Уравнение высших степеней на егэ

Уравнения высших степеней и их решения
материал для подготовки к егэ (гиа) по алгебре (10 класс)

Уравнения высших степеней

Скачать:

ВложениеРазмер
uravnenie_vysshih.ppt603 КБ

Предварительный просмотр:

Подписи к слайдам:

Уравнения высших степеней. Попова Н.Ф. МАОУ «Лицей №3 им. А. С. Пушкина»

Методы решения уравнений: Замена уравнения h(f(x)) = h(g(x)) уравнением f(x) = g(x) Разложение на множители. Введение новой переменной. Функционально – графический метод. Подбор корней. Применение формул Виета.

Замена уравнения h(f(x)) = h(g(x)) уравнением f(x) = g(x) . Метод можно применять только в том случае, когда y = h(x) – монотонная функция, которая каждое свое значение принимает по одному разу. Если функция немонотонная, то возможна потеря корней.

Решить уравнение ( 3 x + 2 ) ²³ = (5x – 9) ²³ y = x ²³ возрастающая функция, поэтому от уравнения ( 3 x + 2 ) ²³ = (5x – 9) ²³ можно перейти к уравнению 3 x + 2 = 5x – 9 , откуда находим x = 5,5. Ответ: 5,5.

Разложение на множители. Уравнение f(x)g(x)h(x) = 0 можно заменить совокупностью уравнений f(x) = 0; g(x) = 0; h(x) = 0. Решив уравнения этой совокупности, нужно взять те их корни, которые принадлежат области определения исходного уравнения, а остальные отбросить как посторонние.

Решить уравнение x ³ – 7x + 6 = 0 Представив слагаемое 7x в виде x + 6x , получим последовательно: x ³ – x –6x + 6 = 0 x(x² – 1) – 6(x – 1) = 0 x(x – 1)(x + 1) – 6(x – 1) = 0 (x – 1)(x² + x – 6) = 0 Теперь задача сводится к решению совокупности уравнений x –1 = 0 ; x² + x – 6 = 0 . Ответ: 1, 2, – 3.

Введение новой переменной. Если уравнение y(x) = 0 удалось преобразовать к виду p(g(x)) = 0 , то нужно ввести новую переменную u = g(x) , решить уравнение p ( u ) = 0 , а затем решить совокупность уравнений g(x) = u 1 ; g(x) = u 2 ; … ; g(x) = u n , где u 1 , u 2 , … , u n – корни уравнения p(u) = 0 .

Решить уравнение Особенностью этого уравнения является равенство коэффициентов его левой части, равноудаленных от ее концов. Такие уравнения называют возвратными. Поскольку 0 не является корнем данного уравнения, делением на x ² получаем

Введем новую переменную Тогда Получаем квадратное уравнение Так как корень y 1 = – 1 можно не рассматривать. Получим Ответ: 2, 0,5.

Решите уравнение 6 (x ² – 4)² + 5(x² – 4)(x² – 7x +12) + ( x² – 7x + 12)² = 0 Данное уравнение может быть решено как однородное. Поделим обе части уравнения на (x² – 7x +12)² (ясно, что значения x такие, что x² – 7x +1 2=0 решениями не являются). Теперь обозначим Имеем Отсюда Ответ:

Функционально – графический метод. Если одна из функций у = f(x) , y = g(x) возрастает, а другая – убывает, то уравнение f(x) = g(x) либо не имеет корней, либо имеет один корень.

Решить уравнение Достаточно очевидно, что x = 2 – корень уравнения. Докажем, что это единственный корень. Преобразуем уравнение к виду Замечаем, что функция возрастает, а функция убывает. Значит, уравнение имеет только один корень. Ответ: 2.

