Уравнение является нелинейным по переменным

Алгебра и начала математического анализа. 11 класс

Конспект урока

Алгебра и начала математического анализа, 11 класс

Урок №43.Нелинейные уравнения и неравенства с двумя переменными.

Перечень вопросов, рассматриваемых в теме:

  • уравнение и неравенство, способы их решения;
  • система уравнений, система неравенств;
  • изображение в координатной плоскости множество решений уравнений, неравенств, систем уравнений, систем неравенств и нахождение площади получившейся фигуры;

Глоссарий по теме

Уравнение вида ах + by +с =0, где а,b,с – некоторые числа, называется линейным уравнением с двумя переменными х и у.

Все уравнения, которые не являются линейными называются нелинейными.

Линейным неравенством с двумя переменными называется неравенство вида ах + bу + с 0, где х и у – переменные, а, b, c – некоторые числа.

Все неравенства, которые не являются линейными называются нелинейными.

Системой линейных неравенств с двумя переменными называется такая система неравенств, которая в своем составе имеет два и более линейных неравенств с двумя переменными.

Все системы неравенств, которые не являются линейными называются нелинейными.

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. Учебник: Алгебра 9 кл с углубленным изучением математики Мнемозина, 2014.

Открытые электронные ресурсы:

Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/.

Открытый банк заданий ЕГЭ ФИПИ, Элементы комбинаторики, статистики и теории вероятностей, базовый уровень. Элементы комбинаторики, статистики и теории вероятностей. Базовый уровень. http://ege.fipi.ru/.

Теоретический материал для самостоятельного изучения

Сегодня на уроке мы вспомним нелинейные уравнения и неравенства с двумя переменными; системы линейный уравнений и неравенств, а также научимся изображать множество на плоскости, задаваемое нелинейным уравнением и неравенством.

1.Линейные уравнения с двумя переменными.

Уравнение вида ах + by +с =0, где а,b,с – некоторые числа, называется линейным уравнением с двумя переменными х и у.

Все уравнения, которые не являются линейными называются нелинейными.

Например, нелинейные уравнения с двумя переменными. Уравнение с двумя переменными можно заменить равносильным уравнением, в котором правая часть будет нулем, а левая многочленом стандартного вида:

Нелинейные уравнения с двумя переменными изображаются на координатной плоскости различными фигурами, каждое уравнение нужно рассматривать индивидуально.

Найти множество точек координатной плоскости, удовлетворяющих уравнению:

Уравнение запишем в виде (х-у)(х+у) = 0, значит либо х-у=0, либо х

+у=0. Поэтому множество точек удовлетворяющих уравнению – пара пересекающихся прямых.

Преобразуем левую часть уравнения, используя метод выделения полного квадрата:

Сумма неотрицательных слагаемых равна 0 только в одном случае, когда оба слагаемых одновременно равны 0.

Это уравнение имеет единственное решение: х=2; у=-3. Поэтому множество точек удовлетворяющих уравнению – точка (2;-3).

Пусть на координатной плоскости Оху выбрана точка А(а;b), М(х;у) – произвольная точка этой плоскости, R- расстояние от точки М до точки А. Тогда , где R>0. Уравнение окружности с радиусом R и с центром в точке А(а;b).

Запишем уравнение в виде Множеством решения данного уравнения является окружность центром в точке (-1;4) и радиусом 3 единичных отрезка.

Рассмотрим примеры уравнений с двумя переменными, содержащих знак модуля:

Если то х+у=2 Множество решений этого уравнения часть прямой (отрезок АВ), где А(2;0), В(0;2)

Аналогично строятся отрезки в трех оставшихся координатных углах. (рисунок 1)

Рисунок 1 – графика

2.Нелинейные неравенства с двумя переменными.

Линейным неравенством с двумя переменными называется неравенство вида ах + bу + с 0, где х и у – переменные, а, b, c – некоторые числа.

Все неравенства, которые не являются линейными называются нелинейными.

Решением неравенства с двумя переменными называется пара значений переменных, обращающая его в верное равенство.

Если каждое решение неравенства с двумя переменными изобразить точкой в координатной плоскости, то получится график этого неравенства. Он является некоторой фигурой.

