Уравнение трения с коэффициентом вязкости

Вязкое трение и сопротивление среды

Отличие вязкого трения от сухого заключается в том, что оно способно обращаться в ноль одновременно со скоростью. Даже при малой внешней силе может быть сообщена относительная скорость слоям вязкой среды.

Сила сопротивления при движении в вязкой среде

Кроме сил трения при движении в жидких и газообразных средах возникают силы сопротивления среды, которые проявляются намного значительней, чем силы трения.

Поведение жидкости и газа по отношению к проявлениям сил трения не отличаются. Поэтому, приведенные ниже характеристики, относят к обоим состояниям.

Действие силы сопротивления, возникающей при движении тела в вязкой среде, обусловлено ее свойствами:

  • отсутствие трения покоя, то есть передвижение плавающего многотонного корабля при помощи каната;
  • зависимость силы сопротивления от формы движущегося тела, иначе говоря, от ее обтекаемости для уменьшения сил сопротивления;
  • зависимость абсолютной величины силы сопротивления от скорости.

Сила вязкого трения

Существуют определенные закономерности, которым подчинены и силы трения и сопротивления среды с условным обозначением суммарной силы силой трения. Ее величина находится в зависимости от:

  • формы и размеров тела;
  • состояния его поверхности;
  • скорости относительно среды и ее свойства, называемого вязкостью.

Для изображения зависимости силы трения от скорости тела по отношению к среде используют график рисунка 1 .

Рисунок 1 . График зависимости силы трения от скорости по отношению к среде

Если значение скорости мало, то сила сопротивления прямо пропорциональна относительно υ , а сила трения линейно увеличивается со скоростью:

F т р = — k 1 υ ( 1 ) .

Наличие минуса означает направление силы трения в противоположную сторону относительно направления скорости.

При большом значении скорости происходит переход линейного закона в квадратичный, то есть рост силы трения пропорционально квадрату скорости:

F т р = — k 2 υ 2 ( 2 ) .

Если в воздухе уменьшается зависимость силы сопротивления от квадрата скорости, говорят о скоростях со значениями нескольких метров в секунду.

Величина коэффициентов трения k 1 и k 2 находится в зависимости от формы, размера и состояния поверхности тела и вязких свойств среды.

Если рассматривать затяжной прыжок парашютиста, то его скорость не может постоянно увеличиваться, в определенный момент начнется ее спад, при котором сила сопротивления приравняется к силе тяжести.

Значение скорости, при котором закон ( 1 ) производит переход в ( 2 ) , зависит от тех же причин.

Происходит падение двух различных по массе металлических шариков с одной и той же высоты с отсутствующей начальной скоростью. Какой из шаров упадет быстрее?

Дано: m 1 , m 2 , m 1 > m 2

Решение

Во время падения оба тела набирают скорость. В определенный момент движение вниз производится с установившейся скоростью, при которой значение силы сопротивления ( 2 ) приравнивается силе тяжести:

F т р = k 2 υ 2 = m g .

Получаем установившуюся скорость по формуле:

Следовательно, тяжелый шарик обладает большей установившейся скоростью падения, чем легкий. Поэтому достижение земной поверхности произойдет быстрее.

Ответ: тяжелый шарик быстрее достигнет земли.

Парашютист летит со скоростью 35 м / с до раскрытия парашюта, а после – со скоростью 8 м / с . Определить силу натяжения строп при раскрытии парашюта. Масса парашютиста 65 к г , ускорение свободного падения 10 м / с 2 . Обозначить пропорциональность F т р относительно υ .

Дано: m 1 = 65 к г , υ 1 = 35 м / с , υ 2 = 8 м / с .

Найти: T — ?

Решение

Перед раскрытием парашютист обладал скоростью υ 1 = 35 м / с , то есть его ускорение было равным нулю.

По второму закону Ньютона получаем:

После того, как парашют раскрылся, его υ меняется и становится равной υ 2 = 8 м / с . Отсюда второй закон Ньютона примет вид:

0 — m g — k υ 2 — T .

Для нахождения силы натяжения строп необходимо преобразовать формулу и подставить значения:

Коэффициент вязкости — формулы, виды и размерность величины

Коэффициент вязкости – это величина, используемая для обозначения силы внутреннего трения текучих веществ. Вязкость – разновидность явлений переноса. Жидкости и газы оказывают сопротивление перемещению двух слоев относительно друг друга. Эта особенность характерна для текучих веществ, связана с движением частиц, из которых и состоят вещества.