Подбор корней Теорема1: Если целое число m является корнем многочлена с целыми коэффициентами, то свободный член многочлена делится на m . Теорема 2: Приведенный многочлен с целыми коэффициентами не имеет дробных корней. Теорема 3: Пусть – уравнение с целыми коэффициентами. где p и q – целые числа несократима, является корнем уравнения, то p есть делитель свободного члена a n , а q – делитель коэффициента при старшем члене a 0 . Если число и дробь

Теорема Безу. Остаток при делении любого многочлена на двучлен ( x – a ) равен значению делимого многочлена при x = a . Следствия теоремы Безу Разность одинаковых степеней двух чисел делится без остатка на разность этих же чисел; Разность одинаковых четных степеней двух чисел делится без остатка как на разность этих чисел, так и на их сумму; Разность одинаковых нечетных степеней двух чисел не делится на сумму этих чисел; Сумма одинаковых степеней двух не чисел делится на разность этих чисел; Сумма одинаковых нечетных степеней двух чисел делится без остатка на сумму этих чисел; Сумма одинаковых четных степеней двух чисел не делится как на разность этих чисел, так и на их сумму; Многочлен делится нацело на двучлен ( x – a ) тогда и только тогда, когда число a является корнем данного многочлена; Число различных корней многочлена, отличного от нуля, не более чем его степень.

Решить уравнение x ³ – 5x² – x + 21 = 0 Многочлен x ³ – 5x² – x + 21 имеет целые коэффициенты. По теореме 1 его целые корни, если они есть, находятся среди делителей свободного члена: ± 1, ± 3, ± 7, ± 21. Проверкой убеждаемся в том, что число 3 является корнем. По следствию из теоремы Безу многочлен делится на ( x – 3). Таким образом, x³– 5x² – x + 21 = (x – 3)(x²– 2x – 7) . Ответ:

Решить уравнение 2 x ³ – 5x² – x + 1 = 0 По теореме 1 целыми корнями уравнения могут быть только числа ± 1. Проверка показывает, что данные числа не являются корнями. Так как уравнение не является приведенным, то оно может иметь дробные рациональные корни. Найдем их. Для этого умножим обе части уравнения на 4: 8 x³ – 20x² – 4x + 4 = 0 Сделав подстановку 2 x = t , получим t³ – 5t² – 2t + 4 = 0 . По тереме 2 все рациональные корни данного приведенного уравнения должны быть целыми. Их можно найти среди делителей свободного члена: ± 1, ± 2, ± 4. В данном случае подходит t = – 1. Следовательно По следствию из теоремы Безу многочлен 2 x ³ – 5x² – x + 1 делится на ( x + 0,5): 2 x ³ – 5x² – x + 1 = ( x + 0,5)(2x² – 6x + 2) Решив квадратное уравнение 2 x² – 6x + 2 = 0 , находим остальные корни: Ответ:

Решить уравнение 6x ³ + x² – 11x – 6 = 0 По теореме 3 рациональные корни этого уравнения следует искать среди чисел Подставляя их поочередно в уравнение, найдем, что уравнению. Ими и исчерпываются все корни уравнения. Ответ: удовлетворяют

Формулы Виета. Для корней имеют место формулы : уравнения

Найти сумму квадратов корней уравнения x ³ + 3 x² – 7x +1 = 0 По теореме Виета Заметим, что откуда

Укажите, каким методом можно решить каждое из данных уравнений. Решите уравнения № 1, 4, 14, 15, 17.

Ответы и указания: 1. Введение новой переменной. 2. Функционально – графический метод. 3. Замена уравнения h(f(x)) = h(g(x)) уравнением f(x) = g(x) . 4. Разложение на множители. 5. Подбор корней. 6 Функционально – графический метод. 7. Применение формул Виета. 8. Подбор корней. 9. Замена уравнения h(f(x)) = h(g(x)) уравнением f(x) = g(x) . 10. Введение новой переменной. 11. Разложение на множители. 12. Введение новой переменной. 13. Подбор корней. 14. Применение формул Виета. 15. Функционально – графический метод. 16. Разложение на множители. 17. Введение новой переменной. 18. Разложение на множители.

1. Указание. Запишите уравнение в виде 4( x ²+17x+60)(x+16x+60)=3x² , Разделите обе его части на x² . Введите переменную Ответ: x 1 = – 8; x 2 = – 7,5. 4. Указание. Прибавьте к левой части уравнения 6 y и – 6 y и запишите его в виде ( y³ – 2y²) + (– 3y² + 6y) + (– 8y + 16) = (y – 2)(y² – 3y – 8) . Ответ:

14. Указание. По теореме Виета Так как – целые числа, то корнями уравнения могут быть только числа –1, – 2, – 3. Ответ: 15. Ответ: –1. 17. Указание. Разделите обе части уравнения на x ² и з апишите его в виде Введите переменную Ответ: 1; 1,5; 2; 3.

