Уравнение тяги твердотопливного ракетного двигателя

Сравнительный анализ способов регулирования тяги жидкостных и твердотопливных ракетных двигателей Текст научной статьи по специальности « Механика и машиностроение»

Аннотация научной статьи по механике и машиностроению, автор научной работы — Ахметшин К.Ш., Кирюхин С.Ю., Рябинин А.С.

Рассматривается сравнительная характеристика возможных способов регулирования тяги жидкостных и твердотопливных ракетных двигателей , а также эффективность их применения в существующих двигательных установках.

Похожие темы научных работ по механике и машиностроению , автор научной работы — Ахметшин К.Ш., Кирюхин С.Ю., Рябинин А.С.

COMPARATIVE ANALYSIS OF METHODS TO REGULATE LIQUID ROCKET AND SOLID-PROPELLANT ROCKET ENGINES

The comparative characteristic of the possible ways to regulate thrust liquid-and solid-propellant rocket engines as well as the efficiency of their application in the existing propulsion concepts are studied.

Текст научной работы на тему «Сравнительный анализ способов регулирования тяги жидкостных и твердотопливных ракетных двигателей»

Решетневскуе чтения. 2013

СРАВНИТЕЛЬНЫЙ АНАЛИЗ СПОСОБОВ РЕГУЛИРОВАНИЯ ТЯГИ ЖИДКОСТНЫХ И ТВЕРДОТОПЛИВНЫХ РАКЕТНЫХ ДВИГАТЕЛЕЙ

К. Ш. Ахметшин, С. Ю. Кирюхин, А. С. Рябинин

Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева Россия, 660014, г. Красноярск, просп. им. газ. «Красноярский рабочий», 31. E-mail: tretrem@yandex.ru

Рассматривается сравнительная характеристика возможных способов регулирования тяги жидкостных и твердотопливных ракетных двигателей, а также эффективность их применения в существующих двигательных установках.

Ключевые слова: ракетные двигатели, способы регулирования тяги.

COMPARATIVE ANALYSIS OF METHODS TO REGULATE LIQUID ROCKET AND SOLID-PROPELLANT ROCKET ENGINES

K. S. Akhmetshin, S. U. Kiryukhin, A. S. Ryabinin

Siberian State Aerospace University named after academician M. F. Reshetnev 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660014, Russia. E-mail: tretrem@yandex.ru

The comparative characteristic of the possible ways to regulate thrust liquid-and solid-propellant rocket engines as well as the efficiency of their application in the existing propulsion concepts are studied.

Keywords: rocket engines, traction control methods.

Способы регулирования тяги жидкостного ракетного двигателя (ЖРД) и твердотопливного ракетного двигателя (РДТТ) существенно отличаются, хотя и имеют применимые к обоим типам методы.

Регулирование тяги ЖРД может осуществляться следующими способами: регулированием расхода компонента, поступающего в жидкостной газогенератор (ЖГГ); регулированием соотношения компонентов в ЖГГ; регулированием давления подач компонентов на входе в камеру двигателя; регулированием расхода компонентов, поступающих в камеру двигателя.

Способ регулирования расхода компонентов, поступающих в ЖГГ, применяется в двигателях без дожигания генераторного газа с двухкомпонентным ЖГГ. На трубопроводе питания окислителя («О») восстановительного ЖГГ устанавливается регулятор тяги, одновременно на трубопроводе питанием горючим («Г») устанавливается еще один регулятор давления, корректирующий соотношение компонентов. Данный способ представляется достаточно надежным и позволяет достигать достаточно большого диапазона регулирования тяг (

В двигателях ракеты «Союз-2» РД-107А и РД-108А для изменения тяги используется регулятор расхода перекиси водорода, поступающего в однокомпонент-ный ЖГГ, и дроссель горючего.

