Уравнение в частных производных лаплас

Численное решение уравнений в частных производных эллиптического типа на примере уравнений Лапласа и Пуассона

Среди всех типов уравнений математической физики эллиптические уравнения с точки зрения вычислителей стоят особняком. С одной стороны, имеется хорошо развитая теория решения эллиптических уравнений и систем. Достаточно легко доказываются теоремы об устойчивости разностных схем для эллиптических уравнений. Во многих случаях получаются априорные оценки точности расчетов и числа итераций при решении возникающих систем сеточных уравнений . С другой стороны, системы сеточных уравнений , возникающие при решении уравнений методами сеток, имеют большую размерность и плохо обусловлены. Для решения таких систем разработаны специальные итерационные методы .

6.1. Постановка задачи. Простейшая разностная схема «крест». Устойчивость схемы «крест»

Будем рассматривать двухмерное уравнение Пуассона

в единичном квадрате с краевыми условиями первого рода на границе расчетной области

( — заданная на границе функция ).

В случае прямоугольной области граничные условия удобно записать в следующем виде:

Для простоты выкладок введем равномерную расчетную сетку с узлами m, yl> , m, l = 0, 1, . , M с равным количеством шагов по каждому пространственному направлению, сеточную область D — совокупность всех узлов сетки, включая граничные, и сеточную функцию < uml >. В этом случае шаги по координатам предполагаются равными. В случае неравных шагов по каждому направлению полученные результаты не изменятся, а запись уравнений станет более громоздкой.

Выбираем простейший пятиточечный шаблон разностной схемы «крест» . На этом шаблоне аппроксимирующее разностное уравнение легко выписать. Для этого производные заменим вторыми разностями:

где h — шаг по координатам, или в операторной форме

Эту же разностную схему можно записать в каноническом виде для разностных схем для эллиптических уравнений:

Такую каноническую запись не следует путать с канонической формой записи итерационного метода, которая встретится ниже.

Такая схема обладает вторым порядком аппроксимации по обеим координатам. Это легко показать, применяя разложение в ряд Тейлора функции — проекции точного решения на сетку — вплоть до членов четвертого порядка включительно. Проведем такое разложение для одного из операторов, стоящих в данном разностном уравнении:

Здесь учтено разложение проекции точного решения в ряд Тейлора

и аналогичное разложение для um — 1.

Для рассматриваемого двухмерного уравнения получим выражение для главного члена невязки

Рассмотрим устойчивость полученной схемы. Отметим, что методы исследования на устойчивость , применяемые для эволюционных (зависящих от времени) уравнений, здесь не работают. Действовать приходится на основе определения устойчивости.

Сформулируем и докажем две леммы, которые облегчат процедуру доказательства устойчивости разностной схемы.

Преобразование Лапласа с примерами решения и образцами выполнения

Ранее мы рассмотрели интегральное преобразование Фурье

с ядром K(t, ξ) = .

Преобразование Фурье неудобно тем, что должно быть выполнено условие абсолютной интегрируемости функции f(t) на всей оси t,

Преобразование Лапласа позволяет освободиться от этого ограничения.

Определение:

Функцией-оригиналом будем называть всякую комплекснозначную функцию f(t) действительного аргумента t, удовлетворяющую следующим условиям:

  1. f(t) непрерывна на всей оси t, кроме отдельных точек, в которых f(t) имеет разрыв 1-го рода, причем на каждом конечном интервале оси t таких точек может быть лишь конечное число;
  2. функция f(t) равна нулю при отрицательных значениях t, f(t) = 0 при t 0 и з такие, что для всех t

Ясно, что если неравенство (1) выполняется при некотором s = s1, то оно будет выполнятся при всяком s2 > s1.

Точная нижняя грань sо всех чисел s, so = infs, для которых выполняется неравенство (1), называется показателем роста функции f(t).

Замечание:

В общем случае неравенство

не имеет места, но справедлива оценка

где ε > 0 — любое. Так, функция f(t) = t, t ≥ 0, имеет показатель роста so =0. Для нее неравенство |t| ≤ М ∀t ≥ 0 не выполняется, но ∀ε > О, ∀t > 0 верно неравенство

Условие (1) гораздо менее ограничительное, чем условие (*).