  1. Некоторые из таких неравенств можно привести к виду у f(x), а нижняя – графиком неравенства у 0 удовлетворяют все те точки, которые находятся от точки А на расстоянии меньшем R, те все точки и только они, расположенные внутри окружности с радиусом R и центром в точке А(а;b). Аналогично, множество решений неравенства есть множество точек , лежащих вне окружности.

Изобразите в координатной плоскости множества решений неравенства .

  1. Начертим график уравнения . Запишем уравнение в виде Множеством решения данного уравнения является окружность центром в точке (-1;4) и радиусом 3 единичных отрезка.
  2. Искомое множество решения неравенства – множество точек, лежащих на окружности и внутри окружности с центром в точке (-1;4) и радиусом 3 единичных отрезка.

3. Системы нелинейных уравнений с двумя переменными.

Система вида , где а,b,с,d,e,f – некоторые числа, называется линейной системой с двумя переменными х и у.

Все системы уравнений, которые не являются линейными называются нелинейными.

Пара значений переменных, обращающая каждое уравнение системы уравнений с двумя переменными в верное равенство называют решением системы.

Решить систему – значит найти множество ее решений.

Каждое решение уравнения с двумя переменными представляет координаты некоторой его точки его графика. Каждое решение системы есть координаты общих точек графиков уравнений системы. Построим графики этих уравнений и найдем координаты точек пересечения.
Например.

Решить систему уравнений

Первое уравнение системы задает параболу, второе – окружность с центром (-1;3) и радиусом . Окружность и парабола имеют две общие точки (0;1) (-1,3;5,3). Координаты второй точки приближенные (рисунок 2).

Рисунок 2 – решение системы

4. Системы нелинейных неравенств с двумя переменными.

Системой линейных неравенств с двумя переменными называется такая система неравенств, которая в своем составе имеет два и более линейных неравенств с двумя переменными.

Все системы неравенств, которые не являются линейными называются нелинейными.

Рассмотрим систему нелинейных неравенств с двумя переменными на примере:

Изобразить на координатной плоскости Оху фигуру Ф, заданную системой неравенств, и найти площадь фигуры:

Неравенство заменим равносильной системой которая задает множество точек, лежащих на полуокружности и вне ее. А неравенство заменим равносильной совокупностью систем или (рисунок 3)

Рисунок 3 – решение системы

  1. Найти множество точек координатной плоскости, удовлетворяющих уравнению .(рисунок 4)

График уравнения х^2 можно получить из окружности сжатием к оси х в 2 раза.

Рисунок 4 – график уравнения

Заметим, что фигуру, которая получается сжатием окружности к одному из ее диаметров, называют эллипсом.

  1. Уравнение вида — уравнение ромба , где точка (a;b) точка пересечения диагоналей; диагонали ромба соответственно равны .

Рассмотрим частный случай:

Если k=m, то диагонали ромба будут равны, значит заданная фигура – квадрат.

Примеры и разборы решений заданий тренировочного модуля

Графиком данного уравнения является парабола, показанная на рисунке.(рисунок 5)

Рисунок 5 – график

Изобразите в координатной плоскости множества решений неравенства (рисунок 6)

Начертим график уравнения . Графиком данного уравнения является парабола. Нижняя из образовавшихся областей является графиком неравенства

Проверим себя: Например, пара (0;0) является решением неравенства , и принадлежит нижней из образовавшихся областей, значит графиком неравенства 2х+3у Назад Вперёд

Эконометрика

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ

Кафедра экономико-метематических моделей

Тема 4. Множественная регрессия.

Вопросы

1. Нелинейная регрессия. Нелинейные модели и их линеаризация.

Нелинейная регрессия

При рассмотрении зависимости экономических показателей на основе реальных статистических данных с использованием аппарата теории вероятности и математической статистики можно сделать выводы, что линейные зависимости встречаются не так часто. Линейные зависимости рассматриваются лишь как частный случай для удобства и наглядности рассмотрения протекаемого экономического процесса. Чаще встречаются модели которые отражают экономические процессы в виде нелинейной зависимости.

Если между экономическими явлениями существуют не­линейные соотношения, то они выражаются с помощью со­ответствующих нелинейных функций.

Различают два класса нелинейных регрессий:

    регрессии, нелинейные относительно включенных в анализ объясняющих пе­ременных, но линейные по оцениваемым параметрам: регрессии, нелинейные по оцениваемым параметрам.