Способ регулирования соотношения компонентов в ЖГГ наиболее часто используют в двигателях с дожиганием генераторного газа, он позволяет регулировать тягу в ограниченных диапазонах. Регулятором тяги является регулятор давления подачи «Г» в окислительный ЖГГ, устанавливаемый на линию питания дополнительным компонентом. Регулятор поддерживает давление подачи «Г» в соответствии с давлением

подачи «О». Эта система управления также обеспечивает изменение соотношения компонентов, что приводит к изменению термодинамических параметров генераторного газа и соответственно влияет на давление в камере сгорания и тягу. Диапазон регулирования соотношения компонентов в данной схеме ограничен возрастанием температуры генераторного газа. Данная схема реализована в двигателе РД-270, в которой применена закрытая схема с двумя ТНА с отдельными турбинами от двух ЖГГ, работающих с избытком окислителя и избытком горючего.

Регулирование давления подач компонентов на входе в камеру двигателя. Регулятор давления «Г» изменяет давление подачи в соответствии с командой системы управления, а регулятор «О» изменяет давление подачи в соответствии с давлением подачи «Г». Оба регулятора выполняют одновременно роль регулятора тяги и регулятора соотношения компонентов [2].

Регулирование расходов компонентов, поступающих в камеру двигателя. Регуляторы, поддерживая постоянство расходов «О» и «Г», обеспечивают одновременно поддержание тяги и соотношения компонентов на заданных уровнях. Оба регулятора могут получать соответствующие сигналы на перенастройку от системы управления.

Изменение тяги РДТТ затруднено ограниченными возможностями воздействия на тягу в период работы двигателя. Скорость горения заряда и и тяга двигателя зависимы от начальной температуры заряда Т0, внут-рикамерного давления p (см. рисунок), коэффициента эрозии /3(V), влияния перегрузок, воздействующих на топливный заряд /4(п). Колебания температур, химического состава и технологические отклонения при изготовлении топлива вызывают определенный раз-

Ракетно-космические двигатели, энергетические установки и системы терморегулирования летательныхаппаратов

брос энергетических характеристик и скоростей горения в двигателе.

и = ию х/х(р) х/¿(Го) х/(У) х/4(И) х/5(е) х/ х/7. и, мм/с

Зависимость скорости горения от давления для топлива с диаметром заряда 45 мм

Температура заряда влияет на скорость горения, что вызывает необходимость учитывать эту величину в процессе регулирования. Функциональная зависимость, учитывающая влияние начальной температуры, представлена в формуле

/¿(Го) « ехр[1,1. 1,8(Го — Гном)].

Регулирование тяги РДТТ может быть осуществлено следующими способами: изменением площади критического сечения; вводом дополнительной массы в камеру; изменением поверхности горения; непосредственным воздействием на скорость горения; обнулением тяги.

При газодинамическом способе регулирования диапазон регулирования тяги составляет 1,7. 2.о. К существенным недостаткам данного метода относятся непроизвольные потери газа до 1/4 запаса топлива, необходимость иметь еще один источник рабочего тела управляющего канала и создание разности давлений управляющего и питающего потока. Для топлив с низким V расход имеет малую чувствительность к изменению площади критического сечения и высокую к изменению давления.

Регулирование тяги вводом в КС химически активной дополнительной массы позволяет получить отношение тяг, равное 20. Данный способ позволяет реализовать охлаждение сопла, повышает удельную тягу. Другой способ ввод вторичной инертной массы в КС позволяет регулировать тягу в малом диапазоне отношений тяг.

Способ изменения поверхности горения позволяет регулировать изменение тяги в более широком диапазоне (диапазон устойчивого регулирования 3. 6), чем регулирование с изменяющейся площадью критического сечения. Возможно достижение более широкого диапазона 1,5. 8,о с использованием методов подвижных нитей, поджатием катализатора к горящей поверхности, тепловых и силовых ножей, порционной подачи секций твердого топлива в КС. Наиболее перспективным методом является гидравлический метод, когда в заряде твердого топлива происходит высвобождение каналов, заполненных жидкостью [1]. Метод регулирования посредством тепловых ножей неприменим для сложных форм зарядов, кроме заря-

дов торцового горения. К минусам этих методов стоит отнести конструктивную сложность.

При непосредственном воздействии на скорость горения электрическим способом регулирования тяги позволяет при мгновенном изменении электрического тока менять тягу двигателя: воздействием на топливную массу физическими полями, приводящим к разогреву топлива на толще, превосходящей толщину релаксации прогретого слоя; прогревом топлива за счет джоулева тепла от проводников тока в толще топливного заряда [3]. Этот способ не используется по причине необходимости иметь на борту ЛА массивный источник электроэнергии.