Пример:

не удовлетворяет условию (*), но условие (1) выполнено при любом s ≥ 1 и М ≥ 1; показатель роста so = 1. Так что f(t) является функцией-оригиналом. С другой стороны, функция

не является функцией-оригиналом: она имеет бесконечный порядок роста, sо = +∞. Простейшей функцией-оригиналом является
так называемая единичная функция

Если некоторая функция φ(t) удовлетворяет условиям 1 и 3 определения 1, но не удовлетворяет условию 2, то произведение f(t) = φ(t) η(t) уже является функцией-оригиналом.

Для простоты записи мы будем, как правило, множитель η(t) опускать, условившись, что все функции, которые мы будем рассматривать, равны нулю для отрицательных t, так что если речь идет о какой-то функции f(t) например, о sin t, cos t, e t и т. д., то всегда подразумеваются следующие функции (рис. 2):

Определение:

Пусть f(t) есть функция-оригинал. Изображением функции f(t) по Лапласу называется функция F(p) комплексного переменного р = s + iσ, определяемая формулой

где интеграл берется по положительной полуоси t. Функцию F(p) называют также преобразованием Лапласа функции f(t); ядро преобразования K(t, р) = e -pt .
Тот факт, что функция f(x) имеет своим изображением F(p), будем записывать так:

Пример:

Найти изображение единичной функции η(t).

Функция является функцией-оригиналом с показателем роста s0 = 0. В силу формулы (2) изображением функции η(t) будет функция

Если р = s + iσ, то при s > 0 интеграл в правой части последнего равенства будет сходящимся, и мы получим

так что изображением функции η(t) будет функция 1/p. Как мы условились, будем писать, что η(t) = 1, и тогда полученный результат запишется так:

Теорема:

Для всякой функции-оригинала f(t) с показателем роста sо изображение F(p) определено в полуплоскости Re p = s > So и является в этой полуплоскости аналитической функцией (рис. 3).

Для доказательства существования изображения F(p) в указанной полуплоскости достаточно установить, что несобственный интеграл (2) абсолютно сходится при s > so. Используя (3), получаем

что и доказывает абсолютную сходимость интеграла (2). Одновременно мы получили оценку преобразования Лапласа F(p) в полуплоскости сходимости Re р = s > so

Дифференцируя выражение (2) формально под знаком интеграла по р, находим

Существование интеграла (5) устанавливается так же, как было установлено существование интеграла (2).

Применяя для F'(p) интегрирование по частям, получаем оценку

откуда следует абсолютная сходимость интеграла (5). (Внеинтегральное слагаемое — при t → + ∞ имеет предел, равный нулю). В любой полуплоскости Re р ≥ S1 > So интеграл (5) сходится равномерно относительно р, поскольку он мажорируется сходящимся интегралом

не зависящим от р. Следовательно, дифференцированиепо р законно и равенство (5) справедливо.

Поскольку производная F'(p) существует, преобразование Лапласа F(p) всюду в полуплоскости Re p = s > sо является аналитической функцией.

Из неравенства (4) вытекает

Следствие:

Если точка р стремится к бесконечности так, что Re р = s неограниченно возрастает, то

Пример:

Найдем еще изображение функции f(t) =, где а = а + iβ — любое комплексное число.

Показатель роста sо функции f(t) равен а.

Считая Rep = s> а, получим

При а = 0 вновь получаем формулу

Обратим внимание на то, что изображение функции является аналитической функцией аргумента р не только в полуплоскости Re p > а, но и во всех точках р, кроме точки р = а, где это изображение имеет простой полюс. В дальнейшем мы не раз встретимся с подобной ситуацией, когда изображение F(p) будет аналитической функцией во всей плоскости комплексного переменного р, за исключением изолированных особых точек. Противоречия с теоремой 1 нет. Последняя утверждает лишь, что в полуплоскости Re p > So функция F(p) не имеет особых точек: все они оказываются лежащими или левее прямой Re p = So, или на самой этой прямой.

Замечание:

В операционном исчислении иногда пользуются изображением функции f(t) по Хевисайду, определяемым равенством

и отличаюикмся от шоСражения по Лапласу множителем р.

Свойства преобразования Лапласа

В дальнейшем через f(t), φ(t), … будем обозначать функции-оригиналы, а через F(p), Ф(р), … — их изображения по Лапласу,

Из определения изображения следует, что если f(t) = 9 ∀t, то F(p) = 0.

Теорема единственности:

Теорема:

Справедливость утверждения вытекает из свойства линейности интеграла, определяющего изображение:

— показатели роста функций f(t) и φ(t) соответственно).

