Уравнение ускорения в векторной форме

iSopromat.ru

Рассмотрим векторные выражения скорости и ускорения точек вращающегося твердого тела:

Модуль скорости точки вращающегося тела (рис. 1.7)

равен модулю векторного произведения ω × r .

ν = ω × r (формула Эйлера).

Определим ускорение точки, продифференцировав формулу Эйлера:

Первое слагаемое является касательным ускорением

а второе – нормальным

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Решение задач, контрольных и РГР

Стоимость мы сообщим в течение 5 минут
на указанный вами адрес электронной почты.

Если стоимость устроит вы сможете оформить заказ.

НАБОР СТУДЕНТА ДЛЯ УЧЁБЫ

— Рамки A4 для учебных работ
— Миллиметровки разного цвета
— Шрифты чертежные ГОСТ
— Листы в клетку и в линейку

Второй закон Ньютона в векторной форме: объяснение + 5 примеров решения задач

Физиков всегда увлекали теоретические знания трех «китов» классической динамики, их грамотное практическое применение. Понимание основ способствует представлению примитивных движений окружающих предметов, подчиняющихся ньютоновской механике. Второй закон Ньютона в векторном виде определен Лукасовским профессором по специализации: математика и физика. Трактовка: сдвиг изменяется пропорционально силе, приложенной к объекту. Направление перемещения соответствует прямой линии, вдоль действия данной силы.

Второй закон Ньютона в векторном виде формулируется иначе современными физиками: сила, оказывающая воздействие на объект, составляет равенство произведения массы тела на ускорение, придаваемого силой. Направления физических величин совпадают. Его альтернативное название – главным тождеством (правилом) динамики.

Как записывается второй закон ньютона в векторной форме

Второй закон Исаака Ньютона записывается в векторной или скалярной форме.

Скаляр – величина без направления, вектор – указывает ориентацию смещения.

  • результирующая сила, [H];
  • ускорение, [м/с 2 ];
  • – масса материальной точки, [кг].

если расписать через векторные величины – это производная проекций скорости по времени: дважды берется дифференциал x, y, z по t):

Второй образец записи главного тождества динамики через импульс тела p:

Таблица отражает особенности, присущие основному правилу динамики, используемые при решении заданий.

Физическая системаМакроскопическое тело
МодельМатериальная точка
Описываемое явлениеПеремещение, имеющее ускорение
Примеры проявленияПередвижение планет; падение, разгон, торможение предметов
Особенности1. Объективно для любых действующих сил;
2. F и a сонаправлены;
3. Существование нескольких сил представлено равнодействующей;
4. Если Fрез=0, то a=0, получается закон инерции;
5. Допустимо применение совместно с законом инерции, эквивалентом действия и противодействия.

Внимание! Далее ориентированные параметры представлены латинскими буквами, выделенными полужирным курсивом.

Примеры задач и их решение

Джон Сантаяна – американский философ, писатель подметил: «Ребенок, получивший образование только в учебном заведении – необразованный ребенок».

Его соотечественник оратор Джим Рон высказывал схожую мысль: «Образование поможет выжить. Самообразование приведет Вас к успеху».

Собственной деятельностью Герман Оскарович Греф – российский экономист продемонстрировал верность, высказанного им утверждения: «Не верю в науку, не связанную с практикой, в образование, не связанное с практикой…»

Для достижения «признания» следует научиться решать задания любого уровня сложности.

Целесообразно рассмотреть ключевые задания на примерах, которые дополнительно могут усложняться.

Справка! Для успешного прохождения «миссий» по усвоению материала, нужно использовать ряд предписаний:

  1. Обозначить систему отсчета.
  2. Использовать графический подход. Рисунки с отмеченной направленностью параметров помогут составить все выражения для ответов на вопросы.
  3. Дополнительно подписать необходимые формулы, соответствующие числу неизвестных.

Рекомендуем вам посмотреть видео о алгоритме решения всех задач на второй закон Ньютона в векторном виде.

Задача 1 – идеальна для «новичков»

Бруски массами 4 и 6 килограмм связаны нерастяжимой нитью, находятся на гладкой горизонтальной поверхности. К материальной точке с большей массой приложена F=12 Н, воздействующая горизонтально. Каково ускорение движения обоих брусков? Чему равна сила натяжения нити?

  • На рисунке отображено влияние сил:

Нить нерастяжима, значит, материальные точки сдвигаются синхронно и равноускоренно.

общий вид уравнения движения.

  • Формулу надо переписать для предмета массой m1:

Из эквивалента действия и противодействия, получается

  • Составление системы уравнений: формула (2) переписывается через T, другое – получается путем почленного сложения (2) и (3):

  • Из второго равенства системы формируется:

  • Числовые значения ставим вместо букв в записи (5) и (6).
  • Результат: =1,2 м/с 2 , =4,8 Н.

Задача 2 – подходит для проверки усвоенного материала

Есть однородный шарик массой 0,5 килограмм. К его центру прикладывают F=3,9Н. Нужно определить модуль и направление F1, необходимой для перемещения с ускорением 7 м/с 2 сонаправленного F.