Обнуление тяги посредством воздействия на зону горения акустической энергии, магнитного поля, лазерного излучения исследованы слабо, и полученные значения регулирования тяги весьма малы и составляют 1,5. 1,8. Кроме того, при регулировании магнитным полем источники питания электромагнитных катушек составляют более 10 % от массы заряда твердого топлива.

Судя по вышеизложенному материалу, можно утверждать, что способы регулирования тяги ЖРД позволяют регулировать ее в более широком диапазоне, более просты в исполнении, меньше подвержены влиянию температурного фактора и не ограничены в воздействии на тягу в процессе работы двигателя.

1. Кольга В. В. Проектирование ракет с ракетным двигателем на твердом топливе : учеб. пособие ; Сиб. гос. аэрокосмич. ун-т. Красноярск, 2004. С. 84-96.

2. Алемасов В. Е., Дрегалин А. Ф., Тишин А. П. Теория ракетных двигателей : учебник / под ред. В. П. Глушко. М. : Машиностроение, 1989. С. 379-384.

3. Петренко В. И. [и др.]. Управляемые энергетические установки на твердом ракетном топливе / под общ. ред. М. И. Соколовского, В. И. Петренко ; Рос. акад. ракет. и арт. наук, Перм. гос. техн. ун-т, ОАО «Науч.-произв. об-ние «Искра». М. : Машиностроение, 2003. 463 с. : ил.

1. Kolga V. V. Proektirovanie raket s raketnim dvigatelem natverdom toplive. SibSAU. Krasnoyarsk, 2004, pp. 84-96.

2. Alemasov V. E., Dregalin A. F., Tishin A. P. Teoriya raketnih dvigateley. M. : Mashinostroenie, 1989, pp. 379-384.

3. Petrenko V. I. [i dr.]. Upravljaemye jenergetiches-kie ustanovki na tverdom raketnom toplive / Rossiiskaya academia raket i artelerii nauk, Permskiy gosudarstvennii tehnicheskiy universitet, OAO «Nauch.-proizv. ob-nie «Iskra», M. : Mashinostroenie, 2003, 463 p.

© Ахметшин К. Ш., Кирюхин С. Ю., Рябинин А. С., 2013

Тяга ракетного двигателя

Энтальпию продуктов сгорания в камере сгорания в кинетическую энергию струи можно преобразовать различными способами: подводом теплоты и массы по тракту постоянной геометрии, ускорением в сужающихся и расширяющихся соплах.

Обычно используют сопло переменной геометрии — осесимметричное сопло Лаваля как наиболее простой и надежный геометрический способ разгона рабочего тела.

Под тягой двигателя понимают результирующую сил, действующих на внутреннюю поверхность тракта, и сил воздействия невозмущенной окружающей среды на внешнюю поверхность двигателя, кроме сил аэродинамического сопротивления.

Рассмотрим двигатель на рис. 2.2.

Рис. 2.2. Схема возникновения тяги ракетного двигателя

Границей между внутренней и наружной поверхностями является срез выходного сечения сопла а-а, рабочее тело — идеальный газ, массовые силы отсутствуют. В соответствии с определением, при постоянном давлении окружающей среды рн тяга есть сумма интегралов сил давления по наружной и внутренней поверхностям двигателя

. (2.1)

Так как вектор сил давления замкнутой наружной поверхности равен нулю, то

. (2.2)

Значение второго интеграла в (2.l) определим с помощью теоремы импульсов: изменение количества движения за единицу времени объема газа равно результирующей внешних сил, действующих на этот объем. В ракетной технике есть фундаментальное понятие: расход рабочего тела , кг/с — масса рабочего тела, истекающая через срез сопла в единицу времени со скоростью Течение газа рассматриваем одномерным, положительное направление оси совпадает с направлением тяги, значением скорости газа в камере сгорания пренебрегаем.

,

.

.