На основании этого свойства получаем

Аналогично находим, что
(4)

Теорема подобия:

Если f(t) — функция-оригинал и F(p) — ее изображение по Лапласу, то для любого постоянного а > 0

Полагая at = т, имеем

Пользуясь этой теоремой, из формул (5) и (6) получаем

Теорема:

О дифференцировании оригинала. Пусть f(t) является функцией-оригиналом с изображением F(p) и пусть — также функции-оригиналы, показатель роста функции (k = 0, 1,…, п). Тогда

Здесь под fk(0) (k = 0,1,… , п — 1) понимается правое предельное значение .

Пусть f(t) = F(p). Найдем изображение f'(t). Имеем

Интегрируя по частям, получаем

Внеинтегральное слагаемое в правой части (10) обращается в нуль при t → + ∞, т. к. при Re р = s > имеем

подстановка t = 0 дает -f(0).

Второе слагаемое справа в (10) равно pF(p). Таким образом, соотношение (10) принимаетвид

и формула (8) доказана. В частности, если f(0) = 0, то f'(t) = pF(p). Для отыскания изображения запишем

откуда, интегрируя п раз по частям, получим

Пример:

Пользуясь теоремой о дифференцировании оригинала, найти изображение функции f(t) = sin 2 t.

Пусть f(t) = F(p). Тогда

Но f(0) = О, а f'(0) = 2 sin t cos t = sin 2t = . Следовательно, = pF(p), откуда F(p) =

Теорема 5 устанавливает замечательное свойство интегрального преобразования Лапласа: оно (как и преобразование Фурье) переводит операцию дифференцирования в алгебраическую операцию умножения на р.

Формула включения. Если f(t) и f'(t) являются функциями-оригиналами, то (11)

В самом деле, f'(

Так как функция F(p) в полуплоскости Rep = s > so является аналитической, то ее можно дифференцировать по р. Имеем

Последнее как раз и означает, что

Пример:

Пользуясь теоремой 6, найти изображение функции .

Как известно, 1 = 1/p. Здесь f(t) = 1, F(p) = 1/p. Отсюда (1/p)’= (-t) • 1, или = t. Вновь применяя теорему 6, найдем

Теорема:

Интегрирование оригинала. Интегрирование оригинала сводится к делению изображения на р: если f(t) = F(p), то

Нетрудно проверить, что если f(t) есть функция-оригинал, то и φ(t) будет функцией-оригиналом, причем φ(0) = 0. Пусть φ(t) = Ф(р). В силу (14)

С другой стороны, f(t) =’ F(p), откуда F(p) = рФ(р), т.е. Ф(р) =.

Последнее равносильно доказываемому соотношению (13).

Пример:

Найти изображение функции

В данном случае f(t) = cos t, так что F(p) = . Поэтому

Теорема:

Интегрирование изображения. Если f(t) = F(p) и интеграл сходится, то он служит изображением функции

Предполагая, что путь интегрирования (р, ∞) лежит в полуплоскости Re p ≥ а> so, мы можем изменить порядок интегрирования (t > 0):

Последнее равенство означает, что является изображением функции .

Пример:

Найти изображение функции .

Как известно, sin t = .

Теорема запаздывания:

Положим ξ = t- τ. Тогда dt = d ξ. При t = τ получаем ξ = 0, при t = + ∞ имеем ξ = + ∞.

Поэтому соотношение (16) принимает вид

Пример:

Найти изображение функции f(t), заданной графически (рис. 5).

Запишем выражение для функции f(t) в следующем виде:

Это выражение можно получить так. Рассмотрим функцию f1(t) = η(t) для t ≥ 0 (рис. 6 а) и вычтем из нее функцию

Разность f(t) — h(t) будет равна единице для t ∈ [0,1) и -1 для t ≥ 1 (рис. 6 b). К полученной разности прибавим функцию

В результате получим функцию f(t) (рис. 6 в), так что

Отсюда, пользуясь теоремой запаздывания, найдем

Теорема смещения:

Теорема позволяет по известным изображениям функций находить изображения тех же функций, умноженных на показательную функцию , например,

Свертка функций. Теорема умножения

Пусть функции f(t) и φ(t) определены и непрерывны для всех t. Сверткой (f *φ)(t) этих функций называется новая функция от t, определяемая равенством

(если этот интеграл существует).

Для функций-оригиналов f(t) и φ(t) операция свертки всегда выполнима, причем
(17)

В самом деле, произведение функций-оригиналов f( τ ) φ(t — τ), как функция от τ, является финитной функцией, т.е. обращается в нуль вне некоторого конечного промежутка (в данном случае вне отрезка 0 ≤ τ ≤ t). Для финитных непрерывных функций операция свертки выполнима, и мы получаем формулу (17).

