Уравнение трансформатора в режиме холостого хода формула

Что такое холостой ход трансформаторов, формулы и схемы

Трансформатор электрического тока является устройством преобразования энергии. Ток холостого хода трансформатора характеризует потери при отсутствии подключенной нагрузки. Величина данного параметра зависит от нескольких факторов:

  1. Конструктивного исполнения.
  2. Материала сердечника.
  3. Качества намотки.

При изготовлении преобразователей стремятся к максимально возможному снижению потерь холостого хода с целью повышения КПД, снижения нагрева, а также уменьшения паразитного поля магнитного рассеивания.

Общая конструкция и принцип работы трансформатора

Конструктивно трансформатор состоит из следующих основных частей:

  1. Замкнутый сердечник из ферромагнитного материала.
  2. Обмотки.

Обмотки могут быть намотаны на жестком каркасе или иметь бескаркасное исполнение. В качестве сердечников трансформаторов напряжения промышленной частоты используется специальным образом обработанная сталь. В некоторых случаях встречаются устройства без сердечника, но они используются только в области высокочастотной схемотехники и в рамках данной темы рассматриваться не будут.

Принцип действия рассматриваемой конструкции заключается в следующем:

  1. При подключении первичной обмотки к источнику переменного напряжения она формирует переменное электромагнитное поле.
  2. Под воздействием данного поля в сердечнике формируется магнитное поля.
  3. Магнитное поле сердечника, в силу электромагнитной индукции, создает во всех обмотках ЭДС индукции.

ЭДС индукции создается, в том числе, в первичной обмотке. Ее направление противоположно подключенному напряжению, поэтому они взаимно компенсируются и ток через обмотку при отсутствии нагрузки равен нулю. Соответственно, потребляемая мощность при отсутствии нагрузки равна нулю.

Понятие холостого хода

Приведенные выше рассуждения справедливы для идеального трансформатора. Реальные конструкции обладают следующими потерями (недостатками) на:

  • намагничивание сердечника;
  • магнитное поле рассеивания сердечника;
  • электромагнитное рассеивание обмотки;
  • междувитковую емкость проводов обмотки.

В результате, в реальных конструкциях трансформатора наводимая ЭДС индукции отличается от номинального напряжения первичной обмотки и не в состоянии его полностью скомпенсировать. В обмотке возникает некоторый ток холостого хода. При подключении нагрузки данное значение суммируется с номинальным током и характеризует общие потери в электрической цепи.

Потери снижают общий КПД трансформатора, в результате чего растет потребление мощности.

Меры по снижению тока холостого хода

Основным источником возникновения тока холостого хода является конструкция магнитопровода. В ферромагнитном материале, помещенном в переменное электрическое поле, наводятся вихревые токи электромагнитной индукции – токи Фуко, которые нагревают материал сердечника.

Для снижения вихревых потерь материал сердечника изготавливают из тонких пластин, отделенных друг от друга изолирующим слоем, которую выполняет оксидная пленка на поверхности. Сам материал производится по специальной технологии, с целью улучшения магнитных свойств (увеличения значения магнитного насыщения, магнитной проницаемости, снижения потерь на гистерезис).

Обратная сторона использования большого количества пластин состоит в том, что в местах стыков происходит разрыв магнитного потока, в результате чего возникает поле рассеивания. Поэтому для наборных сердечников важна тщательная подгонка отдельных пластин друг к другу. В ленточных разрезных магнитопроводах отдельные части подгоняются друг к другу при помощи шлифовки, поэтому при сборке конструкции нельзя менять местами части сердечника.

От указанных недостатков свободны О-образные магнитопроводы. Магнитное поле рассеивания у них стремится к нулю.

Поле рассеивания обмотки и междувитковую емкость снижают путем изменения конструкции обмоток и пространственного размещения их частей относительно друг друга.

Снижение потерь также достигается при возможно более полном заполнении свободного окна сердечника. При этом масса и габариты устройства стремятся к оптимальным показателям.