При осесимметричном одномерном течении идеального газа формула тяги имеет вид

. (2.3)

Вектор тяги направлен по оси двигателя, размерность тяги – ньютон (система СИ), кгс (ТСЕ). Возникает вопрос: куда же приложена сила тяги? Если двигатель расположен на стенде, то интеграл сил давления (2.1) (тяга РД) передается именно датчику для измерения тяги, как показано на рис. 2.3. Для измерения тяги и проводится испытание двигателя при постоянном барометрическом давлении pн. В составе ракеты тяга двигателя передается на раму крепления или к соединительному отсеку в соответствии с рис. 2.4.

Рис 2.3. Схема приложения тяги двигателя на стенде

R — реакция опор

Рис 2.4. Схема приложения тяги двигателя I ступени к конструкции ракеты

Характерными в определении тяги являются:

1.Тяга в пустоте (рн = 0)

. (2.4)

С позиций разработчика ракеты удобно ввести понятие эффективной скорости истечения , тогда .

2.Тяга на произвольной высоте Н в атмосфере (активный участок полета)

. (2.5)

. (2.6)

. (2.7)

5.Тяга на режиме равенства давлений потока на срезе сопла и окружающей среды (расчетный режим работы сопла)

. (2.8)

Из (2.8) следует, что необходимо получать как можно большее значение скорости истечения продуктов сгорания на срезе сопла при заданном расходе. А скорость истечения пропорциональна величине , именно поэтому продукты сгорания топлив имеют высокое значение температуры (до 4000 К).

Для современных РД характерен широкий диапазон тяг: от нескольких грамм (двигатели коррекции, стабилизации и т.п.) до сотен тонн — РД 180 P0 ≈ 800т., F1 Р0 ≈ 700т., РДТТ «Шаттл» Р0 ≈ 1200т.

Основные характеристики ракетных двигателей

Разработка проекта действующей модели ракеты тесно связана с вопросом о двигателе. Какой двигатель лучше поставить на модель? Какие из его характеристик являются главными? В чем их сущность? Разбираться в этих вопросах моделисту необходимо.

В этой главе по возможности элементарно рассказывается о характеристиках двигателя, т. е. тех факторах, которые определяют его особенности. Ясное представление о значении тяги двигателя, времени его работы, суммарном и удельном импульсе и их влиянии на качество полета модели ракеты поможет модели-сту-конструктору правильно выбрать двигатель для модели ракеты, а значит, обеспечит успех в соревнованиях.

Основными характеристиками ракетного двигателя являются:

  • 1. Тяга двигателя Р (кг)
  • 2. Время работы t (сек)
  • 3. Удельная тяга Руд (кг·сек/кг)
  • 4. Суммарный (общий) импульс J (10 н·сек ≈ 1 кг·сек)
  • 5. Вес топлива GT (кг)
  • 6. Секундный расход топлива ω (кг)
  • 7. Скорость истечения газов W (м/сек)
  • 8. Вес двигателя Gдв (кг)
  • 9. Размеры двигателя l, d (мм)

1. Тяга двигателя

Рассмотрим схему возникновения тяги в ракетном двигателе.
В процессе работы двигателя в камере сгорания непрерывно образуются газы, являющиеся продуктами сгорания топлива. Допустим, что камера, в которой находятся под давлением газы, представляет собой замкнутый сосуд (рис. 11, а), тогда легко понять, что никакой тяги в этой камере возникнуть не может, так как давление распределяется одинаково по всей внутренней поверхности замкнутого сосуда и все силы давления взаимно уравновешены.

В случае же открытого сопла (рис. 11, б) газы, находящиеся в камере сгорания под давлением, устремляются с большой скоростью через сопло. При этом часть камеры напротив сопла оказывается неуравновешенной. Силы давления, действующие на ту часть площади дна камеры, которая находится против отверстия сопла, тоже неуравновешены, в результате чего и возникает тяга.

Если рассматривать только поступательное движение газов вдоль камеры сгорания и сопла, то распределение скорости газов на этом пути можно охарактеризовать кривой (рис. 12, а). Давление на элементы поверхности камеры и сопла распределяются так, как показано на рис. 12, б.

Величина нескомпенсированной площади дна камеры сгорания равна площади наименьшего сечения сопла. Очевидно, чем больше площадь этого сечения, тем большее количество газов сможет покинуть камеру сгорания в единицу времени.