Вязкость называют внутренним трением. В его основе находится хаотическое движение молекул, передающих импульс между слоями. Такие импульсные обмены выравнивают скорости перемещения слоев.

Коэффициент динамической вязкости

Численное обозначение абсолютной вязкости является индексом сопротивляемости испытуемых веществ взаимному перемещению или скольжению их слоев.

Единицей измерения коэффициента в системе СИ приняты паскаль-секунды:

Физическая основа динамического показателя заключается в его соответствии касательному напряжению, которое происходит между слоями вещества, перемещающимися относительно друг друга, при условии расстояния между ними, равного единице длины, и на скорости, равной единице.

Вязкость жидкости определяется формулой, в которой динамический коэффициент определяет пропорциональность скорости движения слоев и расстояния между ними:

τ – касательное напряжение;

µ — показатель пропорциональности, который является динамическим индексом вещества.

Закон вязкости жидкости был установлен Ньютоном в конце 17 века. Абсолютный показатель зависит от типа газа или жидкости, температуры веществ.

Коэффициент динамической вязкости газа

Для основных газов величины коэффициента при температуре 0 — 600 градусов Цельсия представлены в таблице:

Коэффициент вязкости жидкостей

Для органических жидкостей показания напрямую зависят от температуры. Ниже приведена таблица со значениями абсолютного индекса для веществ при температурах от 0 до 100 градусов Цельсия.

Единица измерения – миллипаскаль-секунды, что соответствует сантипуазам.

Коэффициент динамической вязкости жидкостей уменьшается при условии нагревания вещества. Другими словами, чем выше температура жидкости, тем менее вязкой она становится.

Связь коэффициента вязкости с числами Рейнольдса и силой трения

Английский механик, физик и инженер Оскар Рейнольдс установил (1876 — 1883 гг.), что характер течения зависит от величины, не имеющей размерностью, и называемой числом Re.

Число Рейнольдса используют для отображения соотношения кинематической энергии вещества к энергопотерям на установленной длине в условиях внутреннего трения.

Примеры решения задач

Попробуем решить следующую задачу.

Установить тип движения жидкого вещества по трубам теплообменника, имеющего структуру «труба в трубе». Параметры внутренней трубы – 25*2 мм, внешней – 50*2,5 мм. Массовый расход воды составляет 4000 кг/ч (обозначение G). Плотность жидкости – 1000 кг/м 3 . Абсолютный индекс составляет 1•10 -3 Па*с.

Следует узнать эквивалентный диаметр сечения межтрубного пространства:

Определение скорости воды на основе уравнения расхода:

По формуле Рейнольдса найти число Re:

Подставляя значения, получаем:

Ответ: режим перемещения воды в межтрубном пространстве является турбулентным.

Коэффициент кинематической вязкости

Кинематическая вязкость – это индекс, который отображает отношение абсолютного показателя вещества к его плотности при установленной температуре.

Физическая формула соотношения выглядит и единицы измерения можно увидеть на картинке:

Действие 4. Вычисление кинематического показателя, исходя из формулы:

Подставив в уравнение полученные и имеющиеся расчетные данные, получим кинематический индекс вещества.

Заключение

Физический смысл коэффициента вязкости заключается в том, что он демонстрирует, чему равна величина F внутреннего трения, действующая на 1 ед. площади поверхности соприкасающихся слоев при единичном градиенте скорости.

Размерность данной величины и перевод из одних единиц измерения в другие показаны на картинке:

Внутреннее трение

Вы будете перенаправлены на Автор24

Явление внутреннего трения

Явление внутреннего трения (вязкости) связано с возникновением сил трения между двумя слоями газа или жидкости, перемещающимися параллельно друг относительно друга с различными скоростями. Причиной вязкости является перенос молекулами импульса из одного слоя газа в другой (поперек направления движения слоев) (рис.1).

В потоке газа молекулы участвуют в двух движениях одновременно: тепловом (хаотическом) со средней скоростью $\left\langle \overrightarrow\right\rangle $ и упорядоченном со скоростью потока $\overrightarrow$. Скорость теплового движения гораздо больше, чем скорость потока.