Второй закон Ньютона в векторном виде:

F, a и F1 располагаются вдоль одной прямой.

Микрозадача: найти проекцию F1 на ось Х.

если F» width=»121″ height=»25″ align=»absmiddle» data-lazy-src=»https://latex.codecogs.com/gif.latex?%5Cdpi%3C150%3E&space;%5CLARGE&space;ma%3E&space;F» /> то 0″ width=»101″ height=»27″ align=»absmiddle» data-lazy-src=»https://latex.codecogs.com/gif.latex?%5Cdpi%3C150%3E&space;%5CLARGE&space;F_%3C1x%3E%3E&space;0″ /> ,

ось Х и F1 одинаково ориентированы, если то , – противонаправлены.

Буквы заменяются цифрами:

Ответ отрицательный, поэтому ориентация F1 противоположена относительно оси Х.

Задача 3 – повышенный уровень сложности

После толчка брусок начал скольжение вверх из точки 0 по гладкой наклонной плоскости. Его начальная скорость равна 5,3 м/с. Уклон поверхности 30°. Определить нахождение бруска через 4 секунды, относительно 0.

Пусть 0 – начало координат. Строятся оси X и Y, отображаются: mg – вес, N – реакция опоры (перпендикулярна поверхности скольжения).

Второй закон сэра Ньютона в векторной форме: . Силы, оказывающие воздействие на брусок, носят постоянный характер, смещение вдоль Х, равноускорено.

Нужно использовать кинематическое равенство:

Нахождение проекции ускорения на ось Х получается из главного правила динамики.

Делается подстановка в кинематическое уравнение:

Ответ: 18 метров.

Задача 4 – упрощенная версия

Нерастяжимой нитью, перекинутой через невесомый блок, расположенный на наклонной поверхности, связаны бруски массами 16 и 24 грамма. Уклон составляет 30°. Надо найти ускорения, перемещающихся предметов. Трение не учитывать.

Пусть m2 перетягивает. Изображаются оси координат.

Записываются уравнения движения брусков по проекциям на оси X и Z:

Нить нерастяжима, поэтому . Силы натяжения равны, поскольку блок и нить невесомы.

Левые и правые части формул суммируются:

Результат выходит больше нуля, ориентация сдвига выбрана верно.

Задача 5 – сверхсложный вариант

Грузовик массой 2 тонны переезжает выпуклую эстакаду со скоростью 27 км/ч. Радиус кривизны дуги составляет 60 метров. Чему равна сила посередине моста, которая давит на грузовой автомобиль? Какова должна быть минимальная быстрота перемещения, чтобы давление на поверхность в верхней точке отсутствовало?

Влияние силы тяжести обозначается – mg, нормальная реакция эстакады – N.

Из эквивалента действия и противодействия выходит:

F искомая величина.

По второму правилу, установленному Ньютоном, центростремительное ускорение представляет сумму сил:

Давления на поверхность отсутствует, в случае N=0:

=588 м/с = 87,3 км/ч

Автомобиль оторвется от моста, если скорость передвижения будет выше минимальной.

Еще примеры решения простых задач на законы Ньютона вы можете посмотреть в видеоролике.

Из представленных выше задач можно увидеть, что второй закон, автора фундаментального труда «Математические начала натуральной философии» – Ньютона в векторной форме ключевое тождество, описывающее физические явления, способствующее решению задач по механике.

Вектор скорости и ускорения материальной точки и их модули. Пример решения задач.

В очередной раз меня попросили решить пару задачек по физике, и я вдруг обнаружил, что не могу решить их с ходу. Немного погуглив, я обнаружил, что сайты в топе выдачи содержат сканы одного и того же учебника и не описывают конкретных примеров решений задачи о том, как найти вектор скорости и ускорения материальной точки. По-этому я решил поделиться с миром примером своего решения.

Траектория движения материальной точки через радиус-вектор

Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора – вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами – единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):

Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? “Наверное какой-то жуткий”, подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:

Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y, чтобы вместо синуса подставить в нее формулу изменения x:

В итоге жуткий закон движения точки оказался обычной параболой, ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.

Вектор скорости материальной точки

Всем известно, что скорость материальной точки – это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.

Пример нахождения вектора скорости

Имеем закон перемещения материальной точки:

Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам таблица производных различных функций. В итоге вектор скорости будет иметь следующий вид:

Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.

Как найти вектор ускорения материальной точки

Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:

Модуль вектора скорости точки

Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора – это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:

Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.

Модуль вектора ускорения

Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:

Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.

Еще примеры решений задачи нахождения вектора скорости и ускорения

А вот тут вы можете найти примеры решения и других задач по физике на тему “механика твердых тел”. А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.

Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.


источники:

http://zakon-tyagoteniya.ru/vtoroj-zakon-nyutona-v-vektornom-vide

http://artsybashev.ru/zadachki-s-resheniem/vektor-skorosti-i-uskoreniya-materialnoi-tochki/