Уравнение водного баланса зоны аэрации

Водный и солевой баланс подземных вод

Водный баланс подземных вод

Водный баланс подземных вод представляет собой разность между приходом (питанием) и расходом воды в водоносном горизонте за определенный отрезок времени. Такой баланс называется водным балансом подземных вод. Кроме водного баланса иногда составляется солевой баланс подземных вод. По аналогии с водным он представляет собой разность между суммой солей (или содержа­нием какой-либо соли), поступивших в водоносный горизонт, и суммой солей (или количеством какой-либо соли), удаленных из него за определенный отрезок времени.

Баланс подземных вод изучают на основе анализа их режима (аналитические методы), а также экспериментально, с постановкой специальных лизиметрических и водно-балансовых исследований на типичных по гидрогеологическим условиям балансовых участках. В последнем случае элементы водного баланса (инфиль- трационное питание, испарение, транспирация, приток и отток подземных вод и др.) определяют экспериментально при помощи различных приборов и специальных установок и используют в дальнейшем для различных водно-балансовых расчетов и про­гнозов режима и баланса подземных вод изучаемых районов.

Баланс подземных вод может определяться для существующих условий или для проектных (прогнозный баланс). Основная задача расчета балансов подземных вод — количественная оценка харак­теристик гидрогеологических условий, а в случае неблагоприятной оценки — разработка мероприятий по изменению баланса с целью улучшения гидрогеологических условий территории. На основании изучения режима и определения баланса подземных вод при из­вестных условиях дается прогноз их режима.

Для мелиорации сельскохозяйственных земель наибольшее зна­чение имеет баланс грунтовых вод, для составления которого сле­дует количественно определить каждую приходную и расходную статью. Для этого поток грунтовых вод рассматривается в опреде­ленных границах: боковые границы — реки, каналы, коллекторы или условно принятые вертикальные поверхности; нижней гра­ницей обычно служит кровля подстилающего водонепроницаемого пласта или условная плоскость на принятой глубине.

Верхняя граница балансового блока выбирается по-разному. В одних случаях баланс грунтовых вод определяется с учетом ба­ланса поверхностных вод и вод в зоне аэрации. Верхней границей балансового участка в этом случае будет поверхность земли, включая поверхностные воды. В других случаях при определении баланса собственно грунтовых вод верхней границей балансового участка следует считать переменную величину — уровень грунтовых вод или верхнюю границу капиллярной каймы.

Основные приходные элементы баланса грунтовых вод следующие:

  • питание грунтовых вод за счет инфильтрации атмосферных осадков через зону аэрации —А0;
  • питание грунтовых вод за счет фильтрации воды из каналов, водохранилищ и рек — Фк;
  • питание грунтовых вод при инфильтрации оросительных вод — О;
  • подземный приток —П1
  • питание грунтовых вод за счет перетекания из нижележащих на­порных горизонтов — М;
  • питание грунтовых вод за счет конденсации паров воды в зоне аэрации — К.

Основными расходными элементами баланса грунтовых вод явля­ются:

  • испарение с поверхности грунтовых вод и капиллярной каймы — И;
  • транспирация воды растительностью — Т;
  • отток в дренирующие сооружения (реки, коллекторы,дрены) — Д;
  • подземный оттток за пределы участка П2;
  • расход грунтовых вод на питание нижележащих водоносных горизонтов — Г;
  • водоотбор при откачке из скважин — Qотк ;

В общем случае уравнние баланса грунтовых вод за время t имеет вид:

где μ — коэффициент водоотдачи (при понижении уровня грунтовых вод, т.е. при -∆H) или недостатка насыщения (при повышении уровня грунтовых вод на балансовом участке за время t, м; S — площадь балансового участка.

Основные элементы водного баланса (П120,О,М) опреде­ляются с использованием результатов режимных наблюдений. При расчетах необходимо иметь основные гидрогеологические па­раметры — коэффициенты водоотдачи, уровнепроводности, пье- зопроводности и фильтрации. При решении баланса грунтовых вод его элементы могут определяться и экспериментальным методом. Это целесообразно делать при близком (3—5 м) залегании уровня грунтовых вод. При использовании экспериментального метода все элементы баланса грунтовых вод определяются на специальных участках, один независимо от другого, с помощью различных при­боров и установок. Наиболее распространенными установками яв­ляются лизиметры — металлические или бетонные сосуды разной высоты с округлым, квадратным или прямоугольным сечением.

Солевой баланс подземных вод

Солевой баланс подземных вод. Методы его решения разрабо­таны слабее. В общем случае, взяв за основу водный баланс грун­товых вод, величину каждого элемента баланса в объемных еди­ницах следует умножить на концентрацию солей (или какой-ни­будь соли) и полученные данные алгебраически сложить:

где ∆С — изменение содержания ионов солей или какой-либо соли в балансовом участке горизонта грунтовых вод за время t; С0, Сф и т.п. — концентрации солей или какой-либо соли, г/л или г/см 3 .

Солевой баланс показывает направленность гидрогеологических процессов, ведущих к засолению или расселению.

