Уравнение закона ньютона в векторном виде

Сакович А.Л. Движение под действием нескольких сил. Механика. Рекомендации по решению задач-2/2

Сакович А.Л. Движение под действием нескольких сил. Механика. Рекомендации по решению задач // Фiзiка: праблемы выкладання. – 2008. – № 6. – С. 25-34.

Операции, связанные с указанием направления скорости и ускорения, должны были быть отработаны еще в кинематике, поэтому в данной статье рассматриваться не будут. В качестве напоминания можно предложить учащимся следующее.

При прямолинейном движении ускорение направлено:

  • в сторону движения (скорости), если скорость тела увеличивается;
  • в противоположную сторону движения (скорости), если скорость тела уменьшается.

При равномерном движении по окружности тело движется с центростремительным ускорением, направленным к центру окружности.

Следующие элементарные операции связаны с построением чертежа. Здесь следует обратить внимание на такие правила:

  • Большинство тел в динамике – это материальные точки, которые изображаются в виде прямоугольников или окружностей.
  • Сила изображается в виде направленного отрезка, начало которого расположено в точке приложения силы.
  • Силы, действующие на материальные точки, будем изображать из середины тела.
  • Равнодействующая всех действующих сил должна быть направлена в сторону ускорения.

Для закрепления полезно разобрать задачи, в которых тела движутся по вертикали, горизонтально и по окружности.

Задачи на закрепление

10. Автомобиль движется по горизонтальной дороге. Изобразите все действующие на автомобиль силы, укажите направления скорости и ускорения , когда он: а) увеличивает свою скорость; б) тормозит.

Решение . Автомобиль взаимодействует с дорогой и Землей (по умолчанию), следовательно, на него будут действовать: 1) сила реакции опоры дороги ( N ), направленная вверх перпендикулярно поверхности; 2) сила тяжести ( m g ), направленная вертикально вниз; 3) сила трения (сила сопротивления) ( F тр ), направленная вдоль поверхности против скорости; 4) сила тяги ( F ), направленная в сторону движения (по умолчанию).

Определим направления ускорений в каждом случае: а) автомобиль увеличивает свою скорость, следовательно, ускорение направлено в сторону скорости; б) автомобиль тормозит, следовательно, ускорение направлено в противоположную сторону скорости.

Обратите внимание, что на всех рисунках N = m g , т.к. автомобиль не движется с ускорением по вертикали. На рис. 16 а силы изображены так, чтобы F тр F , т.к. ускорение направлено в сторону силы тяги (движения); на рис. 16 б F тр > F , т.к. ускорение направлено в сторону F тр (против движения).

11. Велосипедист равномерно движется по дороге. Изобразите все действующие на велосипедиста силы, укажите направления скорости и ускорения , когда он: а) проходит середину выпуклого моста; б) проходит середину вогнутого моста.

Решение . Велосипедист взаимодействует с дорогой и Землей (по умолчанию), следовательно, на него будут действовать: 1) сила реакции опоры дороги ( N ), направленная вверх перпендикулярно поверхности; 2) сила тяжести ( m g ), направленная вертикально вниз; 3) сила трения (сила сопротивления) ( F тр ), направленная вдоль поверхности против скорости; 4) сила тяги ( F ), направленная в сторону движения (по умолчанию).

При равномерном движении по окружности велосипедистдвижется с центростремительным ускорением, направленным к центру окружности.

Обратите внимание, что на всех рисунках Fтр = F, т.к. велосипедистдвижется равномерно по дороге, ускорения вдоль оси 0Х нет. На рис. 17 а силы изображены так, чтобы m∙g > N, т.к. ускорение направлено вниз (к центру окружности); на рис. 17 б – m∙g m по горизонтальной дороге. Сила тяги аэросаней F . Изобразите силы взаимодействия между следующими телами: Земля, аэросани, сани, дорога.

Решение . Рассмотрим взаимодействующие пары тел.

Землясани. Сила, возникающая в результате взаимодействия этих тел, – это сила тяжести саней, которая направлены по вертикали. По третьему закону Ньютона, такая же по величине, но противоположная по направлению сила действуют и на Землю (рис. 18 а).

Земляаэросани. Сила, возникающая в результате взаимодействия этих тел, – сила тяжести аэросаней, которая направлены по вертикали. По третьему закону Ньютона, такая же по величине, но противоположная по направлению сила действуют и на Землю (рис. 18 б).

Дорогасани. Сани давят на дорогу – это вес саней, дорога действует на сани – это сила реакции опоры. Эти силы направлены перпендикулярно дороге. Так как сани движутся (скользят), то между санями и дорогой действует так же сила трения скольжения, направленная вдоль поверхности против движения саней. По третьему закону Ньютона, такая же по величине, но противоположная по направлению сила действуют и на дорогу (рис. 18 в).