Таким образом, можно сделать вывод: тяга двигателя зависит от количества газов, покидающих камеру сгорания в единицу времени в результате нескомпенсированной площади и скорости истечения газов, обусловленной неуравновешенностью давлений.

Для получения количественной зависимости рассмотрим изменение количества движения газов при их истечении из камеры сгорания. Допустим, что в течение времени t камеру сгорания двигателя покидает некоторое количество газа, массу которого обозначим т. Если предположить, что поступательная скорость газов в камере сгорания равна нулю, а на выходе из сопла достигает значения W м/сек, то изменение скорости газа будет равно W м/сек. В этом случае изменение количества движения упомянутой массы газа запишется в виде равенства:

Однако изменение количества движения газов может произойти только в том случае, если на газ будет действовать некоторая сила Р на протяжении некоторого времени t, тогда

где J=P·t — импульс силы, действующий на газ.

Заменив в формуле (1) значение ΔQ на равное J=P·t, получим:

Мы получили выражение силы, с которой стенки камеры сгорания и сопла действуют на газ, вызывая изменение его скорости от 0 до W м/сек.

В соответствии с законами механики сила, с которой стенки камеры и сопла действуют на газ, равна по величине силе Р, с которой в свою очередь газ действует на стенки камеры и сопла. Эта сила Р и есть тяга двигателя.

Известно, что масса любого тела связана с его весом (в данном случае с весом топлива в двигателе) соотношением:

где GT — вес топлива;
g — ускорение силы земного тяготения.

Подставив в формулу (5) вместо массы газа m ее аналогичное значение из формулы (6), получим:

Величина GT/t представляет собой весовое количество топлива (газа), покидающего камеру сгорания двигателя за единицу времени (1 сек). Эту величину называют весовым секундным расходом и обозначают ω. Тогда

Итак, мы вывели формулу тяги двигателя. Необходимо заметить, что такой вид формула может иметь лишь в том случае, когда давление газа в момент прохождения его через выходной срез сопла равно окружающему давлению. В противном случае в правую часть формулы добавляется еще один член:

где f — площадь выходного сечения сопла (см 2 );
рк — давление газа в выходном сечении сопла (кг/см 2 );
ро — окружающее (атмосферное) давление (кг/см 2 ).

Таким образом, окончательно формула тяги ракетного двигателя имеет вид:

Первый член правой части ω/g·W носит название динамической составляющей тяги, а второй f(рк—ро) — статической составляющей. Последняя составляет около 15% от общей тяги, поэтому для простоты изложения в расчет приниматься не будет.

Для расчета тяги можно использовать формулу, имеющую аналогичное значение с формулой (5), при Р=const:

где Рср — средняя тяга двигателя (кг);
J — суммарный импульс двигателя (кг·сек);
t — время действия двигателя (сек).

При постоянном значении тяги часто используется формула

где Руд — удельная тяга двигателя (кг·сек/кг);
Υ — удельный вес топлива (г/см 3 );
U — скорость горения топлива (см/сек);
F — площадь горения (см 2 );
Р — тяга двигателя (кг).

В случаях непостоянной тяги, например при определении начальной, максимальной, средней тяги и тяги в любой момент времени действия двигателя, в эту формулу необходимо вводить истинные значения U и F данного двигателя.

Итак, тяга является произведением эффективной скорости истечения газов W на массовый секундный расход топлива ω/g.

Задача 1. Определить тягу ракетного двигателя типа ДБ-З-СМ-10, имея следующие данные: Руд=45,5 кг·сек/кг; GT=0,022 кг; t=4 сек.

Решение. Эффективная скорость истечения газов из сопла:

Примечание. Для двигателя ДБ-З-СМ-10 — это средняя тяга.

Задача 2. Определить тягу ракетного двигателя типа ДБ-З-СМ-10, имея следующие данные: 1 кг·сек; GT=0,022 кг; t=4 сек.

Решение. Используем формулу (11):

2. Скорость истечения газов

Скорость истечения газов из сопла двигателя, так же как и секундный расход топлива, имеет непосредственное влияние на величину тяги. Тяга двигателя, как усматривается из формулы (8), прямо пропорциональна скорости истечения газов. Таким образом, скорость истечения является важнейшим параметром ракетного двигателя.

