория его движения

Условие задачи:

Тело брошено горизонтально с высоты \(h=20\) м. Траектория его движения описывается уравнением \(y=20-0,05x^2\). Найти скорость, с которой было брошено тело.

Задача №1.5.11 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Решение задачи:

Посмотрите на рисунок к задаче, который мы привели справа. Видно, что когда тело достигнет земли, то его координата \(y\) станет равной нулю, поэтому воспользуемся уравнением траектории и найдем координату \(x\), соответствующую этому моменту времени.

\[\left\< \begin
y = 20 – 0,05 \hfill \\
y = 0 \hfill \\
\end \right. \Rightarrow 20 – 0,05 = 0\]

Решим это квадратное уравнение.

\[\left[ \begin
x = 20 \hfill \\
x = – 20 \hfill \\
\end \right.\]

Отбросим отрицательный корень, поскольку тело бросалось в положительном направлении оси \(x\).

Теперь запишем уравнения движения в проекциях на ось \(x\) и \(y\).

Если в уравнениях (1) и (2) переменная \(t\) станет равной времени падения, то будет справедливо записать:

Причем дальность полета \(S\) мы нашли, решив квадратное уравнение, значит, \(S=20\) м.

Далее найдем время падения \(t\) из выражения (4).

Из формулы (3) выразим искомую начальную скорость \(\upsilon_0\) и в полученное выражение подставим формулу для времени.

Сосчитаем численный ответ:

Ответ: 10 м/с.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Движение тела под углом к горизонту

Начальные условия

Рассмотрим движение тела (материальной точки) брошенного под углом к горизонту с некоторой высоты $h_0$. Начальная скорость тела равна $<\overline>_0$, вектор $<\overline>_0$ составляет угол $\alpha $ с горизонтом (рис.1). Систему отсчета, в которой движется тело, свяжем с Землей. Ось X направим параллельно земле, ось Y вертикально вверх.

Движение тела под углом к горизонту происходит в поле тяжести Земли под воздействием силы тяжести. Силой сопротивления воздуха пренебрежём. В этом случае ускорение тела ($\overline$) совпадает с ускорением свободного падения ($\overline$):

Запишем начальные условия движения тела (рис.1):

Уравнение для перемещения тела, брошенного под углом к горизонту. Траектория его движения

Перемещение тела, которое бросили под углом к горизонту является равноускоренным, следовательно, для написания уравнения движения воспользуемся векторным уравнением для перемещения ($\overline$) при равнопеременном движении в виде, учтем равенство (1):

Векторное уравнение (3) в проекции на оси координат X и Y даст нам два скалярных уравнения:

Из системы уравнений (4) мы видим, что при рассматриваемом нами движении происходит наложение двух прямолинейных движений. Причем по оси X тело под углом к горизонту движется с постоянной скоростью $<\ v>_<0x>=v_0<\cos \alpha ,\ >$ а по оси Y материальная точка перемещается с постоянным ускорением $\overline$. Уравнение траектории движения тела можно получить, если из первого уравнения системы (4) выразить время ($t$) полученный результат подставить во вторую формулу системы:

Уравнение $y(x)$ (функция (5)) показывает, что тело движется по параболе в плоскости, в которой лежат векторы $\overline$ и $<\overline>_0.$

Уравнение скорости движения тела брошенного под углом к горизонту

В векторном виде уравнение для скорости движения рассматриваемого нами тела в произвольный момент времени запишем:

В скалярном виде уравнение (6) представим в виде системы уравнений:

В системе уравнений (7) мы еще раз видим, что движение тела под углом к горизонту по оси X равномерное, по оси Y равнопеременное. Причем, двигаясь вверх, тело уменьшает свою скорость от $v_<0y>$ до нуля, затем падая вниз скорость тела увеличивается.

Модуль вектора скорости в производный момент времени для рассматриваемого нами движения найдем как:

Время подъема и полета тела

Время, которое тело тратит на полет вверх в рассматриваемом движении можно найти из второго уравнения системы (7). В точке максимального подъема вектор скорости точки параллелен оси X, значит $v_y=0$, тогда время подъема ($t_p$):

Время, которое тело находилось в воздухе (время полета($t_$)) получим из второго уравнения системы (4), приравняв ординату $y$ к нулю:

При $h_0=0$ мы видим, что $t_=2t_p.$

Дальность полета и высота подъема

Для того чтобы найти горизонтальную дальность полета тела ($s$) при заданных нами условиях в уравнение координаты $x$ системы уравнений (4) подставим время полета ($t_$) (10). При $h_0=0,$ дальность полета равна:

Максимальную высоту подъема тела под углом к горизонту ($h_$) находят из второго уравнения системы (4), подставляя в него время подъема ($t_p$) (9):

Примеры задач с решением

Задание. Каким будет угол ($\alpha $) под которым бросили тело к горизонту, если оказалось, что максимальная высота подъема ($h$) тела в четыре раза меньше, чем дальность его полета ($s$)? Сопротивление воздуха можно не учитывать.

Решение. Выберем систему отсчета связанную с Землей. Будем считать, что тело бросили из начала координат (рис.2).

Запишем кинематические уравнения движения тела в поле тяжести земли:

Исходя из начальных условий, нашей задачи:

В проекциях на оси уравнения (1.1) и (1.2)предстанут в виде:

Время подъема из второго уравнения системы (1.5) равно:

Тогда максимальная высота подъема равна:

Если тело бросили из начала координат, то $t_=2t_p,$ дальность полета найдем, подставив время полета в первое уравнение системы (1.4):

По условию задачи: $h=\frac<4>$, используем уравнения (1.7) и (1.8):

Ответ. $\alpha =\frac<\pi ><4>$

Задание. Какова скорость падения тела брошенного под углом горизонта $\alpha $ со скоростью $v_0$? Если тело бросили с земли. Сопротивление воздуха можно не учитывать.

Решение. За основу решения задачи примем кинематическое уравнение для скорости движения тела в поле тяжести Земли:

Начальные условия движения нашего тела:

В проекциях на оси X и Y уравнение (2.1):

Время подъёма тела, принимая во внимание, что $v_y\left(t_p\right)=0$ из второго уравнения (2.3) равно:

Если тело бросили из начала координат, то $t_=2t_p:$

Зная время полета, найдем $v_y\left(t_\right)$, подставив его во второе уравнение (2.3):

Модуль вектора скорости в момент падения найдем как:

Ответ. При заданных условиях величина скорости падения равна модулю скорости бросания.


источники:

http://easyfizika.ru/zadachi/kinematika/telo-brosheno-gorizontalno-s-vysoty-h-20-m-traektoriya-ego-dvizheniya/

http://www.webmath.ru/poleznoe/fizika/fizika_104_dvizhenie_tela_pod_uglom_k_gorizontu.php