Нелинейные регрессии по включаемым в нее объясня­ющим переменным, но линейные по оцениваемым пара­метрам

Данный класс нелинейных регрессий включает уравне­ния, в которых зависимая переменная линейно связана с параметрами. Примером могут служить:

полиномы разных степеней

(полином k-й степени)

и равносторонняя гипербола

.

При оценке параметров регрессий нелинейных по объясняю­щим переменным используется подход, именуе­мый «замена переменных». Суть его состоит в замене «нели­нейных» объясняющих переменных новыми «линейными» переменными и сведение нелинейной регрессии к линейной регрессии. К новой «преобразованной» регрессии может быть приме­нен обычный метод наименьших квадратов (МНК).

Полином любого порядка сводится к ли­нейной регрессии с ее методами оценивания параметров и проверки гипотез.

Среди нелинейной полиноминальной регрессии чаще всего используется парабола второй степени; в отдельных случаях — полином третьего порядка. Ограничение в ис­пользовании полиномов более высоких степеней связаны с требованием однородности исследуемой совокупности: чем выше порядок полинома, тем больше изгибов имеет кривая и, соответственно, менее однородна совокупность по резуль­тативному признаку.

Равносторонняя ги­пербола, для оценки параметров которой используется тот же подход «замены переменных» (1/x заменяют на переменную z) хорошо известна в эконометрике.

Она может быть использована, например, для характеристики связи удельных расходов сы­рья, материалов и топлива с объемом выпускаемой продукции. Также примером использования равносторонней ги­перболы являются кривые Филлипса и Энгеля..

Регрессии нелинейные по оцениваемым параметрам

К данному классу регрессий относятся уравнения, в которых зависимая переменная нелинейно связана с параметрами. Примером таких нелинейных регрессий являются функции:

• степенная — ;

• показательная — ;

• экспоненциальная —

Если нелинейная модель внутренне линейна, то она с по­мощью соответствующих преобразований может быть при­ведена к линейному виду (например, логарифмированием и заменой переменных). Если же нелинейная модель внут­ренне нелинейна, то она не может быть сведена к линейной функции и для оценки её параметров используются итеративные процедуры, успешность которых зависит от вида уравнений и особен­ностей применяемого итеративного подхода.

Примером нелинейной по параметрам регрессии внут­ренне линейной является степенная функция, которая ши­роко используется в эконометрических исследованиях при изучении спроса от цен: , где у — спрашиваемое количество; х — цена;

Данная модель нелинейна относительно оцениваемых параметров, т. к. включает параметры а и b неаддитивно. Однако ее можно считать внутренне линейной, ибо логариф­мирование данного уравнения по основанию е приводит его к линейному виду . Заменив пе­ременные и параметры, получим линейную регрессию, оцен­ки параметров которой а и b могут быть найдены МНК.

Ши­рокое использование степенной функции связано это с тем, что параметр b в ней имеет четкое экономическое истолко­вание, т. е. он является коэффициентом эластичности. Это значит, что величина коэффициента b показывает, на сколько процентов изменится в среднем результат, если фактор изменится на 1 %.

Коэффициент эластичности можно определять и при наличии других форм связи, но только для степенной функ­ции он представляет собой постоянную величину, равную па­раметру b.

По семи предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн. руб.) от объема капиталовложений ( Х, млн. руб. ).

Разница между линейными и нелинейными дифференциальными уравнениями

Разница между линейными и нелинейными дифференциальными уравнениями — Наука

Содержание:

Линейные и нелинейные дифференциальные уравнения

Уравнение, содержащее хотя бы один дифференциальный коэффициент или производную неизвестной переменной, называется дифференциальным уравнением. Дифференциальное уравнение может быть линейным или нелинейным. Задача этой статьи — объяснить, что такое линейное дифференциальное уравнение, что такое нелинейное дифференциальное уравнение и в чем разница между линейными и нелинейными дифференциальными уравнениями.

С момента развития исчисления в 18 веке математиками, такими как Ньютон и Лейбниц, дифференциальное уравнение сыграло важную роль в истории математики. Дифференциальные уравнения имеют большое значение в математике из-за их диапазона приложений. Дифференциальные уравнения лежат в основе каждой модели, которую мы разрабатываем для объяснения любого сценария или события в мире, будь то физика, инженерия, химия, статистика, финансовый анализ или биология (список бесконечен). Фактически, до тех пор, пока исчисление не стало устоявшейся теорией, надлежащие математические инструменты были недоступны для анализа интересных проблем природы.