Контрольная работа: Гидрология подземных вод

Подземными водами называются содержащиеся в земной коре воды, находящиеся в активном взаимодействии с атмосферой и поверхностными водами (океанами, морями, реками, озёрами, болотами) и участвующими в круговороте воды на Земном шаре.

Подземные воды по происхождению делят на экзогенные (источник — водные объекты на поверхности суши и атмосферные осадки) и эндогенные (источник — сама литосфера).

С деятельностью подземных вод связаны специфические физико-географические явления:

Оползень — смещение вниз по склону масс рыхлой породы под действием силы тяжести. Наблюдается при чередовании водоупорных и насыщенных влагой водоносных слоёв. Смещение маломощного слоя называется оплывиной.

Суффозия — вынос взвеси потоками грунтовых вод. Приводит к образованию подземных пустот и последующему оседанию вышележащих осадочных пород с образованием на поверхности замкнутых понижений (блюдец, воронок).

Карст — процесс растворения водами горных пород и комплекс форм рельефа, образующихся в области распространения растворимых пород (известняков, доломитов, гипсов). К карсту относятся отрицательные поверхностные формы (воронки, котловины, колодцы) и подземные (пещеры, полости, ходы).

К числу мерзлотных гидрогеологических явлений относятся бугры пучения, наледи, термокарст, термоэрозия и термоабразия. Бугры пучения — выпуклые формы рельефа, возникающие в области мгоголетнемёрзлых и сезонномёрзлых пород в результате льдообразования в грунтах (сюда относят, например, булгуняхи гидролакколиты). Наледи (толщиной до 12 м) образуются при намораживании излившихся на поверхность земли подземных вод. Термокарст образуется при вытаивании подземного льда или оттаивании мёрзлого грунта. Термоэрозия — разрушение мёрзлых пород на речных берегах при термическом воздействии текущих вод. Термоабразия — процесс разрушения берегов морей, озёр, водохранилищ, сложенных льдом и мёрзлыми грунтами, при совместном термическом воздействии атмосферы и воды.

Вопрос 1. Что такое свободная и нормальная инфильтрация

В зоне аэрации происходит проникновение атмосферных осадков в грунт — инфильтрация. Различают свободную инфильтрацию и нормальную инфильтрацию. В первом случае движение воды вниз происходит под действием силы тяжести и капиллярных сил в виде изолированных струек по капиллярным порам. При этом, часть пор остаётся заполненной воздухом, что исключает влияние гидростатического давления на движение воды. По мере заполнения пор водой свободная инфильтрация переходит в нормальную инфильтрацию и скорость просачивания существенно снижается. При нормальной инфильтрации движение воды происходит сплошным потоком под действием выше названных сил, к которым добавляется гидростатическое давление, т.к. поры заполнены полностью. Инфильтрационная вода может либо достичь уровня грунтовых вод, либо остаться в зоне аэрации в виде подвешенной воды.

В зоне насыщения силы тяжести и гидростатического давления свободная (гравитационная) вода по порам и трещинам грунта перемещается в сторону уклона поверхности водоносного горизонта или в сторону уменьшения напора. В крупнообломочных, сильно трещиноватых и закарстованных породах скорости движения подземных вод могут быть значительными.

Вопрос 2. Охарактеризовать особенности водного баланса и режимы зоны аэрации (промывной, компенсированный и испарительный типы режима)

Зона аэрации занимает верхний ненасыщенный водой слой почвенно-грунтовой толщи от земной поверхности до уровня грунтовых вод. Через зону аэрации осуществляется связь атмосферы и грунтовых вод в зоне насыщения. Дождевая вода и талая вода, попадая в грунт, расходуется на смачивание почвенного слоя и формирование почвенных вод — временного скопления гравитационной и капиллярной воды в почвенной толще. Почвенные воды обычно просачиваются в боле глубокие слои грунта и не образуют постоянного водоносного горизонта.

Почвенный сток возникает лишь при сильных дождях и снеготаянии, если в почве есть наклонные слабопроницаемые прослои и если часть почвы насыщается водой. Мощность слоя с почвенной водой обычно колеблется в пределах от нескольких см до 1-1,5 м. Инфильтрующиеся вертикально вниз под действием силы тяжести воды, встречая на своём пути относительные водоупоры, образуют верховодку, т.е. временные сезонные скопления подземных вод (мощность их составляет 0,4-1 м, редко до 2-5 м).

Почвенные воды и верховодка легко загрязняются с поверхности земли. Они обычно пресные, но в болотных и торфянистых почвах могут иметь застойный режим и высокую концентрацию кислот органического происхождения. Выше уровня грунтовых вод в пределах зоны аэрации располагается капиллярная зона («капиллярная кайма»). Воды этой зоны при неглубоком залегании грунтовых вод часто участвуют в питании почвенных вод.

Название: Гидрология подземных вод
Раздел: Рефераты по геологии
Тип: контрольная работа Добавлен 18:10:48 08 декабря 2010 Похожие работы
Просмотров: 113 Комментариев: 23 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно Скачать

Схема залегания вод зоны аэрации и грунтовых вод:

1 — зона аэрации, зона насыщения,

3 — капиллярные воды,

4 — почвенные подвешенные воды,

5 — нфильтрующиеся воды зоны аэрации,

7 — грунтовые воды.