Самостоятельная работа. Решите уравнения: Вариант 1. Вариант 2.

Ответы. Вариант 1. Вариант 2.

По теме: методические разработки, презентации и конспекты

Способы решения уравнений высших степеней. 8 класс

Данную презентацию использую при решении уравнений высших степеней в 8 классе. Решать квадратные уравнения школьники научились по формулам, а если уравнение выше второй степени? Есть ли алгоритм.

Конспект урока. Тема: «Решение уравнений высших степеней» 8 класс

Полное описание урока. Как решать уравнения выше второго порядка? Есть ли алгоритм решения? На эти и другие вопросы отвечает данный материал.

Урок-защита проектов «Решение уравнений высших степеней» 9 класс

Конспект урока по алгебре в 9 классе «Решение уравнений высших степеней», на котором учащиеся защищали свои проекты.Презентации учащихся: Решение биквадратных уравнений, Решение возвратных уравнений, .

Методы решения уравнений высших степеней

Проект урока по алгебре в 11 классе.Составлен по УМК А.Г. Мордковича.

Методы решения уравнений высших степеней.Схема Горнера.

Методы решения уравнений высших степеней. Метод Горнера.

Методы решения уравнений высших степеней. Метод Горнера

Методы решения уравнений высших степеней. Метод Горнера.

Урок математики в 9 классе на тему «Способы решения уравнений высших степеней»

Данная тема является актуальной и важной при изучении математики, так как уравнения высших степеней составляют часть выпускных экзаменов, встречаются на вступительных экзаменах в вузы и являются неотъ.

Решение уравнений высших степеней

В общем случае уравнение, имеющее степень выше 4 , нельзя разрешить в радикалах. Но иногда мы все же можем найти корни многочлена, стоящего слева в уравнении высшей степени, если представим его в виде произведения многочленов в степени не более 4 -х. Решение таких уравнений базируется на разложении многочлена на множители, поэтому советуем вам повторить эту тему перед изучением данной статьи.

Чаще всего приходится иметь дело с уравнениями высших степеней с целыми коэффициентами. В этих случаях мы можем попробовать найти рациональные корни, а потом разложить многочлен на множители, чтобы потом преобразовать его в уравнение более низкой степени, которое будет просто решить. В рамках этого материала мы рассмотрим как раз такие примеры.

Уравнения высшей степени с целыми коэффициентами

Все уравнения, имеющие вид a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 = 0 , мы можем привести к уравнению той же степени с помощью умножения обеих частей на a n n — 1 и осуществив замену переменной вида y = a n x :

a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 = 0 a n n · x n + a n — 1 · a n n — 1 · x n — 1 + … + a 1 · ( a n ) n — 1 · x + a 0 · ( a n ) n — 1 = 0 y = a n x ⇒ y n + b n — 1 y n — 1 + … + b 1 y + b 0 = 0

Те коэффициенты, что получились в итоге, также будут целыми. Таким образом, нам нужно будет решить приведенное уравнение n-ной степени с целыми коэффициентами, имеющее вид x n + a n x n — 1 + … + a 1 x + a 0 = 0 .

Схема решения уравнения

Вычисляем целые корни уравнения. Если уравнение имеет целые корни, нужно искать их среди делителей свободного члена a 0 . Выпишем их и будем подставлять в исходное равенство по очереди, проверяя результат. Как только мы получили тождество и нашли один из корней уравнения, то можем записать его в виде x — x 1 · P n — 1 ( x ) = 0 . Здесь x 1 является корнем уравнения, а P n — 1 ( x ) представляет собой частное от деления x n + a n x n — 1 + … + a 1 x + a 0 на x — x 1 .

Подставляем остальные выписанные делители в P n — 1 ( x ) = 0 , начав с x 1 , поскольку корни могут повторяться. После получения тождества корень x 2 считается найденным, а уравнение может быть записано в виде ( x — x 1 ) ( x — x 2 ) · P n — 2 ( x ) = 0 .Здесь P n — 2 ( x ) будет частным от деления P n — 1 ( x ) на x — x 2 .