Как проводится опыт холостого хода

Опыт холостого хода подразумевает подачу напряжения на первичную обмотку при отсутствии нагрузки. При помощи подключенных измерительных приборов измеряются электрические параметры конструкции.

Для проведения опыта холостого хода первичную обмотку включают в сеть последовательно с прибором для измерения тока- амперметром. Параллельно зажимам подключается вольтметр.

Следует иметь в виду, что предел измерения вольтметра должен соответствовать подаваемому напряжению, а при выборе амперметра нужно учитывать ориентировочные значения измеряемой величины, которые зависят от мощности трансформатора.

Коэффициент трансформации

Наиболее просто определяется коэффициент трансформации. Для этого сравнивается входное и выходное напряжение. Расчет производится по следующей формуле:

Данное отношение справедливо для всех обмоток трансформатора.

Однофазные трансформаторы

В однофазных трансформаторах показания амперметра характеризуют потребляемый ток при отсутствии нагрузки. Данные показания являются конечными и нет необходимости в дальнейших вычислениях.

Трехфазные

Чтобы проверить трехфазный трансформатор, требуется усложнение схемы подключения. Необходимо наличие следующих приборов:

  • амперметры для измерения тока в каждой фазе;
  • вольтметры для измерения междуфазных напряжений первичной обмотки;
  • вольтметры для измерения междуфазных напряжений вторичной обмотки.

При проведении опыта холостого хода производятся следующие вычисления:

  • рассчитывается среднее значение тока по показаниям амперметра;
  • среднее значение напряжения первичной и вторичной обмоток.

Коэффициент трансформации вычисляется по полученным значениям напряжения аналогично однофазной системе.

Измерение тока

При измерении тока можно определить только величину электрических потерь. Более полно определить параметры конструкции позволяет более сложная схема измерений.

Применение ваттметра

Подключив в первичную цепь ваттметр, можно определить мощность потерь трансформатора в режиме холостого хода. Суммируясь с мощностью нагрузки, найденная величина определяет габаритную мощность трансформатора.

Измерение потерь

При измерениях тока холостого хода и мощности потребления, можно сделать выводы о общих потерях холостого хода, которые приводят к следующему:

  1. Нагрев проводов обмоток.
  2. Нагрев сердечника.
  3. Снижение КПД.
  4. Появление магнитного поля рассеивания.

Схема замещения в режиме трансформатора

Прямой электрический расчет трансформатора сложен по той причине, что он представляет собой две электрических цепи, связанных между собой магнитной цепью.

Для упрощения расчетов удобнее пользоваться упрощенной эквивалентной схемой. В схеме замещения вместо обмоток используются комплексные сопротивления:

  • для первичной обмотки комплексное сопротивление включается последовательно в цепь;
  • для вторичной обмотки параллельно нагрузке.

Каждое комплексное сопротивление состоит из последовательно соединенного активного сопротивления и индуктивности.

Активное сопротивление – это сопротивление проводов обмотки.

От чего зависит магнитный поток взаимоиндукции в режиме ХХ

Магнитный поток взаимоиндукции в трансформаторе зависит от способа размещения обмоток на сердечнике и их конструктивного исполнения.

Важную роль играет коэффициент заполнения окна магнитопровода, который показывает отношение общего пространства, к месту, занятому обмоткой.

Чем ближе данный коэффициент к единице, тем выше будет взаимоиндукция обмоток и меньше потери в трансформаторе.

Примеры расчетов и измерений в режиме ХХ

Измеряя ток, напряжение и мощность трансформатора в опыте холостого хода, можно рассчитать следующие дополнительные данные:

  • активное сопротивление первичной цепи r1=Pхх/U 2 ;
  • полное сопротивление первичной цепи z1=U/Iхх;
  • индуктивное сопротивлении е x1=√(z 2 -r 2 ).