8 — поверхность (зеркало) грунтовых вод,

9 — поверхность капиллярной зоны, 10 — водоупорный пласт,

11 — направление потока грунтовых вод.

Уравнение водного баланса подземных вод в зоне аэрации имеет вид:

yинф поступление воды в процессе инфильтрации, zгр. в — испарение воды с поверхности грунтовых вод, yпочв почвенный (или подповерхностный) сток, yпит. гр. в — вода поступающая из зоны аэрации на питание грунтовых вод, zтр — десукция (поглощение) воды корневыми системами с последующей транспирацией, z з. а — подземное испарение воды из зоны аэрации с потерей в атмосферу, Duз. а — изменение запасов воды в зоне аэрации, т.е. изменение влажности грунтов.

Водный режим зоны аэрации в основном определяется режимом поступления в неё инфильтрующихся после дождей и снеготаяния вод.

Различают три основных типа водного режима в зоне аэрации:

1. Промывной тип.

Излишки воды идут на формирование почвенного стока (yпочв ) и питание грунтовых вод (yпит. гр. в ).

2. Компенсированный тип.

3. Испарительный или выпотной тип.

yинф 0 С и примерно соответствует средней многолетней температуре воздуха, превышая её на 1-3 0 С. На больших глубинах температура возрастает в соответствии с характерным для данной местности геотермическим градиентом. Суточные колебания температуры в провинции кратковременного питания достигают 8-10 0 С, в провинции сезонного питания — от 2-5 до 10-12 0 С, реже 16-20 0 С. В провинции круглогодичного питания суточные колебания составляют от 10 до 20-25 0 С, а в наиболее тёплых р-нах — от 15-16 до 30 0 С.

Гидрохимический режим грунтовых вод.

В провинции кратковременного питания достигают минимальная минерализация составляет 5-30 мг/л и наблюдается в весеннее и летнее время (результат разбавление талыми водами), максимальная (до 1 г/л) — в предвесеннее время (если нет промерзания). Наиболее характерны ионы HCO3 — и Ca2 + .

В провинции сезонного питания и провинции круглогодичного питания существует два типа гидрохимического режима подземных вод.

1. Минимальная минерализация совпадает с максимальным уровнем — весной. Максимальная минерализация в провинции сезонного питания наблюдается в предвесеннее и летнее время, в провинции круглогодичного питания — в летне-осеннее время, совпадая с минимальным уровнем грунтовых вод. Колебания минерализации от 10-400 мг/л в Прибалтике до 20-1000 мг/л в Средней полосе России и 0,2-11 г/л в Прикаспии. С севера на юг растёт содержание ионов SO4 2 — и Na + .

2. Характеризуется преобладанием испарения над питанием грунтовых вод, их выпариванием и снижением уровня. В результате происходит накопление солей в зоне аэрации и увеличение минерализации грунтовых вод. В периоды зимнего и весеннего питания инфильтрующиеся воды растворяют эти соли и ещё более повышают минерализацию.Т. е. максимальный уровень и максимальная минерализация совпадают. Преобладают ионы Cl — , SO4 2- , Na + , Mg 2+ .

На больших глубинах залегания уровня (более 10 м) отмечается особый тип гидрохимического режима грунтовых вод, характеризующийся ничтожными колебаниями минерализации. С глубиной сезонные изменения минерализации и солевого состава затухают во всех трёх провинциях. Специфические колебания уровня, температуры и химического состава испытывают грунтовые воды, гидравлически связанные с водами рек, озёр водохранилищ и т.д.

Вопрос 5. Охарактеризовать четыре типа взаимодействия речных и грунтовых вод.

Обмен подземных вод и вод океанов и морей изучен крайне слабо. Ежегодно в Мировой океан поступает 2,2 тыс. км 3 не дренируемых реками подземных вод. Рассмотрим взаимодействие подземных вод и реки, хотя всё изложенное справедливо и для других водных объектов суши (например, озёр). Выделяют 4 типа взаимодействия речных и грунтовых вод.

Схема взаимодействия речных и грунтовых вод:

а — постоянная односторонняя гидравлическая связь,

б — постоянная двусторонняя гидравлическая связь,

в — временная гидравлическая связь,

г — отсутствие гидравлической связи.

1 — водоупорный пласт,

2 — уровень грунтовых вод,

3 — направление движения грунтовых вод,

4 — уровень воды в реке в половодье,

5 — уровень воды в реке в межень,

6 — источники (родники).

Постоянная односторонняя гидравлическая связь. При очень низком положении водоупора река в течение всего года через дно и берега питает подрусловые и прибрежные грунтовые воды.

Постоянная двусторонняя гидравлическая связь. Характерно более высокое положение водоупора. Река питает грунтовые воды в половодье и дренирует в межень часть аккумулированной в грунте воды. Это явление называется береговым регулированием речного стока.

Временная гидравлическая связь. Наблюдается при ещё более высоком положении водоупора. Река также питает грунтовые воды в половодье и в межень сама питается грунтовыми водами. Однако в межень происходит разрыв кривой депрессии грунтовых вод и понизившегося уровня реки (последний оказывается ниже уровня водоупора). На склонах русла возникают мочажины, родники и ключи.

