Уравнение волны в комплексном виде

Связь групповой и фазовой скорости.

Лекция 5: Механические волны

План:

1. Длина волны и волновое число.

2. Вывод уравнения плоской бегущей волны.

3. Уравнение плоской бегущей волны в комплексном виде.

4. Разность фаз колебаний.

6. Фазовая и скорость.

7. Групповая скорость.

8. Связь фазовой и групповой скорости.

9. Нахождение групповой скорости методом Эренфеста.

10. Уравнение сферической волны.

11. Вывод уравнения стоячей волны.

12. Координаты узлов и пучностей.

13. Энергия волн.

Длина волны и волновое число

Длиной волны – называют расстояние между ближайшими точками, колеблющимися в одинаковой фазе.

Формулы длины волны легко получить из аналогии по формуле пути:

(1)

(2)

Если период равен , (3)

то (4)

Если из (2) выразить период и приравнять его к (3), получим:

получим (5)

Или (6)

Физический смысл отношения заключается в том, что оно показывает сколько длин волн умещается в единицах длины. Отношение обозначается и называется волновым числом, т.е.

(7)

Вывод уравнения плоской бегущей волны

Бегущие волны – волны, которые переносят в пространстве энергию.

Плоские волны – волны, волновые поверхности которых – есть совокупность параллельных плоскостей, перпендикулярных направлению распространения волны.

Лучи в этом случае – параллельные прямые, совпадающие с направлением скорости распространения волны.

Пусть плоская бегущая волна распространяется вдоль оси X, т.е. вдоль одного направления из точки А в точку В как показано на рисунке:

Пусть источник колебаний в начальный момент времени находится в точке О.

Запишем уравнение колебания:

(8)

Рассмотрим распространение волны от точки М до точки В. Из рисунка видно, что время , затраченное на этот путь равно , где — это время, за которое волна распространилась от источника колебаний до точки М.

Перейдем от уравнения колебаний к уравнению плоской бегущей волны:

(9)

(10)

Т.к. за время волна распространилась на расстояние , тогда

(11)

(12)

(13)

Будем считать начальную фазу .

Тогда согласно уравнению (6), получаем: (14)

Если в уравнении (14) , а , то получим четвертый вид уравнения плоской бегущей волны (при ):

первый вид уравненияплоской бегущей волны
второй вид уравненияплоской бегущей волны
третий вид уравненияплоской бегущей волны
четвертый вид уравненияплоской бегущей волны

— смещение точек среды с координатой x в момент времени t.

Уравнение плоской бегущей волны в комплексном виде.

Уравнение плоской бегущей волны можно представить в комплексном виде, используя формулу Эйлера:

(15)

Если , то

(16)

Т.к. физический смысл имеет только реальная часть, получаем:

, (17)

Получаем уравнение плоской бегущей волны комплексном виде:

(18)

— уравнения плоскойбегущей волны в комплексном виде

Разность фаз колебаний

Фаза рассчитывается из определения углового перемещения:

(19)

(20)

(21)

Виды волн

Основное свойство всех волн – перенос частицами среды энергии без переноса вещества.

Различают продольные и поперечные волны.

Волны, в которых частицы среды колеблются вдоль их распространения, называются продольными.

Волны, в которых частицы среды колеблются в плоскостях, перпендикулярных к направлению распространения волны, называются поперечными.

Продольные волны распространяются в жидкостях и газах

В твердой среде возникают как продольные, так и поперечные

Фазовая скорость

Пусть в волновом процессе фаза = const, т.е.

(22)

(23)

После дифференцирования, получим:

(24)

или (25)

Вывод: скорость распространения волны есть скорость перемещения фазы волны, поэтому ее называют фазовой скоростью и обозначают: :

Т.к. , отсюда (26)

Дисперсией называется зависимость фазовой скорости в среде от частоты распространение волн (дисперсия всегда связана с поглощением энергии средой)

Групповая скорость

Рассмотрим простейшую группу волн, которая получается при наложении двух плоских волн с одинаковыми амплитудами и близкими частотами и близкими волновыми числами :

(27)

Это волна отличается от гармонической тем, что ее амплитуда есть медленно изменяющаяся функция координаты от времени, т.е. является негармонической.