Нетрудно проверить, что операциясвертки коммутативна,

Теорема умножения:

Нетрудно проверить, что свертка (f * φ)(t) функций-оригиналов есть функция-оригинал с показателем роста s* = mах, где s1, s2

показатели роста функций f(t) и φ(t) соответственно. Найдем изображение свертки,

Воспользовавшись тем, что

Меняя порядок интегрирования в интеграле справа (при Re р = s > s* такая операция законна) и применяя теорему запаздывания, получим

Таким образом, из (18) и (19) находим

— умножению изображений отвечает свертывание оригиналов,

Пример:

Найти изображение функции

Функция ψ(t) есть свертка функций f(y) = t и φ(t) = sin t. В силу теоремы умножения

Задача:

Пусть функция f(t), периодическая с периодом Т, есть функция-оригинал. Показать, что ее изображение по Лапласу F[p) дается формулой

Отыскание оригинала по изображению

Задача ставится так: дана функция F(p), надо найти функцию f(t). изображением которой является F(p).

Сформулируем условия, достаточные для того, чтобы функция F(p) комплексного переменного р служила изображением.

Теорема:

Если аналитическая в полуплоскости Rep = s > so функция F(p)

1) стремится к нулю при |р| —» +в любой полуплоскости Re р = а > So равномерно относительно arg р;

сходится абсолютно, то F(p) является изображением некоторой функции-оригинала f

Задача:

Может ли функция F(p) = служить изображением некоторой функции-оригинала? Укажем некоторые способы отыскания оригинала по изображению.

Отыскание оригинала с помощью таблиц изображений

Прежде всего стоит привести функцию F(p) к более простому, «табличному» виду. Например, в случае, когда F(p) — дробно-рациональная функция аргумента р,ее разлагают на элементарные дроби и пользуются подходящими свойствами преобразования Лапласа.

Пример:

Найти оригинал для

Запишем функцию F(p) в виде:

Пользуясь теоремой смещения и свойством линейности преобразования Лапласа, получаем

Пример:

Найти оригинал для функции

Запишем F(p) в виде

Отсюда f(t) = t — sin t.

Использование теоремы обращения и следствий из нее

Теорема обращения:

где интеграл берется вдоль любой прямой Re p = s > So и понимается в смысле главного значения, т. е. как

Формула (1) называется формулой обращения преобразования Лапласа, или формулой Меллина. В самом деле, пусть, например, f(t) — кусочно-гладкая на каждом конечном отрезке [0, а] функция-оригинал-с показателем роста so. Рассмотрим функцию φ(t) = , где s>so — любое.

Функция φ(t) удовлетворяет условиям применимости интегральной формулы Фурье, и, следовательно, справедлива формула обращения преобразования Фурье,

(φ(t) ≡ 0 при t

откуда получаем формулу обращения преобразования Лапласа

Как следствие из теоремы обращения получаем теорему единственности.

Теорема:

Две непрерывные функции f(t) и φ(t), имеющие одно и то же изображение F(p), тождественны.
Непосредственное вычисление интеграла обращения (1) обычно затруднительно. Отыскание оригинала по изображению упрощается при некоторых дополнительных ограничениях на F(p).

Теорема:

Пусть изображение F(p) — дробно-рациональная функция с полюсами р1, p2….pп. Тогда оригиналом для F(p) будет функция f(t) η(t), где

Пусть изображение F(p) — дробно-рациональная функция, F(p) = , где А(р), В(р) — многочлены относительно р (взаимно простые), причем степень числителя А(р) меньше степени знаменателя В(р), т. к. для всякого изображения должно выполняться предельное соотношение

Пусть корни знаменателя В(р), являющиеся полюсами изображения F(p), суть р1, р2, …, рп, а их кратности равны r1, r2, …, rп соответственно.

Если число s, фигурирующее в формуле (1), взять большим всех Re pk (k = 1,2,…, п), то по формуле обращения, которая в этих условиях применима, получим

Рассмотрим замкнутый контур ГR (рис.7), состоящий из дуги CR окружности радиуса R с центром в начале координат и стягивающей ее хорды АВ (отрезка прямой Re р = s), и проходимый в положительном направлении, причем радиус R настолько велик, что все полюсы F(p) лежат внутри ГR.