Продолжаем и дальше перебирать делители. Найдем все целые корни и обозначим их количество как m . После этого исходное уравнение можно представить как x — x 1 x — x 2 · … · x — x m · P n — m ( x ) = 0 . Здесь P n — m ( x ) является многочленом n — m -ной степени. Для подсчета удобно использовать схему Горнера.

Если у нас исходное уравнение имеет целые коэффициенты, мы не можем получить в итоге дробные корни.

У нас в итоге получилось уравнение P n — m ( x ) = 0 , корни которого могут быть найдены любым удобным способом. Они могут быть иррациональными или комплексными.

Покажем на конкретном примере, как применяется такая схема решения.

Условие: найдите решение уравнения x 4 + x 3 + 2 x 2 — x — 3 = 0 .

Решение

Начнем с нахождений целых корней.

У нас есть свободный член, равный минус трем. У него есть делители, равные 1 , — 1 , 3 и — 3 . Подставим их в исходное уравнение и посмотрим, какие из них дадут в итоге тождества.

При x , равном единице, мы получим 1 4 + 1 3 + 2 · 1 2 — 1 — 3 = 0 , значит, единица будет корнем данного уравнения.

Теперь выполним деления многочлена x 4 + x 3 + 2 x 2 — x — 3 на ( х — 1 ) в столбик:

Значит, x 4 + x 3 + 2 x 2 — x — 3 = x — 1 x 3 + 2 x 2 + 4 x + 3 .

Перебираем возможные делители дальше, но подставляем их в равенство x 3 + 2 x 2 + 4 x + 3 = 0 :

1 3 + 2 · 1 2 + 4 · 1 + 3 = 10 ≠ 0 ( — 1 ) 3 + 2 · ( — 1 ) 2 + 4 · — 1 + 3 = 0

У нас получилось тождество, значит, мы нашли еще один корень уравнения, равный — 1 .

Делим многочлен x 3 + 2 x 2 + 4 x + 3 на ( х + 1 ) в столбик:

x 4 + x 3 + 2 x 2 — x — 3 = ( x — 1 ) ( x 3 + 2 x 2 + 4 x + 3 ) = = ( x — 1 ) ( x + 1 ) ( x 2 + x + 3 )

Подставляем очередной делитель в равенство x 2 + x + 3 = 0 , начиная с — 1 :

— 1 2 + ( — 1 ) + 3 = 3 ≠ 0 3 2 + 3 + 3 = 15 ≠ 0 ( — 3 ) 2 + ( — 3 ) + 3 = 9 ≠ 0

Равенства, полученные в итоге, будут неверными, значит, у уравнения больше нет целых корней.

Оставшиеся корни будут корнями выражения x 2 + x + 3 .

D = 1 2 — 4 · 1 · 3 = — 11 0

Из этого следует, что у данного квадратного трехчлена нет действительных корней, но есть комплексно сопряженные: x = — 1 2 ± i 11 2 .

Уточним, что вместо деления в столбик можно применять схему Горнера. Это делается так: после того, как мы определили первый корень уравнения, заполняем таблицу.

x iкоэффициенты многочлена
112— 1— 3
111 + 1 · 1 = 22 + 2 · 1 = 4— 1 + 4 · 1 = 3— 3 + 3 · 1 = 0

В таблице коэффициентов мы сразу можем увидеть коэффициенты частного от деления многочленов, значит, x 4 + x 3 + 2 x 2 — x — 3 = x — 1 x 3 + 2 x 2 + 4 x + 3 .

После нахождения следующего корня, равного — 1 , мы получаем следующее:

x iкоэффициенты многочлена
1243
112 + 1 · ( — 1 ) = 14 + 1 · ( — 1 ) = 33 + 3 · ( — 1 ) = 0

Далее мы приходим к разложению x — 1 x + 1 x 2 + x + 3 = 0 . Потом, проверив оставшиеся делители равенства x 2 + x + 3 = 0 , вычисляем оставшиеся корни.

Ответ: х = — 1 , х = 1 , x = — 1 2 ± i 11 2 .

Условие: решите уравнение x 4 — x 3 — 5 x 2 + 12 = 0 .