В результате теплового движения молекулы перелетают из одного слоя вещества в другой, переносят при этом свой импульс. В неподвижном газе средний импульс молекулы равен 0. Молекула в потоке газа обладает отличным от нуля импульсом. В результате обмена молекулами импульс упорядоченного движения быстрее движущегося слоя уменьшается, а другого наоборот. Слой вещества, который движется быстрее, тормозится, а медленный ускоряется. Уравнение Ньютона для вязкости в одномерном случае $(v=v(x))$:

$dF$- сила внутреннего трения, действующая на площадку dS поверхностного слоя, $\frac$- проекция градиента скорости движения слоев на направление оси Ox, в направлении перпендикулярном к поверхности слоя, $\eta $- коэффициент вязкости. Сила трения $F_<\tau >$, отнесенная к площади трущихся поверхностей равна потоку импульса упорядоченного движения частиц в перпендикулярном направлении к скорости. Используем основное уравнение для явлений переноса. В нашем случае $G=mv$, следовательно:

где $\eta =\frac<1><3>n_0\left\langle v\right\rangle \left\langle \lambda \right\rangle m=\frac<1><3>\rho \left\langle v\right\rangle \left\langle \lambda \right\rangle $ — динамическая вязкость, $\rho =n_0m$ — плотность газа. Знак $F_<\tau >$ учитывает, что сила трения, действующая на более быстрые слои, направлена против скорости. Динамическая вязкость не зависит от давления и растет, в основном, пропорционально $\sqrt$. Более точные теоретические расчеты приводят к замене множителя $\frac<1><3>$ на коэффициент, который зависит от характера взаимодействия молекул. Для молекул, сталкивающихся, как гладкие шары, он равен 0,499. Вообще этот коэффициент зависит о температуры.

Готовые работы на аналогичную тему

Кинематическая вязкость

Наряду с динамической вязкостью используют и кинематическую вязкость:

Согласно кинетической теории газов между коэффициентами переноса существует связь:

где $c_V$- удельная теплоемкость газа при изохорном процессе. На практике используется более точное соотношение коэффициентов переноса:

где $\alpha $- множитель, зависящий от числа степеней свободы молекулы газа. Так для одноатомной молекулы газа $\alpha =2,5$, двухатомного $\alpha =1,9$, трехатомного $\alpha =1,5-1,75.$

Задание: Определить коэффициент вязкости газа с молярной массой $\mu $ при температуре T. Эффективный диаметр молекулы газа принять равным d.

Запишем формулу для определения коэффициента вязкости:

\[\eta =\frac<1><3>\rho \left\langle v\right\rangle \left\langle \lambda \right\rangle \ \left(1.1\right).\]

Плотность газа определим из уравнения Менделеева — Клайперона:

\[pV=\frac<\mu >RT\to \rho =\frac=\frac\left(1.2\right)\] \[\left\langle v\right\rangle =\sqrt<\frac<8RT><\pi \mu >>\left(1.2\right)\] \[\left\langle \lambda \right\rangle =\frac<1><\sqrt<2>\pi d^2n>,\ p=nkT\to \left\langle \lambda \right\rangle =\frac<\sqrt<2>\pi d^2p>\left(1.3\right)\]

Подставим (1.2), (1.3) в (1.1), получим:

Ответ: Вязкости газа заданных параметров $\eta =\frac<1><<3\pi N>_Ad^2>\sqrt<4RT\mu >$.

Задание: Газ заполняет пространство между двумя длинными коаксиальными цилиндрами, радиусы которых R1 и R2, причем R1$

По определению момента сил $M_

$ вращающегося тела запишем:

\[M_

=F_r\ \left(2.1\right)\]

C другой стороны при длине цилиндра равной l по условию задачи:

\[M_

=N_1\cdot l\ (2.2),\ \]

Кроме того из условия задачи имеем:

\[F_

=\sigma \triangle S\ =\ \eta \cdot r\ \frac2\pi rl=2\eta \pi r^2l\frac\ \left(2.3\right)\]

\[M_

=2\eta \pi r^3l\frac=N_1\cdot l\to 2\eta \pi r^3\frac=N_1(2.4)\]

Разделим переменные в уравнении (2.4), получим:

Проинтегрируем обе части уравнения по соответствующим переменным:

Ответ: Коэффициент вязкости газа будет $\eta =\frac<4\pi w_c>\left(\frac<1><^2>-\frac<1><^2>\right).$

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 17 12 2021


источники:

http://nauka.club/fizika/koeffitsient-vyazkosti.html

http://spravochnick.ru/fizika/molekulyarnaya_fizika/vnutrennee_trenie/