Уравнение цилиндрической поверхности с образующей параллельной

Цилиндрические поверхности

Если через каждую точку кривой L провести прямую, параллельно данному вектору а, то получим поверхность, которая называется цилиндрической поверхностью. Прямые, параллельные вектору а и принадлежащие цилиндрической поверхности, называются образующими этой поверхности, а кривая L называется направляющей цилиндрической поверхности (рис. 225).

Если в сечении цилиндрической поверхности плоскостью, перпендикулярной к ее образующим, (в нормальном сечении) получается окружность, то цилиндрическая поверхность называется круговой. Если в сечении получается эллипс, то цилиндрическую поверхность называют эллиптической, если гипербола — гиперболической, если парабола — параболической.

Пусть в пространстве дана прямоугольная система координат Oxyz, и пусть в плоскости хОу дана кривая L, уравнение которой в этой плоскости имеет вид

Составим уравнение цилиндрической поверхности с образующими, параллельными вектору a = (α; β; γ), γ =/= 0, если за направляющую принята кривая L (рис.226).

Рассмотрим произвольную точку этой поверхности М(х; у; z). Образующая l, проходящая через точку М, пересечет плоскость хОу в точке N, лежащей на кривой L. Если координаты точки N в пространстве обозначить (х1; у1; 0), то вектор \(\overrightarrow\) имеет координаты

По определению цилиндрической поверхности векторы а и \(\overrightarrow\) коллинеарны, т. е.

следовательно, имеем систему уравнений

Решив эту систему уравнений относительно λ, x1и у1, получим

Так как точка N лежит на кривой L, то F(х1; у1) = 0. Заменив х1 и у1 по формулам (2), получим уравнение

которое, очевидно, и будет уравнением данной цилиндрической поверхности.

Задача 1. Составить уравнение цилиндрической поверхности, у которой направляющая лежит в плоскости хОу и имеет уравнение х 2 + у 2 = 4, а образующие параллельны вектору а = (0; 1; 1).

Так как, согласно условию задачи F(x; у) = х 2 + у 2 4 и α = 0, β = 1, γ = 1, то в силу формулы (3) уравнение данной цилиндрической поверхности имеет вид

Эта поверхность изображена на рис. 227.

Аналогично можно показать, что если направляющая цилиндрической поверхности L лежит в плоскости xOz и определяется уравнением F(x; z) = 0, а вектор а не параллелен этой плоскости, то цилиндрическая поверхность имеет уравнение

Наконец, если L определяется уравнением F(у; z) = 0 и а не параллелен плоскости yOz, то уравнение цилиндрической поверхности имеет вид

Отметим, что если направляющая цилиндрической поверхности лежит в плоскости

хОу, а образующие параллельны оси Oz, то уравнение цилиндрической поверхности в пространстве совпадает с уравнением направляющей и имеет вид

Уравнение (4), как уравнение множества точек плоскости, определяет кривую L, в то же самое время уравнение (4), как уравнение множества точек пространства, определяет цилиндрическую поверхность.

Итак, каждое из уравнений

можно истолковать двояко: если это уравнение множества точек плоскости, то это уравнение линии L, лежащей в плоскости своих переменных; если же это уравнение множества точек пространства, то каждое из этих уравнений определяет цилиндрическую поверхность с направляющей L и образующими, параллельными оси oтсутствующей переменной.

Рассмотрим несколько примеров.

на плоскости хОу определяет окружность с центром в начале координат и радиусом r (рис. 228, а).

Это жe уравнение в пространстве определяет круговую цилиндрическую поверхность, направляющей которой является окружность, лежащая в плоскости хОу, а образующие параллельны оси Oz (рис. 228, б).

на плоскости xOz определяет окружность с центром в начале координат и радиусом

Это же уравнение в пространстве определяет круговую цилиндрическую поверхность, направляющей которой является окружность, лежащая в плоскости xOz, а образующие параллельны оси Оу (рис. 229, б).

и на плоскости, и в пространстве определяет пустое множество, так как сумма неотрицательных чисел не может быть числом отрицательным.