Отсутствие гидравлической связи даже в половодье наблюдается при очень высоком положении водоупора. При этом, возможно питание реки грунтовыми водами. В целом, подземные воды — один из важнейших видов питания рек. По водно-балансовым оценкам для всего Земного шара на долю подземного питания рек приходится около 30% речного стока. Роль подземного питания рек особенно возрастает в межень, когда доля других источников питания резко снижается.

Список использованной литературы

1. Богословский Б.Б., Самохин А.А., Иванов К.Е., Соколов Д.П. Общая гидрология. — Л., 1984. — 356 с.

2. Малыгин З.А., Кузьмина В.П. Геология и гидрогеология. — М., 1977. — 240 с.

3. Михайлов В.Н., Добровольский А.Д. Общая гидрология — М., 1991. — 368 с.

4, Общая гидрогеология / Под. ред. Е.В. Пиннекера. — Новосибирск. — 1980. — 231 с.

Движение воды в зонах аэрации и насыщения

1. Движение воды в зонах аэрации и насыщения

2. Движение подземных вод в водоносных пластах. Определение скорости движения подземных вод

3. Установившееся и неустановившееся движение подземных вод. Методы моделирования фильтрации

4. Приток воды к водозаборным сооружениям

4.1 Приток безнапорных вод в совершенную горизонтальную дрену (канаву)

4.2 Расчет притока грунтовых вод в скважину

4.3 Расчет притока напорных вод в совершенную дрену

4.4 Расчет притока артезианских вод в скважину

5. Методы определения коэффициента фильтрации горных пород. Определение радиуса влияния

Список источников литературы

Гидрогеология — наука, изучающая подземные воды Земли, их историю, происхождение, формирование, состав, режим, геологическую и геохимическую деятельность. Но главной целью гидрогеологических исследований остается выявление новых резервов питьевой воды. В связи с быстрым ростом численности населения нашей планеты проблема запасов природных вод становится особенно острой. В ряде районов уже сейчас испытывается большой недостаток пресной воды, некоторые страны импортируют воду из других государств.

По количеству водных ресурсов Россия занимает одно из первых мест в мире. Однако промышленность и население нашей страны распределены неравномерно, в связи с чем и у нас в отдельных районах возникают очень большие потребности в питьевой воде. Такое положение сложилось в отдельных районах Урала. В РФ, к тому же, есть ряд засушливых районов с отсутствием водных ресурсов или острым их недостатком.

Роль подземных вод в жизни человека, животных и растений исключительно велика, в связи с этим значение гидрогеологии для народного хозяйства переоценить трудно.


1. Движение воды в зонах аэрации и насыщения

В зоне аэрации, т. е. в толще пород, расположенной между дневной поверхностью и зеркалом грунтовых вод, находятся:

а) водяной пар, заполняющий поры породы;

(«1») б) гигроскопическая влага, обусловливающая гигроскопическую влажность пород;

в) пленочная вода, обволакивающая зерна пород в виде пленок различной толщины, и

г) капиллярная вода, располагающаяся в виде капиллярной каймы над зеркалом грунтовых вод.

Движение подземных вод в зоне аэрации может происходить в виде передвижения пара, в виде пленочного движения, свободного просачивания и капиллярного движения.

Движение парообразной и гигроскопической влаги. было экспериментально доказано, что влага в парообразном состоянии передвигается от участка с большей упругостью водяного пара к участку с меньшей его упругостью. Упругость же зависит от температуры и влажности пород. Таким образом, если между различными участками горных пород появляется разница в температуре или влажности, возникает движение водяных паров. При одинаковой температуре движение направлено от более влажных частиц к менее влажным; при одинаковой влажности — от более к менее нагретым. Поэтому летом парообразная влага движется сверху вниз, а зимой — снизу вверх.

Гигроскопическая влага также передвигается в порах пород в виде водяного пара.

Движение воды в пленочном состоянии. По , движение воды в пленочном состоянии происходит под действием молекулярных сил и не подчиняется влиянию силы тяжести.

Рассмотрим движение пленочной воды на примере. Допустим, что мы имеем две одинаковые по диаметру частицы породы, соприкасающиеся между собой. Частица с центром О1 покрыта пленкой воды толщиной Р1, а вторая частица — более тонкой пленкой, толщиной Р2. Рассмотрим влияние частиц породы на частицу воды, расположенную в точке С. Легко убедиться, что расстояние О1С=R+P1 и оно больше, чем О2С=R+P2 т. е. частица 2 будет оказывать большее притяжение на частицу воды в точке С, чем частица породы с центром О1, В результате частица воды С перейдет на пленку, обволакивающую частицу породы 2. Движение частиц воды происходит до тех пор, пока толщина пленок на обеих частицах породы станет одинаковой.

Движение воды в виде просачивания. Просачивание в породах может происходить в виде отдельных струек и в виде сплошной массы воды. В первом случае отдельные струйки воды движутся самостоятельно, разрозненно. Вначале происходит смачивание частиц грунта, после чего под действием сил тяжести избыточная вода в виде гравитационной просачивается вниз.