Решение

У свободного члена есть делители 1 , — 1 , 2 , — 2 , 3 , — 3 , 4 , — 4 , 6 , — 6 , 12 , — 12 .

Проверяем их по порядку:

1 4 — 1 3 — 5 · 1 2 + 12 = 7 ≠ 0 ( — 1 ) 4 — ( — 1 ) 3 — 5 · ( — 1 ) 2 + 12 = 9 ≠ 0 2 4 · 2 3 — 5 · 2 2 + 12 = 0

Значит, x = 2 будет корнем уравнения. Разделим x 4 — x 3 — 5 x 2 + 12 на х — 2 , воспользовавшись схемой Горнера:

x iкоэффициенты многочлена
1— 1— 5012
21— 1 + 1 · 2 = 1— 5 + 1 · 2 = — 30 — 3 · 2 = 312 — 6 · 2 = 0

В итоге мы получим x — 2 ( x 3 + x 2 — 3 x — 6 ) = 0 .

Проверяем делители дальше, но уже для равенства x 3 + x 2 — 3 x — 6 = 0 , начиная с двойки.

2 3 + 2 2 — 3 · 2 — 6 = 0

Значит, 2 опять будет корнем. Разделим x 3 + x 2 — 3 x — 6 = 0 на x — 2 :

x iкоэффициенты многочлена
11— 3— 6
211 + 1 · 2 = 3— 3 + 3 · 2 = 3— 6 + 3 · 2 = 0

В итоге получим ( x — 2 ) 2 · ( x 2 + 3 x + 3 ) = 0 .

Проверка оставшихся делителей смысла не имеет, поскольку равенство x 2 + 3 x + 3 = 0 быстрее и удобнее решить с помощью дискриминанта.

Решим квадратное уравнение:

x 2 + 3 x + 3 = 0 D = 3 2 — 4 · 1 · 3 = — 3 0

Получаем комплексно сопряженную пару корней: x = — 3 2 ± i 3 2 .

Ответ: x = — 3 2 ± i 3 2 .

Условие: найдите для уравнения x 4 + 1 2 x 3 — 5 2 x — 3 = 0 действительные корни.

Решение

x 4 + 1 2 x 3 — 5 2 x — 3 = 0 2 x 4 + x 3 — 5 x — 6 = 0

Выполняем домножение 2 3 обеих частей уравнения:

2 x 4 + x 3 — 5 x — 6 = 0 2 4 · x 4 + 2 3 x 3 — 20 · 2 · x — 48 = 0

Заменяем переменные y = 2 x :

2 4 · x 4 + 2 3 x 3 — 20 · 2 · x — 48 = 0 y 4 + y 3 — 20 y — 48 = 0

В итоге у нас получилось стандартное уравнение 4 -й степени, которое можно решить по стандартной схеме. Проверим делители, разделим и получим в итоге, что оно имеет 2 действительных корня y = — 2 , y = 3 и два комплексных. Решение целиком здесь мы не будем приводить. В силу замены действительными корнями данного уравнения будут x = y 2 = — 2 2 = — 1 и x = y 2 = 3 2 .

Ответ: x 1 = — 1 , x 2 = 3 2

Советуем также ознакомиться с материалами, посвященными решению кубических уравнений и уравнений четвертой степени.

Об уравнениях высших степеней

Как правило в физике, информатике и экономике мы сталкиваемся с простейшими линейными, или дробно-рациональными уравнениями, реже с квадратными. А что до уравнений третьей и четвёртой степени? Если вам интересно, то прошу под кат.

Для начала рассмотрим понятие уравнения высшей степени. Уравнением высшей степени, называется уравнение вида:


В этой статье я рассмотрю:

1. Кубические уравнения.
2. Возвратные кубические.
3. Применение схемы Горнера и теоремы Безу.
4. Возвратные биквадратные уравнения.

Кубические уравнения

Кубические уравнения, это уравнения, в которых у неизвестной при старшем члене степень равна 3. Кубические уравнения имеют следующий вид:

Решать такие уравнения можно по разному, однако мы воспользуемся знаниями базовой школы, и решим кубическое уравнение методом группировки:

В данном примере используется метод группировки, группируем первые два и последние два члена, получая равные скобки, снова выносим, получая уравнение из двух скобок.