Найти ток холостого хода без применения амперметра можно по показаниям вольтметра и ваттметра:

Режимы работы и схема замещения трансформатора

Схема замещения трансформатора позволяет отдельно расчитывать цепи первичной и вторичных обмоток. В схему замещения трансформатора входят поля рассеивания магнитного потока, а вторичные цепи пересчитываются в первичную через коэффициенты трансформации.

Для составления схемы замещения возьмём трансформатор с двумя обмотками: первичной с количеством витков W1 для подключения к сети питания и вторичной с количеством витков W2 для подключения нагрузки. Его упрощенное устройство показано на рисунке 1.


Рисунок 1 Упрощенное устройство трансформатора

Принципиальная схема подключения нагрузки к источнику питания через трансформатор приведена на рисунке 2.


Рисунок 2 Принципиальная схема подключения нагрузки через трансформатор

Для создания схемы замещения трансформатора нам потребуются три режима его работы: режим холостого хода (ХХ), рабочий режим (номинальный режим) и режим короткого замыкания (КЗ). Режимы холостого хода и короткого замыкания трансформатора позволяют определить значения элементов схемы замещения трасформатора. Рассмотрим работу трансформатора в этих режимах.

Режим холостого хода трансформатора (ХХ)

В этом режиме сопротивление нагрузки равно бесконечности, в результате чего можно не учитывать вторичную обмотку и трансформатор работает как обычная катушка индуктивности с ферромагнитным сердечником. Кроме того, в режиме холостого хода трансформатора определяют его коэффициент трансформации. Схема замещения трасформатора в режиме холостого хода приведена на рисунке 3.


Рисунок 3 Схемы замещения трансформатора для режима холостого хода:
а — последовательная схема замещения,
б — параллельная схема замещения

На эквивалентных схемах трансформатора, приведенных на рисунке 2, показаны:

Индуктивность первичной обмотки, которая вместе с потерями в сердечнике влияет на к.п.д. трансформатора, можно рассчитать по следующей формуле:

(1)

Параллельная эквивалентная схема трансформатора более удобна по сравнению с последовательной для построения векторной диаграммы напряжений и токов для реальной катушки индуктивности. Эта диаграмма приведена на рисунке 3.


Рисунок 3 Векторная диаграмма напряжений и токов трансформатора в режиме холостого хода

Здесь δ — угол потерь в магнитопроводе
X1 — сопротивление индуктивности рассеяния LS1.

Обратите внимание, что в этом режиме работы трансформатора вектор ЭДС индуцированный в обмотке W2 (напряжение во вторичной обмотке) совпадает по фазе с eL, а напряжение U1, подаваемое на первичную обмотку трансформатора, является суммой э.д.с. на индуктивности первичной обмотки и падения напряжения на сопротивлениях индуктивности рассеивания и активного сопротивления первичной обмотки:

; (2)

Это выражение можно записать немного иначе:

При правильном проектировании трансформатора потери на омическом сопротивлении первичной обмотки малы, поскольку ток холостого хода много меньше номинального. Тогда угол сдвига фаз между током и напряжением (I10 и U1) определяется потерями в магнитопроводе. Это позволяет из опыта холостого хода и найти угол потерь δ и рассчитать потери в сердечнике.

Трансформатор является обращаемым устройством (первичную и вторичную обмотки можно поменять местами!), поэтому для каждой из обмоток записываем основную формулу трансформаторной ЭДС.

(3)
(4)

Разделив уравнение (3) на (4), получим выражение для коэффициента трансформации:

(5)

Подведем итоги Режим работы трансформатора на холостом ходе позволяет определить:

Коэффициент трансформации

Ток холостого хода I10 (для определения к.п.д.)