Такой вид движения назвал свободным просачиванием. Второй вид движения наблюдается в случае, если породы насыщены водой полностью. Движение воды здесь происходит сверху вниз под действием силы тяжести. Этот вид движения влаги назван инфильтрацией.

Капиллярное движение имеет место как в верхней части зоны аэрации при просачивании и инфильтрации, так и над зеркалом грунтовых вод (в капиллярной зоне). В первом случае капиллярное движение происходит сверху вниз (капиллярное всасывание), во втором — снизу вверх <капиллярное поднятие).

В породах, насыщенных водой, т. е. в зоне насыщения, движение воды может происходить в двух формах:

1) ламинарного, при котором струйки воды текут параллельно, без перемешивания и

2) турбулентного, при котором происходит хаотическое движение частиц жидкости и интенсивное перемешивание ее слоев. Переход от ламинарного движения к турбулентному и обратно происходит при достижении определенной скорости частиц жидкости, называемой критической скоростью. Движение подземных вод в нескальных породах происходит по типу ламинарного.

Чтобы установить закономерности движения жидкости в породах, французский ученый X. Дарси в 1856 г. поставил несложный опыт, который заключался в следующем. В цилиндр, наполненный песком, наливали слой воды, поддерживая ее уровень постоянным. Вода после просачивания через песок выливалась через кран в нижней части цилиндра. В цилиндр были вставлены изогнутые трубки, так называемые пьезометры. Вода в них устанавливалась на различных уровнях (в верхнем пьезометре — выше) в связи с тем, что в процессе фильтрации через поры грунта вода преодолевала сопротивление и на это терялась часть напора.

В результате проведенных исследований Дарси установил, что количество воды, профильтровавшейся через песок в единицу времени (расход, О), прямо пропорционально разности уровней воды в пьезометрических трубках (∆Н=Н2Н1), площади поперечного сечения цилиндра (F) и некоторому коэффициенту пропорциональности (К) и обратно пропорционально высоте слоя песка (I). Оказалось, что коэффициент К зависит от свойств песка и его стали называть коэффициентом фильтрации (Кф). Эта зависимость получила название закона Дарен и обычно записывается в следующем виде (1):

(1)

Выражение

обозначают буквой / и называют напорным, градиентом или гидравлическим уклоном. Тогда можно записать

(2):

(«2») Если разделить обе части уравнения на F, то получим скорость фильтрации (υ) (2):

(3):

Таким образом, скорость фильтрации прямо пропорциональна коэффициенту фильтрации и напорному градиенту. Формула (3) представляет собой уравнение прямой линии, в связи с чем закон Дарси называют линейным законом фильтрации.

Если в выражении (3) принять I=1, что имеет место при уклоне, равном 45°, получим

(4):

т. е. коэффициент фильтрации — это та скорость просачивания, которую имел бы поток при уклоне, равном единице.

Не следует при этом смешивать скорость фильтрации со скоростью движения частиц воды. Дело в том, что Дарси при расчетах принимал площадь поперечного сечения потока (F) равной сечению цилиндра, тогда как в действительности вода передвигалась в породе только по порам. Чтобы получить действительную скорость (и) движения подземных вод в порах грунта, необходимо расход воды разделить на площадь поперечного сечения и пористость грунта (n).

(5):

,

(6):

Это выражение показывает, что действительная скорость движения подземных вод больше скорости фильтрации, так как величина пористости всегда меньше единицы.

Необходимо заметить, что коэффициент фильтрации выражают в м/сут, хотя в некоторых случаях применяют см/с и км/год.

Если движение подземных вод происходит в крупных пустотах горных пород, то оно становится турбулентным и подчиняется нелинейному закону фильтрации, который выражается уравнением ШезиКраснопольского

(7):

Таким образом, скорость фильтрации при турбулентном движении пропорциональна коэффициенту фильтрации и напорному градиенту в степени ½


2. Движение подземных вод в водоносных пластах. Определение скорости движения подземных вод

Для определения направления движения подземных вод используют карты гидроизогипс, на которых в виде изолиний показан «рельеф» зеркала грунтовых вод. Перпендикуляры к гидроизогипсам, направленные в сторону снижения отметок, называются линиями тока, показывающими направление движения грунтовых вод.

По взаимному расположению гидроизогипс и линий тока потоки грунтовых вод разделяют на плоские и радиальные (рис. 3).В плоском потоке гидроизогипсы в плане имеют вид параллельных прямых и линии тока при пересечении с ними образуют сеть прямоугольников. Плоский поток может иметь место в междуречьях; между рекой и дреной, текущими параллельно; в случае дренирования грунтовых вод горизонтальными выработками (канавами, штольнями).

(«3») В радиальном потоке гидроизогипсы представляют соб»й систему кривых линий, а линии тока имеют вид радиусов. Наиболее наглядным примером радиального потока может быть приток воды в колодец или скважину во время интенсивного водоотбора. Радиальный поток может быть расходящимся (например, возле излучины реки) и сходящимся (к водозабору). При расходящемся потоке ширина его по направлению движения увеличивается, а при сходящемся, наоборот, уменьшается.