Произведение равно нулю тогда, и только тогда, если хотя бы один из множителей равен нулю, на основании этого мы каждый множитель (скобку) приравниваем к нулю, получая неполное квадратное и линейное уравнения.

Также стоит отметить, что максимальное количество корней уравнения, равно степени неизвестной при главном члене, так в кубическом уравнении может быть не более трёх корней, в биквадратном (4-ой степени) не более четырёх корней и. т. д.

Возвратные кубические уравнения

Возвратные кубические уравнения имеют вид:

Возвратными они называются потому что коэффициенты будут зеркально повторяться. Подобные уравнения тоже решаются школьными методами, но чуть хитрее:

Сначала производится группировка, потом при помощи формул сокращённого умножения мы раскладываем получаемое на множители. Снова получаем 2 равные скобки, «выносим их». Получаем два множителя (скобки) и решаем их как два различных уравнения.

Теорема Безу и схема Горнера

Теорема Безу была открыта, как ни удивительно, Этьеном Безу, французским математиком, занимавшимся в основном алгеброй. Теорему Безу, можно сформулировать следующим образом:

Давайте разберёмся. P(x) — это какой-либо многочлен от x, (x — a) — это двучлен в котором a — это один из целых корней уравнения, который мы находим среди делителей свободного члена.

Три точки, это оператор обозначающий что одно выражение делится на другое. Из этого следует что найдя хотя бы один корень данного уравнения, мы сможем применить к нему эту теорему. Но зачем нужна эта теорема, каково её действие? Теорема Безу — это универсальный инструмент, если вы хотите понизить степень многочлена. Например, при её помощи, кубическое уравнение, можно превратить в квадратное, биквадратное, в кубическое и т. д.

Но одно дело понять, а как поделить? Можно конечно, делить и в столбик, однако этот метод доступен далеко не всем, да и вероятность ошибиться очень высока. Поэтому есть и иной путь, это схема Горнера. Её работу я поясню на примере. Предположим:

И так, нам дан многочлен, и мы возможно заранее нашли один из корней. Теперь мы рисуем небольшую табличку из 6 столбцов и 2 строк, в каждый столбец первой строки (кроме первого), мы вносим коэффициенты уравнения. А в первый столбец 2 строки мы вносим значение a (найденный корень). Потом первый коэффициент, в нашем случае 5, мы просто сносим вниз. Значения последующих столбиков мы рассчитываем так:

(Картинка позаимствована здесь)
Далее поступаем точно так же и с остальными столбцами. Значение последнего столбца (2 строки) будет остатком от деления, в нашем случае 0, если получается число отличное от 0, значит надо избрать другой подход. Пример для кубического уравнения:

Возвратные биквадратные уравнения

Выше мы так же рассматривали возвратные кубические уравнения, а теперь разберём биквадратные. Их общий вид:

В отличие от кубического возвратного уравнения, в биквадратном пары, относительно коэффициентов, есть не у всех, однако в остальном они очень схожи. Вот алгоритм решения таких уравнений:

Как видно, решать такие уравнения совсем не просто. Но я всё равно разберу и этот случай. Начинается решение с деления всего уравнения на x^2. Далее мы группируем, здесь я специально ввёл дополнительную строку для ясности. После этого мы совершаем хитрость, и вводим в первую скобку 2, которую мы сначала прибавляем, а после вычитаем, сумма всё равно не изменится, зато теперь мы можем свернуть эту скобку в квадрат суммы.

Уберём -2 из скобки, предварительно домножив его на a, после чего вводим новую переменную, t и получаем квадратное уравнение.

А теперь перейдём к примеру:

Основная часть так же как и в обобщённом алгоритме, делим на x^2, группируем, сворачиваем в полный квадрат, выполняем подстановку переменной и решаем квадратное уравнение. После этого полученные корни подставляем обратно, и решаем ещё 2 квадратных уравнения (с умножением на x).

Область применения

В виду своей громоздкости и специфичности уравнения высших степеней редко находят себе применение. Однако примеры всё же есть, уравнение Пуассона для адиабатических процессов в Физике.


источники:

http://zaochnik.com/spravochnik/matematika/systems/reshenie-uravnenij-vysshih-stepenej/

http://habr.com/ru/post/484902/