(28)

— амплитуда группы волн

Групповая скорость– скорость распространения группы волн,

Групповая скорость– скорость максимума огибающей группы волн или скорость движения центра волнового пакета.

Из условия (29)

получим: (30)

(31)

— групповая скорость

Связь групповой и фазовой скорости.

Групповая скорость определяется выражением:

(32)

Определим отдельно выражения для и :

1) — ?

Из выражения выразим угловую скорость: (33)

Продифференцируем это выражение по k: (34)

2) — ?

Выражения продифференцируем по :

или (35)

Подставим выражения (34) и (35) в выражение для групповой скорости (32), получим:

(36)

(37)

(38)

— связь фазовой и групповой скорости

Из (38) следует, что может быть как больше, так и меньше фазовой в зависимости от знака .

Если в среде не наблюдается дисперсия волн, то , тогда фазовая и групповая скорости совпадают .

Понятие групповой скорости очень значимо, т.к. именно она фигурирует при измерении дальности радиолокации, в управлении космическими объектами.

Но , а для ограничений нет.

9. Нахождение групповой скорости методом Эренфеста

Зависимость групповой скорости от длины волны позволяет определить значение групповой скорости.

Для этого нужно провести касательную к точке с координатами и . Можно найти отрезок, отсекаемый касательной на оси ординат, равный значению групповой скорости.

Плоская волна

Определение и основные понятия плоской волны

Пусть источником волн в бесконечной упругой среде является бесконечно большая пластина. Она совершает колебания вдоль оси X, плоскость пластины перпендикулярна оси X (рис.1).

Пластина совершает гармонические колебания. Введем следующие обозначения: $s_0$ — смещение точек пластины AB и примыкающих к ней частиц среды от положения равновесия; $A_0$ — амплитуда колебаний пластины; $\varphi $ — фаза колебаний; $\omega $ — циклическая частота колебаний. Уравнение колебаний пластины имеет вид:

В таком случае в среде распространяется гармоническая волна такой же частоты. Если среда является однородной и изотропной, то колебания всех частиц вещества на одинаковых расстояниях от пластины идентичны (совпадают амплитуды и начальные фазы колебаний). То есть волновые поверхности имеют вид параллельных плоскостей, которые перпендикулярны оси X (направлению волны). Данные волны называют плоскими.

Волны, волновые поверхности которых представляют собой плоскости, называют плоскими.

Уравнение плоской волны

Колебания в точках среды, находящихся на расстоянии $x$ от плоскости AB отстают по фазе от колебаний источника на величину $kx$:

при отсутствии рассеяния энергии волны в веществе $A$=$A_0$. $k=\frac<2\pi ><\lambda >\ $- волновое число.

Для точек пространства находящихся правее плоскости AB $x>0$, для точек находящихся левее этой плоскости $x Пример 1

Задание: Плоская гармоническая волна распространяется по прямой, которая совпадает с осью X, в положительном направлении оси. Среда энергию не поглощает. Скорость распространения волны равна $v$. Амплитуда волны $A.$ Две точки, которые находятся на расстояниях $x_1\ и\ x_2$ от источника волны совершают колебания с разностью фаз $\Delta \varphi =\frac<3\pi ><5>$. Какова длина волны? Запишите уравнение волны.

Решение: Запишем уравнение плоской волны:

Фазы колебаний двух точек в этой волне равны:

\[<\varphi >_1=\omega t-kx_1+\varphi ;;\ <\varphi >_2=\omega t-kx_2+\varphi \left(1.3\right).\]

Найдем их разность:

\[\Delta \varphi =\omega t-kx_2+\varphi -\left(\omega t-kx_1+\varphi \right)=k\left(x_2-x_1\right)=\frac<2\pi ><\lambda >\left(x_2-x_1\right)\left(1.4\right).\]

Выразим длину волны ($\lambda $) из (1.4):

Для написания уравнения волны через известные из условий задачи величины используем формулу:

Можем записать уравнение волны:

Задание: В однородном упругом веществе имеется плоская стоячая волна вида: $s=A<\cos (\omega t)\ ><\cos (kx)\ >$. Нарисуйте графики зависимости $s\left(x\right)$ при $t=0$ и $t=\frac<2>$, где $T$ — период колебаний.