Уравнения, получаемые в результате конкретного применения математического анализа, могут быть очень сложными и иногда неразрешимыми. Однако есть проблемы, которые мы можем решить, но они могут выглядеть одинаково и сбивать с толку. Поэтому для упрощения идентификации дифференциальные уравнения классифицируются по их математическому поведению. Линейный и нелинейный — одна из таких категорий. Важно определить разницу между линейными и нелинейными дифференциальными уравнениями.

Что такое линейное дифференциальное уравнение?

Предположим, что f: X → Y и f (x) = y, а дифференциальное уравнение без нелинейных членов неизвестной функции y и его производные известны как линейное дифференциальное уравнение.

Это налагает условие, что y не может иметь более высокие индексные члены, такие как y 2 , y 3 ,… И кратные производные финансовые инструменты, такие как

Он также не может содержать нелинейные термины, такие как Sin y, е y^-2 , или ln y. Это принимает форму,

где y и грамм являются функциями Икс. Уравнение представляет собой дифференциальное уравнение порядка п, который является индексом производной высшего порядка.

В линейном дифференциальном уравнении дифференциальный оператор является линейным оператором, а решения образуют векторное пространство. В результате линейного характера набора решений линейная комбинация решений также является решением дифференциального уравнения. То есть, если y1 и y2 являются решениями дифференциального уравнения, то C1 y1+ C2 y2 тоже решение.

Линейность уравнения — это только один параметр классификации, и его можно в дальнейшем разделить на однородные или неоднородные, а также обыкновенные или дифференциальные уравнения в частных производных. Если функция грамм= 0, то уравнение является линейным однородным дифференциальным уравнением. Если ж является функцией двух или более независимых переменных (е: X, T → Y) и f (x, t) = y , то уравнение является линейным уравнением в частных производных.

Метод решения дифференциального уравнения зависит от типа и коэффициентов дифференциального уравнения. Самый простой случай возникает, когда коэффициенты постоянны. Классическим примером для этого случая является второй закон движения Ньютона и его различные приложения. Второй закон Ньютона дает линейное дифференциальное уравнение второго порядка с постоянными коэффициентами.

Что такое нелинейное дифференциальное уравнение?

Уравнения, содержащие нелинейные члены, известны как нелинейные дифференциальные уравнения.

Все это нелинейные дифференциальные уравнения. Нелинейные дифференциальные уравнения сложно решить, поэтому для получения правильного решения требуется тщательное изучение. В случае уравнений с частными производными большинство уравнений не имеют общего решения. Следовательно, каждое уравнение следует рассматривать независимо.

Уравнение Навье-Стокса и уравнение Эйлера в гидродинамике, полевые уравнения Эйнштейна общей теории относительности являются хорошо известными нелинейными уравнениями в частных производных. Иногда применение уравнения Лагранжа к системе переменных может привести к системе нелинейных уравнений в частных производных.

В чем разница между линейными и нелинейными дифференциальными уравнениями?

• Дифференциальное уравнение, которое имеет только линейные члены неизвестной или зависимой переменной и ее производных, известно как линейное дифференциальное уравнение. Он не имеет члена с зависимой переменной индекса больше 1 и не содержит кратных его производных. Он не может иметь нелинейных функций, таких как тригонометрические функции, экспоненциальные функции и логарифмические функции по отношению к зависимой переменной. Любое дифференциальное уравнение, содержащее вышеупомянутые члены, является нелинейным дифференциальным уравнением.

• Решения линейных дифференциальных уравнений создают векторное пространство, и дифференциальный оператор также является линейным оператором в векторном пространстве.

• Решения линейных дифференциальных уравнений относительно проще, и существуют общие решения. Для нелинейных уравнений в большинстве случаев общего решения не существует, и решение может быть специфическим для конкретной задачи. Это делает решение намного более сложным, чем решение линейных уравнений.


источники:

http://pandia.ru/text/77/203/77731.php

http://ru.strephonsays.com/linear-and-vs-nonlinear-differential-equations-14956