По теореме Коши о вычетах при любом R, удовлетворяющем указанному условию, будем иметь

Второе слагаемое слева в равенстве (5) стремится к нулю при R → ∞. Это следует из леммы Жордана, если в ней заменить р на iz и учесть, что F(p) → 0 при Re p → + ∞. Переходя в равенстве (5) к пределу при R → ∞, мы получим слева

а справа — сумму вычетов по всем полюсам функции F(p)

Замечание:

Воспользовавшись формулой для вычисления вычетов, найдем, что

Если все полюсы p1, р2,…, рn — простые, то

и формула (6) принимает вид

Пример:

Найти оригинал для функции

Функция F(p) имеет простые полюсы р1 = i. p2 = -i. Пользуясь формулой (7), находим

Теорема:

Пусть изображение F(p) является аналитической функцией в бесконечно удаленной точке р =, причем ее разложение в окрестности |р| > R бесконечно удаленной точки имеет вид

Тогда оригиналом для F(p) будет функция f(t) η

Пример:

Приложения преобразования Лапласа (операционного исчисления)

Решение линейных дифференциальных уравнений с постоянными коэффициентами

Дано линейное дифференциальное уравнение второго порядка с постоянными коэффициентами
(1)

(ао, а1, а2 — действительные числа) и требуется найти решение уравнения (1) для t > 0, удовлетворяющее начальным условиям

Будем считать, что f(t) есть функция-оригинал. Тогда x(t) — также функция-оригинал. Пусть

f(t) = F(p), x(t) = X(p).

По теореме о дифференцировании оригинала имеем

Перейдем в уравнении (1) от оригиналов к изображениям. Имеем

Это уже не дифференциальное, а алгебраическое уравнение относительно изображения Х(р) искомой функции. Его называют операторным уравнением. Решая его, найдем операторное решение задачи (1)-(2) —

Оригинал для Х(р) будет искомым решением х(t) задачи (1)-(2).

Общий случай линейного дифференциального уравнения n-го порядка (n ≥ 1) с постоянными коэффициентами от случая п = 2 принципиально ничем не отличается.

Приведем общую схему решения задачи Коши

Здесь означает применение к 1 преобразование Лапласа, — применение к III обратного преобразования Лапласа.

Пример:

Решить задачу Коши

По теореме о дифференцировании изображения

Формула Дюамеля

В приложениях операционного исчисления к решению дифференциальных уравнений часто пользуются следствием из теоремы умножения, известным под названием формулы Дюамеля.

Пусть f(t) и φt) — функции-оригиналы, причем функция f(t) непрерывна на [0, + ∞), a φ(t) — непрерывно дифференцируема на [0,+ ∞). Тогда если f(t) = F(p), φ

Нетрудно проверить, что функция ψ(t) непрерывно дифференцируема на [0, + ∞), причем

Отсюда, в силу правила дифференцирования оригиналов, учитывая, что ψ(0) = 0, получаем формулу Дюамеля
(4)

Покажем применение этой формулы.

Пусть требуется решить линейное дифференциальное уравнение n-го порядка (n ≥ 1) с постоянными коэффициентами

при нулевых начальных условиях

(последнее ограничение несущественно: задачу с ненулевыми начальными условиями можно свести к задаче с нулевыми условиями заменой искомой функции).

Если известно решение x(t) дифференциального уравнения с той же левой частью и правой частью, равной единице,

L[x(t)] = l (7)

при нулевых начальных условиях

то формула Дюамеля (4) позволяет сразу получить решение исходной задачи (5)-(6).

В самом деле, операторные уравнения, отвечающие задачам (5)-(6) и (7)-(8), имеют соответственно вид

где F(p) — изображение функции f(t). Из (9) и (10) легко находи

Отсюда по формуле Дюамеля

или, поскольку x1(0) = 0, (11)

Пример:

Решить задачу Коши

Рассмотрим вспомогательную задачу

Применяя операционный метод, находим

По формуле (11) получаем решение x(t) исходной задачи:

Интегрирование систем линейных дифференциальных уравнений с постоянными коэффициентами

Интегрирование систем осуществляется так же, как и решение одного линейного дифференциального уравнения — путем перехода от системы дифференциальных уравнений к системе операторных уравнений. Решая последнюю как систему линейных алгебраических уравнений относительно изображений искомых функций, получаем операторное решение системы. Оригинал для негобудетрешением исходной системы дифференциальных уравнений.

Пример:

Найти решение линейной системы

удовлетворяющее начальным условиям х(0) = у(0) = I.