Скорость истечения газов зависит от разных факторов. Важнейшим параметром, характеризующим состояние газов в камере сгорания, является температура (Т°К). Скорость истечения прямо пропорциональна квадратному корню из температуры газов в камере. Температура в свою очередь зависит от количества тепла, выделяемого при сгорании топлива. Таким образом, скорость истечения зависит прежде всего от качества топлива, его энергетического ресурса.

3. Удельная тяга и удельный импульс

Совершенство двигателя и эффективность его работы характеризуются удельной тягой. Удельной тягой называют отношение силы тяги к секундно-весовому расходу топлива.

Размерность удельной тяги будет (кг силы·сек/кг расхода) или кг·сек/кг. В зарубежной печати размерность Руд часто записывают в виде (сек). Но физический смысл значения при такой размерности теряется.

Современные модельные РДТТ имеют низкие значения удельной тяги: от 28 до 50 кг·сек/кг. Имеются и новые двигатели с удельной тягой 160 кг·сек/кг и выше, с нижним пределом давления не выше 3 кг/см 2 и сравнительно высоким удельным весом топлива — более 2 г/см 3 .

Удельная тяга показывает эффективность использования одного килограмма топлива в данном двигателе. Чем выше удельная тяга двигателя, тем меньше топлива затрачивается для получения одного и того же суммарного импульса двигателя. Значит, при одинаковом весе топлива и размерах двигателей предпочтительнее будет тот, у которого удельная тяга выше.

Задача 3. Определить вес топлива в каждом из четырех двигателей с суммарным импульсом 1 кг·сек, но с разными удельными тягами: а) Руд=28 кг-сек/кг; б) Руд=45,5 кг·сек/кг; в) Руд=70 кг·сек/кг; г) Руд=160 кг·сек/кг.

Решение. Вес топлива определим из формулы:

Полученные результаты наглядно показывают, что для моделей ракет выгоднее применять двигатели с более высокой удельной тягой (с целью уменьшения стартового веса модели).

Под удельным импульсом Jуд понимают отношение полного импульса тяги за время t работы двигателя к весу израсходованного за это время топлива GT.

При постоянной тяге, т. е. при постоянном давлении в камере сгорания и работе двигателя на земле, Jудуд.

4. Расчет характеристик двигателя ДБ-1-СМ-6

Для расчета двигателей применяется коэффициент, характерный для данного топлива и определяющий оптимальный режим в камере сгорания:

где К — постоянный коэффициент для данного топлива;
Fмакс — максимальная площадь горения в камере сгорания;
fкр — критическое сечение сопла.

Задача 4. Подсчитать основные характеристики двигателя ДБ-1-СМ-6, у которого корпусом является бумажная охотничья гильза 12-го калибра. Топливом служит смесь № 1 (селитра калиевая — 75, сера — 12 и древесный уголь — 26 частей). Плотность прессования (удельный вес топлива) γ=1,3—1,35 г/см 2 , Руд=30 кг·сек/кг, К=100. Задаемся максимальным давлением в камере сгорания в пределах 8 кг/см 2 . Скорость горения данного топлива в зависимости от давления при нормальной температуре окружающей среды представлена на графике рис. 13.

Решение. Прежде всего необходимо вычертить корпус двигателя, т. е. гильзу 12-го калибра (Жевело), что дает возможность наглядно проследить за ходом расчетов (рис. 14). Корпус двигателя (гильза) имеет уже готовое сопло (отверстие для пистона Жевело). Диаметр отверстия 5,5 мм, длина гильзы 70 мм, ее внутренний диаметр 18,5 мм, внешний — 20,5 мм, длина сопла 9 мм. Топливная шашка двигателя должна иметь свободное пространство — продольный канал, благодаря которому имеется возможность довести площадь горения топлива в двигателе до максимальной величины. Форма канала — усеченный конус, нижнее основание которого соответствует размеру отверстия в гильзе (5,5 мм), а при калибровке может быть равным 6 мм. Диаметр верхнего основания — 4 мм. Верхнее основание делается несколько меньше из-за технологических соображений и техники безопасности при удалении металлического конуса из пороховой массы. Для определения длины конуса (стержня) необходимы исходные данные, которые получают в следующем порядке.