Уравнение волны в комплексном виде

Уравнения плоской и сферической волн

Уравнением волны называется выражение, которое дает смещение колеблющейся точки как функцию ее координат (x, y, z) и времени t.

.(5.2.1)

Эта функция должна быть периодической как относительно времени, так и координат (волна – это распространяющееся колебание, следовательно периодически повторяющееся движение). Кроме того, точки, отстоящие друг от друга на расстоянии l, колеблются одинаковым образом.

Уравнение плоской волны

Найдем вид функции x в случае плоской волны, предполагая, что колебания носят гармонический характер.

Направим оси координат так, чтобы ось x совпадала с направлением распространения волны. Тогда волновая поверхность будет перпендикулярна оси x. Так как все точки волновой поверхности колеблются одинаково, смещение x будет зависеть только от х и t: . Пусть колебание точек, лежащих в плоскости , имеет вид (при начальной фазе )

(5.2.2)

Найдем вид колебания частиц в плоскости, соответствующей произвольному значению x. Чтобы пройти путь x, необходимо время .

Следовательно, колебания частиц в плоскости x будут отставать по времени на t от колебаний частиц в плоскости , т.е.

,(5.2.3)

– это уравнение плоской волны.

Таким образом, x есть смещение любой из точек с координатой x в момент времени t. При выводе мы предполагали, что амплитуда колебания . Это будет, если энергия волны не поглощается средой.

Такой же вид уравнение (5.2.3) будет иметь, если колебания распространяются вдоль оси y или z.

В общем виде уравнение плоской волны записывается так:

, или .(5.2.4)

Выражения (5.2.3) и (5.2.4) есть уравнения бегущей волны.

Уравнение (5.2.3) описывает волну, распространяющуюся в сторону увеличения x. Волна, распространяющаяся в противоположном направлении, имеет вид:

.

Уравнение волны можно записать и в другом виде.

Введем волновое число , или в векторной форме:

,(5.2.5)

где – волновой вектор, – нормаль к волновой поверхности.

Так как , то . Отсюда . Тогда уравнение плоской волны запишется так:

.(5.2.6)

Уравнение сферической волны

В случае, когда скорость волны υ во всех направлениях постоянна, а источник точечный, волна будет сферической.

Предположим, что фаза колебаний источника равна wt (т.е. ). Тогда точки, лежащие на волновой поверхности радиуса r, будут иметь фазу . Амплитуда колебаний здесь, даже если волна не поглощается средой, не будет постоянной, она убывает по закону . Следовательно, уравнение сферической волны:

, или ,(5.2.7)

где А равна амплитуде на расстоянии от источника равном единице.

Уравнение (5.2.7) неприменимо для малых r, т.к. при , амплитуда стремится к бесконечности. То, что амплитуда колебаний , следует из рассмотрения энергии, переносимой волной.


источники:

http://www.webmath.ru/poleznoe/fizika/fizika_82_ploskaja_volna.php

http://ens.tpu.ru/POSOBIE_FIS_KUSN/%D0%9A%D0%BE%D0%BB%D0%B5%D0%B1%D0%B0%D0%BD%D0%B8%D1%8F%20%D0%B8%20%D0%B2%D0%BE%D0%BB%D0%BD%D1%8B.%20%D0%93%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F%20%D0%B8%20%D0%B2%D0%BE%D0%BB%D0%BD%D0%BE%D0%B2%D0%B0%D1%8F%20%D0%BE%D0%BF%D1%82%D0%B8%D0%BA%D0%B0/05-2.htm