Пусть х(

Решая последнюю относительно Х(р) и У(р), получаем

Решение исходной задачи Коши

Решение интегральных уравнений

Напомним, что интегральным уравнением называют уравнение, в котором неизвестная функция входит под знак интеграла. Мы рассмотрим лишь уравнение вида (12)

называемое линейным интегральным уравнением Вольтерра второго рода с ядром K(t — т), зависящим от разности аргументов (уравнение типа свертки). Здесь φ(t) — искомая функция, f(t) и K(t) — заданные функции.

Пусть f(t) и K(t) есть функции-оригиналы, f(t) =’ F(p), K(t) =’ K(p).

Применяя к обеим частям (12) преобразование Лапласа и, пользуясь теоремой умножения, получим
(13)

где Ф(р) = φ(t). Из (13)

Оригинал для Ф(р) будет решением интегрального уравнения (12).

Пример:

Решить интегральное уравнение

Применяя преобразование Лапласа к обеим частям (14), получим

Функция является решением уравнения (14) (подстановка в уравнение (14) обращает последнее в тождество по t).

Замечание:

Преобразование Лапласа может быть использовано также при решении некоторых задач для уравнений математической физики.

Таблица преобразования Лапласа

Дополнение к преобразованию Лапласа

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Уравнение Лапласа

Определение и формула уравнения Лапласа

Уравнение с частными производными вида:

называемое уравнением Лапласа в декартовых координатах.

Это частный случай уравнения Гельмгольца. Его можно рассматривать в трехмерных (1), двумерных (2), одномерных и n-мерных пространствах:

Оператор называется оператором Лапласа (оператор Лапласа эквивалентен последовательному градиенту и расходимости).

Решение уравнения Лапласа

Решения уравнения Лапласа являются гармоническими функциями.

Уравнение Лапласа относится к эллиптическим уравнениям. Неоднородное уравнение Лапласа становится уравнением Пуассона.

Каждое решение уравнения Лапласа в ограниченной области G однозначно выделяется краевыми условиями, накладываемыми на поведение решения (или его производных) на границе области G. Если решение отыскивается во всём пространстве , краевые условия сводятся к предписанию некоторой асимптотики для f при . Задача о нахождении таких решений называется краевой задачей. Чаще всего встречаются задача Дирихле, когда на границе задано значение самой функции f, и задача Немана, когда задано значение производной f по нормали к границе.

Уравнение Лапласа в сферических, полярных и цилиндрических координатах

Уравнение Лапласа может быть записано не только в декартовых координатах.

В сферических координатах уравнение Лапласа имеет следующий вид:

В полярных координатах система координат уравнения:

В цилиндрических координатах уравнение имеет вид:

Многие проблемы физики и механики, в которых физическая величина является функцией только координат точки, приводят к уравнению Лапласа. Таким образом, уравнение Лапласа описывает потенциал сил в области, которая не содержит массы, потенциал электростатического поля — в области, которая не содержит зарядов, температуры во время стационарных процессов и т. Д. стационарная фильтрация подземных вод, возникновение поля вокруг электромагнита, а также стационарное электрическое поле вблизи фарфорового изолятора или электрического кабеля, встроенного в землю. Я имею переменное поперечное сечение, сводящееся к решению трехмерного Лапласа или уравнения Пуассона. Оператор Лапласа играет большую роль в квантовой механике.

Примеры решения проблем

Найдите поле между двумя коаксиальными цилиндрами с радиусами r1 и r2, разность потенциалов между которыми равна

Запишем уравнение Лапласа в цилиндрических координатах с учетом осевой симметрии:

Он имеет решение . Выберем нулевой потенциал на внешнем цилиндре, найдем, получим:

В результате мы имеем:

Поле между двумя коаксиальными цилиндрами задается функцией.

Исследовать устойчивость равновесия положительно заряженной частицы в электрическом поле (теорема Ирншоу).

Поместите начало координат в положение равновесия частицы. В этом случае мы можем предположить, что потенциал представлен как:

где все производные берутся в точке равновесия.

Для устойчивости положительного заряда необходимо, чтобы потенциальная энергия возрастала в любом из направлений, т. Е. Вторые производные от по координатам были больше .Но это противоречит уравнению Лапласа . Если ( следует учитывать следующие члены разложения .

Можно показать, что в этом случае устойчивое равновесие невозможно.


источники:

http://lfirmal.com/preobrazovanie-laplasa/

http://www.homework.ru/spravochnik/uravnenie-laplasa/