Режим короткого замыкания (КЗ)

Этот режим в условиях эксплуатации является аварийным. Он применяется только для экспериментального определения индуктивности рассеивания трансформатора. Измерения проводят в следующей последовательности. Входное напряжение устанавливают равным нулю. Замыкают выходные клеммы (). Плавно поднимают входное напряжение (U1) до тех пор, пока в обмотках не установятся номинальные токи. Величина называется напряжением короткого замыкания, является паспортной величиной трансформатора и обычно составляет 5. 10% от номинального напряжения U1ном. При этом, ток холостого хода I10 весьма мал по сравнению с номинальным и им можно пренебречь (считать равным нулю). Тогда эквивалентная схема трансформатора в режиме КЗ принимает вид, показанный на рисунке 5.


Рисунок 5 Эквивалентная схема трансформатора в режиме короткого замыкания

Ток холостого хода мы приняли равным нулю , поэтому в эквивалентной схеме трансформатора параллельная цепь L0r0 отсутствует. Входное сопротивление трансформатора полностью определяются индуктивностью рассеивания первичной и вторичной обмоток, а также их омическим сопротивлением:

(14)

Результирующее сопротивление — это сопротивление короткого замыкания трансформатора. Зная полное сопротивление короткого замыкания:

можно найти коэффициент передачи трансформатора, а в случае малой индуктивности рассеивания потери мощности в обмотках трансформатора.

Намагничивающая сила, создающая магнитный поток в сердечнике в режиме короткого замыкания (измерительный режим) практически равна нулю:

и если I10 = 0, то откуда находим отношение токов, а значит и коэффициент трансформации по току:

(15)

Знак минус в формуле (15) говорит о том, что магнитные потоки Ф1 и Ф2 направлены навстречу друг другу и взаимно компенсируются.

Рабочий режим (нагруженный или номинальный). Если к вторичной обмотке W2 подключить нагрузку Rн, то ее напряжение U2 вызовет ток нагрузки I2, как это показано на рисунке 1б. Токи I1 и I2 ориентированы различно относительно магнитного потока Ф0. Ток I1 создает поток Ф1, а ток I2 создаёт поток Ф2 и стремится уменьшить поток Ф1. Иначе говоря, в магнитопроводе появляются магнитные потоки Ф1 и Ф2, которые на основании закона Ленца направлены встречно и их алгебраическая сумма даёт: — магнитный поток холостого хода трансформатора.

Отсюда можно записать уравнение намагничивающих сил (закон полного тока):

(6)

Видно, что изменение тока I2 обязательно приведёт к изменению тока I1. Нагрузка образует второй контур, в котором ЭДС вторичной обмотки е2 является источником энергии. При этом, справедливы уравнения:

(7)
(8)

где r2 — омическое сопротивление вторичной обмотки
х2 — сопротивление индуктивности рассеяния вторичной обмотки.

По закону Киргофа сумма токов (6) может быть обеспечена параллельным соединением электрических цепей, поэтому в рабочем режиме трансформатор можно представить эквивалентной схемой, приведенной на рисунке 4.


Рисунок 4 Схема замещения трансформатора в рабочем режиме

Эквивалентная схема трансформатора в рабочем режиме, приведенная на рисунке 4 называется Т-образной схемой замещения или приведённым трансформатором. Приведение вторичной обмотки к первичной выполняется при условии равенства полных мощностей вторичных обмоток , или . Из этого равенства можно получить формулы пересчета в первичную обмотку напряжений и токов вторичной обмотки и из них получить приведенные значения сопротивлений нагрузки, вторичной обмотки и индуктивности рассеивания.

(9)
(10)

(11)

(12)

(13)

Токи и напряжения приводятся через коэффициент трансформации, а сопротивления — через квадрат коэффициента трансформации. Можно пересчитать вторичную цепь в первичную или наоборот.

Представление трансформатора в виде эквивалентной схемы позволяет методами теории цепей рассчитать любую, сколь угодно сложную схему с трансформаторами.

Если у трансформатора есть несколько вторичных обмоток, как показано на условно-графическом изображении трансформатора, приведенном на рисунке 6а, то пересчитанные сопротивления нагрузки на эквивалентной схеме соединяются параллельно и его эквивалентная схема принимает вид, показанный на рисунке 6б.