График изменения содержания ионов хлора в подземных водах при определении действительной скорости потока

Скорость движения подземных вод можно определить несколькими способами. Один из них основан на введении в воду поваренной соли. На некотором расстоянии от опытной скважины (шурфа или колодца) проходят наблюдательную скважину, которую закладывают ниже по направлению движения подземных вод. Перед началом опыта определяют содержание хлора в опытной и наблюдательной выработках. Затем в опытную выработку вводят раствор поваренной соли, в котором концентрация ионов хлора в 2000 раз выше, чем в подземных водах. Естественно, время ввода соли (t1) необходимо отметить. Через каждые 10 мин из наблюдательной скважины отбирают пробы воды и при помощи азотнокислого серебра определяют содержание хлора. Данные анализов наносят на график (рис, 3) и находят время прохождения пика (t2). Действительная скорость

(8)

Где l — расстояние между выработками, м.

Этот способ очень удобен, но применение его невозможно при естественном содержании хлора в воде свыше 500—600 мг/л и при резких неровностях водоупорного слоя. В первом случае анализами трудно определить изменения содержания хлора, во втором — более тяжелый, чем вода, раствор поваренной соли может задержаться в понижениях водоупора.

Можно также применять органические красители, присутствие которых в воде обнаруживается при ничтожно малых концентрациях (до 10-6 %). Для этого применяют флуоресцеин, имеющий при слабых концентрациях зеленовато-желтый цвет, метиленовый синий краситель и др. Для определения содержания красителя в воде используют флюороскоп — набор стеклянных трубок с разной концентрацией красителя. Сравнивая цвет воды в отобранных пробах с цветом трубок-эталонов, легко и быстро можно определить содержание красителя в пробе воды. Затем строят график изменения во времени содержания красителя в воде и аналогично вышеописанному способу определяют скорость движения подземных вод.

Скорость движения подземных вод можно определять и электролитическим способом. Для этого в опытную скважину вводят электролит (обычно хлористый аммоний) и следят за изменением электропроводимости между опытной и наблюдательной скважинами. Для этой цели используют миллиамперметр, по данным которого строят график изменения силы тока во времени.

Новейшие достижения физики и химии позволяют использовать «меченные атомы» — изотопные индикаторы. Высокая чувствительность и простота радиоактивных измерений позволяют фиксировать минимальное количество изотопов в подземных водах.


3. Установившееся и неустановившееся движение подземных вод. Методы моделирования фильтрации

Установившимся считается движение подземных вод, при котором уровни и все другие элементы водного потока являются постоянными во времени. Если же уровни воды в одних и тех же точках изменяются во времени, то такое движение называется неустановившимся.

Большинство расчетных формул по динамике подземных вод основано на допущении, что условия питания и дренирования подземных вод постоянны. В действительности эти условия могут изменяться в зависимости от естественных или искусственных причин. К естественным причинам относятся изменения количества атмосферных осадков и величины испарения, таянье снега, паводки. Среди искусственных причин большое значение имеют водозаборы, орошение, строительство водохранилищ и т. п.

Если водоносный пласт на всем своем протяжении имеет одинаковый литологический состав, то он называется однородным. Если же литологический состав водоносного пласта изменяется в горизонтальном или в вертикальном направлении (что встречается в природе гораздо чаще), то водоносный пласт называется неоднородным.

Для моделирования фильтрации в основном используются гидравлическая и электрическая аналогии, реализуемые на сплошных и сеточных моделях.

Сплошные гидравлические модели, представленные фильтрационными лотками различных видов, в гидрогеологических расчетах применяются редко.

В развитии методов моделирования фильтрации подземных вод основная роль принадлежит сплошным и сеточным электрическим моделям, основанным на использовании метода электрогидродинамических аналогий (ЭГДА), сущность которого наглядно представляется сопоставлением основных законов движения фильтрационного потока и электрического тока:

закон Дарси и закон Ома

и (9)

где Q — расход; F — площадь поперечного сечения потока; Н — напор; х-—расстояние;I— сила тока; с — удельная проводимость, ; р — удельное сопротивление; площадь поперечного сечения проводника; U — электрический потенциал, l — длина проводника.

Приведенная формула закона Ома получена путем несложных преобразований

(«4») ; (10)

где R — сопротивление.

Идентичность записи законов Дарси и Ома очевидна. В них соответствуют физические характеристики — коэффициент фильтрации Кф и удельная проводимость с (физическое подобие), силовые характеристики — напор Н и потенциал U(динамическое подобие) и, наконец, расход потока Q и сила тока (кинематическое подобие).

На сплошных моделях ЭГДА фильтрационный поток моделируется сплошным электрическим полем, геометрически подобным. Для этого применяются электропроводная бумага и электролиты. Электропроводная бумага изготавливается с удельным сопротивлением от 100 до Ом/см, в зависимости от количества содержащихся в ней сажи и графита.

Участки поля с различной проницаемостью пород моделируются кусками бумаги различной удельной проводимости. Между собой участки модели скрепляются специальным электропроводным клеем.

Электролиты также широко используются в качестве материала модели и обычно представляют собой растворы солей, причем наибольшее распространение получили водные растворы поваренной соли и медного купороса. Кроме того, можно использовать электропроводные краски, клеи, электропроводный картон, гипс и т. д.