на плоскости хОу определяет эллипс с центром в начале координат и полуосями а и b (рис. 230, а).

Это же уравнение в пространстве определяет эллиптическую цилиндрическую поверхность с направляющей в плоскости хОу и образующими, параллельными оси Oz (рис. 230, б).

на плоскости хОу определяет гиперболу с центром в начале координат и полуосями а и b (рис. 231, а).

В пространстве это уравнение определяет гиперболическую цилиндрическую поверхность с образующими, параллельными оси Oz (рис. 231, б).

на плоскости хОу определяет параболу (рис. 232, а), а в пространстве — параболическую цилиндрическую поверхность с образующими, параллельными оси Oz (рис. 232, б).

Задача 2. Определить вид поверхности 3x 2 + 6y 2 — 24 = 0.

Данное уравнение приведем к виду:

Это уравнение в пространстве определяет эллиптическую цилиндрическую поверхность с направляющей в плоскости хОу и образующими, параллельными оси Oz.

Поверхности второго порядка. Цилиндрические поверхности.

Поверхность S называется цилиндрической поверхностью с образующей , если для любой точки M0

этой поверхности прямая, проходящая через эту точку параллельно образующей , целиком принадлежит

Теорема (об уравнении цилиндрической поверхности).

Если в некоторой декартовой прямоугольной системе координат поверхность имеет

уравнение f(x,y)=0, то S — цилиндрическая поверхность с образующей, параллельной оси OZ.

Кривая, задаваемая уравнением f(x,y)=0 в плоскости z=0, называется направляющей цилиндрической

поверхности.

Если направляющая цилиндрической поверхности задаётся кривой второго порядка, то такая поверхность

называется цилиндрической поверхностью второго порядка.

Цилиндрические поверхности с образующими, параллельными координатной оси

Дата добавления: 2015-08-14 ; просмотров: 2003 ; Нарушение авторских прав

Определение 8.1.1. Цилиндрической поверхностью называется множество параллельных прямых, пересекающих данную линию.

Эта линия называется направляющей, а параллельные прямые — образующими цилиндрической поверхности.

Будем рассматривать в дальнейшем только такие цилиндрические поверхности, направляющие которых лежат в одной из координатных плоскостей, а образующие параллельны координатной оси, перпендикулярной этой области.

Рассмотрим цилиндрическую поверхность с образующими, параллельными оси Oz, и направляющей l, лежащей в плоскости Oxy.

Направляющая l задается, очевидно, на плоскости уравнением: F(x,y) = 0, в пространстве системой уравнений:

(8.1.)

(Уравнение (8.1.) задают эту линию как пересечение цилиндрической поверхности и координатной плоскости XOY).

Докажем теперь, что цилиндрическая поверхность имеет уравнение F(x,y) = 0 (8.2.)

Д-но, пусть M(x,y,z) — произвольная точка поверхности, тогда проекция точки М на плоскость XOY — точка М` — имеет координаты (x,y,0) и лежит на направляющей l. Поэтому координаты т. М удовлетворяют уравнению (2) (т.к. оно не содержит z).

Далее, если N(x`,y`,0) S (поверхности), то её проекция на плоскость — точка N`(x`,y`,0) — не принадлежит l и, следовательно F(x,y) 0.

Следовательно, уравнение F(x,y) = 0, не содержащее z, определяет в пространстве цилиндрическую поверхность с образующими, параллельными оси Oz и направляющей, которая в плоскости Oxy имеет то же самое уравнение F(x,y) = 0.

Аналогично устанавливается, что цилиндрические поверхности с образующими, параллельными оси Ox или Oy, задаются соответственно уравнениями F(y,z) = 0 или F(x,z) = 0.

|следующая лекция ==>
Задачи для самостоятельной работы.|Цилиндры второго порядка

Не нашли то, что искали? Google вам в помощь!


источники:

http://www.calc.ru/1463.html

http://life-prog.ru/2_74711_tsilindricheskie-poverhnosti-s-obrazuyushchimi-parallelnimi-koordinatnoy-osi.html