Рисунок 6 Схема замещения трансформатора с двумя вторичными обмотками

При этом значение импеданса (полного сопротивления) вторичных обмоток Z2 находится как сумма сопротивлений вторичных обмоток и сопротивления их индуктивностей рассеивания:

Понравился материал? Поделись с друзьями!

  1. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  2. Схема замещения трансформатора
  3. Режимы работы трансформатора
  4. Параметры схемы замещения трансформатора

Вместе со статьей «Режимы работы и схема замещения трансформатора» читают:

Режим холостого хода трансформатора

Одно из наиболее используемых электротехнических устройств – трансформатор. Данное оборудование используется для изменения величины электрического напряжения. Рассмотрим особенности режима холостого хода трансформатора, с учётом правил определения характеристик для различных видов устройств.

Трансформатор состоит из первичной и вторичной обмоток, расположенных на сердечнике. При подаче напряжения на входную катушку, образуется магнитное поле, индуцирующее ток на выходной обмотке. Разница характеристик достигается, благодаря различному количеству витков в катушках входа и выхода.

Принцип работы трансформатора

Что такое режим холостого хода

Под режимом холостого хода понимают состояние устройства, при котором во время подачи переменного электротока на входную катушку выходная находится в разомкнутом состоянии. Данная ситуация характерна для агрегата, подключённого к электросети, при условии, что нагрузку к выходному контуру ещё не включили.

Режим короткого замыкания

В процессе эксперимента можно найти:

  • электроток холостого хода (замеряется амперметром) – обычно его значение невелико, не больше 0,1 от номинального показателя тока первой обмотки;
  • мощность, теряемую в магнитопроводе прибора(или другими словами потери в стали);
  • показатель трансформации напряжения – примерно равен значению в первичной цепи, деленному на таковое для вторичной (оба значения – данные вольтметров);
  • по результатам замеров силы тока, мощности и напряжения первичной электроцепи можно высчитать коэффициент мощности: мощность делят на произведение двух других величин.

Как проводится опыт холостого хода

При проведении опыта холостого хода появляется возможность определить следующие характеристики агрегата:

  • коэффициент трансформации;
  • мощность потерь в стали;
  • параметры намагничивающей ветви в замещающей схеме.

Для опыта на устройство подаётся номинальная нагрузка.

При проведении опыта холостого хода и расчёте характеристик на основе данной методики необходимо учитывать разновидность устройства.

В данном состоянии трансформатор обладает нулевой полезной мощностью по причине отсутствия на выходной катушке электротока. Поданная нагрузка преобразуется в потери тепла на входной катушке I02×r1 и магнитные потери сердечника Pm. По причине незначительности значения потерь тепла на входе, их в большинстве случае в расчёт не принимают. Поэтому общее значение потерь при холостом ходе определяется магнитной составляющей.

Далее приведены особенности расчёта характеристик для различных видов трансформаторов.

Для однофазного трансформатора

Опыт холостого хода для однофазного трансформатора проводится с подключением:

  • вольтметров на первичной и вторичной катушках;
  • ваттметра на первичной обмотке;
  • амперметра на входе.

Приборы подключаются по следующей схеме:

Для определения электротока холостого хода Iо используют показания амперметра. Его сравнивают со значением электротока по номинальным характеристикам с использованием следующей формулы, получая итог в процентах:

Iо% = I0×100/I10.

Чтобы определить коэффициент трансформации k, определяют величину номинального напряжения U1н по показаниям вольтметра V1, подключённого на входе. Затем по вольтметру V2 на выходе снимают значение номинального напряжения U2О.

Коэффициент рассчитывается по формуле:

K = w1/w2 = U1н/ U2О.

Величина потерь составляет сумму из электрической и магнитной составляющих:

P0 = I02×r1 + I02×r0.

Но, если пренебречь электрическими потерями, первую часть суммы можно из формулы исключить. Однако незначительная величина электрических потерь характерна только для оборудования небольшой мощности. Поэтому при расчёте характеристик мощных агрегатов данную часть формулы следует учитывать.