Определение приведенного потенциала на моделях ЭГДА производится с помощью мостовой измерительной схемы.

При составлении сеточных моделей поток разбивается на отдельные блоки, центры которых связываются электрическими резисторами. В таких моделях геометрическое подобие модели и объекта не сохраняется.


4. Приток воды к водозаборным сооружениям

Среди водозаборных сооружений мы будем рассматривать такие горные выработки, как дрены (канавы) и скважины. В гидрогеологии горные выработки разделяют на совершенные и несовершенные.

Гидродинамически совершенной называется горная выработка, вскрывающая водоносный горизонт от кровли до подошвы.

Рис. 1. Схемы совершенной (а) и несовершенной (б, в) выработок

Приток воды к ней происходит по всей поверхности соприкосновения стенок выработки с водоносным горизонтом (рис. 1, а). Если же выработка не доходит до водоупора, она называется несовершенной по степени вскрытия водоносного горизонта (рис. 1, б). Зачастую выработки закрепляются от обрушения, цементируются скважины оборудуются обсадными трубами, фильтрами и т. п. Естественно, что приток воды в такие выработки затруднен и их называют несовершенными по характеру вскрытия водоносного горизонта. Основные уравнения притока воды к водозаборам (скважинам и дренам) будем выводить при условии совершенства выработок.

Представим себе плоский поток грунтовых вод. Гидравлический градиент I в данном случае равен

(11)

где х — расстояние между сечениями h1 и h2

Если мы будем сближать сечения h1 и h2 так, чтобы расстояние между ними стало равно нулю, то получим уклон (гидравлический градиент) в точке а, который равен тангенсу угла наклона зеркала грунтовых вод или первой производной

(12)

Подставив полученное выражение гидравлического уклона в выражение закона Дарси (21), получим для безнапорных вод

(«5») (13)

для напорных вод

(14)

где H —напор, отсчитываемый от подошвы водоносного пласта до его пьезометрического уровня.

4.1 Приток безнапорных вод в совершенную горизонтальную дрену (канаву)

После устройства дрены скорость движения воды в ней увеличивается и уровень воды понижается на величину S, которую в гидрогеологии принято называть величиной понижения. Иными словами, величина понижения представляет собой разницу между статическим и динамическим уровнями. Мощность водоносного горизонта до понижения обозначим через H, глубину воды в дрене — через ho. В результате понижения уровня в дрене в водоносном горизонте образуется депрессионная воронка, показанная на рис. 50 сплошной жирной линией. Расстояние R, на которое сказывается влияние понижения, называют радиусом влияния.

Для расчета притока воды в дрену Q выбираем на расстоянии х от стенки дрены сечение с напором к, которое находится в интервале от нуля до R.

В общем виде приток воды в дрену будет равен выражению (13). Подставим сюда величину площади фильтрации

(15)

где В — длина дрены. Получим

(16)

При расчете притока воды в дрену удобно пользоваться понятием единичного притока д, т. е. притока воды на единицу длины дрены

(17)

Отсюда элементарная формула для расчета притока воды

(18)

Разделим переменные в выражении (18), т. е. умножим обе его части на и проинтегрируем

(19)

В результате получим

(20)

(21)

(«6») (22)

Формула (22) выражает величину единичного притока с одной стороны дрены. Для получения полного притока воды в дрену необходимо умножить единичный приток на два, а затем — на длину дрены. Приток воды в торцы дрены обычно не учитывают, так как он при большой длине дрены составляет ничтожную долю.

По формуле (22) можно рассчитать расход плоского грунтового потока. Подставив вместо радиуса влияния расстояние между сечениями, равное I, получим

(23)

Выражение можно записать так

(24)

т. е. единичный расход равен

(25)

а полный расход составит

(26)

Исследуя выражение (22), мы сможем решить одну из весьма важных задач в гидрогеологических расчетах — вывести уравнение депрессионной кривой. Построение депрессионной кривой необходимо при возникновении угрозы затопления подземными водами котлованов, подвалов зданий и т. п..

Изменив пределы интегрирования в выражении (20) по X от 0 до х, а по У от h0 до h К получим

(27)

Естественно, что приток воды в выражениях (22) и (27) одинаков, т. е.

(28)

Решаем (28) относительно h

(29)

Для построения депрессионной кривой мы задаемся величиной hо в зависимости от 5, мощность водоносного горизонта H легко получить по данным бурения, величину радиуса влияния можно найти по эмпирическим формулам (об этом мы поговорим позже).

На миллиметровой бумаге строим разрез через дрену и котлован (рис. 52) и, задаваясь разными значениями х(хи x2,.. хп), например 10, 20, 30 и т. д. метров, получаем величины h(h, h2. hп). Соединив полученные точки плавной линией, получим кривую депрессии. Если она проходит через котлован, строят новую кривую, задавшись большей величиной понижения и, естественно, меньшим значением глубины воды в дрене. Построение производят до тех пор, пока депрессионная кривая не опустится ниже дна котлована.