Используя формулу (15), определяют возможную максимальную площадь горения:

Максимальная площадь горения топлива (рис. 15) образуется в результате выгорания топлива по каналу радиально до внутренней стенки камеры сгорания (гильзы) и вперед на толщину свода топливной шашки до ее полной длины h, т. е.

Внутренний диаметр гильзы 18,5 мм, однако надо помнить, что в процессе прессования топлива гильза несколько деформируется, ее диаметр увеличивается до 19 мм (1,9 см), высота цоколя уменьшается до 7 мм. Толщину свода топлива находим из выражения:

где г — средняя толщина свода топлива (см);
d1 — диаметр канала у сопла (см);
d2 — диаметр канала в конце (см).

Длина канала l=h1—r=4,27—0,7=3,57 см. Полученные размеры сразу же нанесем на чертеж (рис. 15). Длина стержня для запрессовки: 3,57+0,7=4,27 см (0,7 см — высота цоколя гильзы).

Перейдем к определению высоты маршевой части топливной шашки. Эта часть топливной шашки не имеет канала, т. е. запрессована всплошную. Назначение ее в том, чтобы после достижения наибольшего значения тяги получить маршевый участок желательно с постоянной тягой. Высота маршевой части шашки должна быть строго определенной. Горение маршевой части ракетного топлива протекает в двигателе с незначительным давлением 0,07—0,02 кг/см 2 . Исходя из этого, по графику рис. 13 определяем скорость горения маршевой части топлива: U=0,9 см/сек.

Высота маршевой части h2 для времени горения t=1,58 сек. составит:

Полная длина камеры сгорания h слагается из полной длины топливной шашки h1 и длины маршевой части h2:

Перейдем к определению веса топлива.

Для этого подсчитаем объем камеры сгорания и объем свободного пространства. Разница этих объемов даст объем топлива. Зная удельный вес топлива, определим его полный вес.

Объем камеры сгорания:

По формуле (12) подсчитаем начальную и максимальную тягу двигателя:

где Fнач — площадь свободного пространства.

Начальная тяга практически будет несколько меньше из-за небольшого начального давления в камере сгорания, а следовательно, и скорости горения. В данном случае значение для G=0,9 м/сек намеренно сохраняется, чтобы пока не усложнять расчет.

Скорость горения топлива U=2 см/сек определена по графику рис. 13. Эта скорость соответствует давлению в камере сгорания 8 кг/см2, которое дано по условиям задачи.

Время работы двигателя t слагается из основного времени t1 и дополнительного времени t2 (маршевого):

По формуле (14) найдем суммарный импульс ракетного двигателя:

По формуле (11) подсчитаем среднюю тягу двигателя:

Приближенное значение максимального давления в камере сгорания найдем по формуле

Узнав примерное максимальное давление в камере сгорания, необходимо проверить прочность стенки гильзы, чтобы определить надежность камеры сгорания. Нужно обеспечить также некоторый запас прочности на случай повышения давления в очень жаркие дни, когда скорость горения топлива увеличивается против расчетной. Возьмем запас прочности — 2, обозначим его через n.

Толщину стенки гильзы определяют по формуле

где δ — толщина стенки гильзы (см);
Рмакс — максимальное давление в камере сгорания (кг/см 2 );
D — внутренний диаметр гильзы (см);
n — коэффициент запаса прочности;
σв — временное сопротивление данного материала (кг/см 2 ).

Временное сопротивление бумаги, из которой изготовлена папковая гильза 12-го калибра, в среднем равно 490 кг/см 2 . Такое сопротивление имеют также хорошие сорта крафт-бумаги.

Подставив данные в формулу (18), получим:

Папковая гильза с наружным диаметром 20,5 мм и внутренним после запрессовки топлива 19 мм имеет толщину стенки:

Фактический запас прочности nфакт=2,4, т. е. выше расчетного.

Днище у модельных двигателей данного типа круглое с двумя отверстиями диаметром 2 мм. Впрессовывают его одновременно с топливом. Делается оно из прочных сортов картона, толщиной не менее 2 мм.


источники:

http://helpiks.org/4-76486.html

http://www.modelizd.ru/rocket/engine/osnovnye-harakteristiki-raketnyh-dvigateley