Потери холостого хода для трансформаторов мощностью 30-2500 кВА

Для трёхфазного трансформатора

Трёхфазные агрегаты испытываются по аналогичной схеме. Но напряжение подаётся отдельно по каждой фазе, с соответствующей установкой вольтметров. Их потребуется 6 единиц. Можно провести опыт с одним прибором, подключая его в необходимые точки поочерёдно.

При номинальном напряжении электротока обмотки более 6 кВ, для испытания подаётся 380 В. Высоковольтный режим для проведения опыта не позволит добиться необходимой точности для определения показателей. Кроме точности, низковольтный режим позволяет обеспечить безопасность.

Применяется следующая схема:

Работа аппарата в режиме холостого хода определяется его магнитной системой. Если речь идёт о типе прибора, сходного с однофазным трансформатором или бронестержневой системе, замыкание третьей гармонической составляющей по каждой из фаз будет происходить отдельно, с набором величины до 20 процентов активного магнитного потока.

В результате возникает дополнительная ЭДС с достаточно высоким показателем – до 60 процентов от главной. Создаётся опасность повреждения изолирующего слоя покрытия с вероятностью выхода из строя аппарата.

Предпочтительнее использовать трехстержневую систему, когда одна из составляющих будет проходить не по сердечнику, с замыканием по воздуху или другой среде (к примеру, масляной), с низкой магнитной проницаемостью. В такой ситуации не произойдёт развитие большой дополнительной ЭДС, приводящей к серьёзным искажениям.

Для сварочного трансформатора

Для сварочных трансформаторов холостой ход – один из режимов их постоянного использования в работе. В процессе выполнения сварки при рабочем режиме происходит замыкание второй обмотки между электродом и металлом детали. В результате расплавляются кромки и образуется неразъёмное соединение.

После окончания работы электроцепь разрывается, и агрегат переходит в режим холостого хода. Если вторичная цепь разомкнута, величина напряжения в ней соответствует значению ЭДС. Эта составляющая силового потока отделяется от главного и замыкается по воздушной среде.

Чтобы избежать опасности для человека при нахождении аппарата на холостом ходу, значение напряжения не должно превышать 46 В. Учитывая, что у отдельных моделей значение данных характеристик превышает указанное, достигая 70 В, сварочный агрегат выполняют со встроенным ограничителем характеристик для режима холостого хода.

Блокировка срабатывает за время, не превышающее 1 секунду с момента прерывания рабочего режима. Дополнительная защитная мера – устройство заземления корпуса сварочного агрегата.

Видео: измерение тока холостого хода

Меры по снижению тока холостого хода

Ток при нахождении трансформатора в режиме холостого хода возникает, благодаря конструктивным особенностям сердечника. Для ферромагнитного материала, попавшего в электрическое поле переменного тока, характерно наведение вихревых индуктивных токов Фуко, вызывающих нагревание данного элемента.

Чтобы снизить вихревые токи, сердечник изготавливают не в виде цельной детали, а набирают из пакета пластин небольшой толщины. Между собой пластины изолируются. Дополнительная мера – изменение свойств самого материала, позволяющее увеличить порог магнитного насыщения.

Чтобы не допустить разрыва магнитного потока с возникновением поля рассеивания, пластины тщательно подгоняют в процессе набора. Отдельные элементы шлифуют, с получением гладкой, идеально прилегающей поверхности.

Также потери снижаются за счёт более полного заполнения окна магнитопровода. Это позволяет обеспечить оптимальные показатели массы и габаритов агрегата.

Холостой ход трансформатора – режим, при котором можно рассчитать важные характеристики. Это проводится для оборудования, находящегося в эксплуатации и на стадии проектирования.


источники:

http://digteh.ru/BP/SxZamTransf/

http://ofaze.ru/teoriya/holostoj-hod-transformatora