4.2 Расчет притока грунтовых вод в скважину

(«7») Здесь мы имеем дело не с плоским потоком, как в предыдущем примере, а с радиальным. На рис. 10 показаны все обозначения, которые нам ясны из предыдущей задачи, кроме г — радиуса скважины.

Расчет начинаем с уравнения (13). Площадь притока воды равна площади боковой поверхности цилиндра, радиус которого равен х, т. е.

(30)

(31)

Разделяем переменные (т. е. умножаем обе части уравнения на ) и интегрируем

(32)

Интегрирование по х производим не от нуля, а от r — стенки скважины, в результате получаем формулу Дюпюи

(33)

(34)

Рис. 2. Схема притока грунтовых вод в совершенную скважину

В таком виде использовать выражение (2) не совсем удобно, так как в нем присутствует натуральный логарифм. Подставим вместо него десятичный (1nх = 2,30 lgх), а вместо л его значение и получим более удобное выражение для расчета притока безнапорных вод в скважину:

(35)

Выражение можно видоизменить:

(36)

И, подставив его в зависимость 54), получим

(37)

Для построения депрессионной кривой возвращаемся к (35) и изменяем пределы интегрирования: по X от r до х а по Y от h0 до h:

(38)

(39)

(«8») (40)

Решаем равенство относительно h и получаем уравнение кривой депрессии

(41)

4.3 Расчет притока напорных вод в совершенную дрену

Площадь фильтрации в сечении h, расположенном на расстоянии х от стенки дрены, будет равна

(42)

Мы здесь снова не учитываем приток воды через торцы дрены. Подставляем площадь в (43):

(43)

Переходим к единичному расходу

(44)

Разделяя переменные и интегрируя, получим

(45)

(46)

(47)

Выражение (47) представляет собой единичный приток артезианских вод в один из бортов канавы. Полный приток составит

(48)

Если нам необходимо получить уравнение депрессионной кривой, то (43) нужно проинтегрировать по Х от 0 до ж, а по Y от hо до h:

(49)

(50)

(51)

(«9») Решаем уравнение (51) относительно h:

(52)

Анализируя выражение (52), мы видим, что это уравнение прямой линии. На самом деле депрессионная кривая криволинейна.


4.4 Расчет притока артезианских вод в скважину

В выражение (14) подставляем величину площади фильтрации, которая равна

(53)

(54)

Разделяя переменные и интегрируя по X от r до Н, а по Y от до Н, получим

(55)

(56)

(57)

Переведем натуральный логарифм в десятичный и подставим значение я. Получим выражение для расчета притока артезианских вод в совершенную скважину:

(58)

Для расчета кривой депрессии возвратимся к (55) и сменим пределы интегрирования: по X от r до х,а по Y от до h:

(59)

Выражения (57) и (59) равны:

(60)

(61)

т. е. мы снова имеем уравнение прямой линии, хотя в природных условиях депрессионная воронка в разрезе имеет вид кривой.

(«10») Все вышеприведенные формулы крайне просты и могут служить лишь для приблизительных расчетов. В гидрогеологической практике применяются формулы, учитывающие уклоны водоупоров, неоднородность в водопроницаемости слоев, поправки на несовершенство скважин, на неустановившееся движение и т. д.

Понятие о дебите и удельном дебите.

Дебит (по-фр.— сбыт, расход) — количество воды, нефти, газа, даваемое источником, колодцем, скважиной за единицу времени. Единицами измерения дебита для подземных вод являются м3/с или м3/сут, для нефти — т/сут. Удельный дебит получают при делении величины дебита на величину понижения уровня

(62)

и обычно измеряют м2/сут.


5. Методы определения коэффициента фильтрации горных пород. Определение радиуса влияния

Как видно из приведенных в предыдущем параграфе формул, в большинстве из них присутствуют величины коэффициента фильтрации и радиуса влияния, на методах определения которых мы и остановимся.

Определение коэффициента фильтрации горных пород можно проводить на основании использования эмпирических формул, лабораторных данных и полевых опытов.

Эмпирические формулы позволяют быстро определить коэффициент фильтрации горных пород на основании данных об их пористости и механического состава. Однако эти формулы дают лишь приблизительные представления о водопроницаемости пород и могут быть использованы только при предварительных расчетах.

Для определения коэффициента фильтрации песков с эффективным диаметром частиц, равным от 0,1 до 3,0 мм, и при коэффициенте неоднородности менее 5,0 можно применять формулу Хазена

, м/сут, (63)

где С—эмпирический коэффициент, равный, по О. К. Ла-нге,

(64)

п — пористость породы, %;

эффективный диаметр частиц, мм; — температура воды, °С.

Для определения эффективного диаметра и коэффициента-неоднородности необходимо построить интегральную (суммарную) кривую механического состава. Обычно результаты анализов механического состава лаборатория выдает в виде стандартной таблицы (табл. 1). Для построения суммарной кривой необходимо знать суммарные содержания фракций диаметром менее 0,005; 0,01; 0,05; 0,1; 0,25 и т. д. мм. Для этого в таблице справа налево мы суммируем содержания фракций и записываем ниже (под содержанием фракций, %).


источники:

http://www.bestreferat.ru/referat-223491.html

http://pandia.ru/text/78/570/26477.php