Дорогааэросани. Аэросани давят на дорогу – это вес аэросаней, дорога действует на аэросани – это сила реакции опоры. Эти силы направлены перпендикулярно дороге. Так как аэросани движутся (скользят), то между аэросанями и дорогой действует так же сила трения скольжения, направленная вдоль поверхности против движения аэросаней. По третьему закону Ньютона, такая же по величине, но противоположная по направлению сила действуют и на дорогу (рис. 18 г).

Аэросани – сани. Аэросани действуют на сани при помощи сцепки, которая растягивается. Поэтому на сани и на аэросани действуют силы упругости сцепки, направленные вдоль сцепки, в но противоположные стороны ее растяжения (рис. 18 д).

На рис. е указаны все тела данной задачи и изображены все действующие силы. На аэросани действует также сила тяги F. ОБРАТИТЕ ВНИМАНИЕ, что для наглядности рисунка, линии действия некоторых сил не совпадают.

При решении задач нужно выделять силы, действующие на отдельные тела. Силы, действующие только на сани, изображены на рис. 18 ж; силы, действующие только на аэросани, изображены на рис. 18 з; силы, действующие только на дорогу, изображены на рис. 18 и.

Обобщим выделенные элементарные операции, в результате получив следующий расширенный план первого пункта:

1.1. Сделайте чертеж, на которых тела изобразите в виде прямоугольников (или окружностей).

1.2. Определите все действующие на тело силы.

1.3. Определите направление каждой силы.

1.4. Укажите направления скорости и ускорения.

1.5. Изобразите все действующие силы в виде направленных отрезков, начало которых расположено в середине тела (материальной точки).

2. Запишите второй закон Ньютона в векторном виде:

Используя один из способов решения, составьте систему уравнений. Проверьте, является ли полученная система уравнений полной. При необходимости воспользуйтесь дополнительными формулами.

При выполнении первой элементарной операции (запишите второй закон Ньютона в векторном виде) обычно, если правильно выполнен первый пункт плана, затруднений не бывает. Основная ошибка здесь в том, что эту операцию просто не выполняют, не видят необходимости или переоценивают свои способности при выполнении этого действия в уме.

Можно порекомендовать здесь такие трафареты:

(запишите справа все векторы сил, указанные на рисунке)

(оставьте только те силы, которые указаны на рисунке).

При составлении системы уравнений обычно используют только координатный метод решения. Хотя при решении задач, в которых силы направлены под углом к поверхности, иногда бывает проще решить задачу векторным способом.

Рассмотрим особенности координатного метода решения задач.

Здесь можно выделить такие элементарные операции:

1) выберите систему координат;

2) запишите второй закон Ньютона в проекциях на оси координат.

Все эти операции должны были быть отработаны еще в кинематике. При выборе системы координат можно порекомендовать направлять одну из осей вдоль ускорения или скорости, и проводить все оси через материальную точку. Все силы, направленных под углом к осям, желательно разложить на составляющие вдоль этих осей.

В качестве напоминания можно предложить учащимся следующее:

  • положительна , если составляющая вектора на данную ось направлена вдоль этой оси;
  • отрицательна – если против оси;
  • равна нулю – если вектор перпендикулярен оси.

Задачи на закрепление

13. На рис. 19 изображены тела, их ускорения, скорости, силы, действующие на эти тела, и оси координат. Запишите уравнения второго закона Ньютона для каждого тела в векторной форме и в проекциях на оси координат.

Решение а) Уравнение второго закона Ньютона в векторной форме имеет вид . Проекции этого уравнения

б) Уравнение второго закона Ньютона в векторной форме имеет вид . Проекции этого уравнения

в) Уравнение второго закона Ньютона в векторной форме имеет вид . Проекция этого уравнения

14. Запишите уравнения второго закона Ньютона в векторной форме и для проекций на оси координат для тела, изображенного на рис. 20.

Решение. Уравнения второго закона Ньютона в векторном виде: . Разложим вектор на две составляющее и . Тогда проекции этого уравнения (рис. 21):

Векторный метод решения

Векторный методизучается в ознакомительном порядке.

Второй закон Ньютона связывает между собой векторные величины (1), поэтому некоторые задачи динамики можно решать векторным методом, т.е. геометрическим суммированием векторов.

Наиболее эффективен этот метод в случаях, когда второй закон Ньютона (или в преобразованном виде) связывает между собой три вектора.

Одной из операций векторного метода является построение векторного многоугольника сил. Для ее закрепления можно предложить упражнения следующего вида.

15. Тело массы т под действием трех сил движется равномерно (а = 0) (рис. 22). Постройте векторный многоугольник сил.

Решение.Запишемвторой закон Ньютона: . Векторный многоугольник сил для этого уравнения изображен на рис. 23.

16. Тело массы т под действием трех сил движется с ускорением (рис. 24). Постройте векторный многоугольник сил.

Решение.Запишемвторой закон Ньютона: . Векторный многоугольник сил для этого уравнения изображен на рис. 25.

В некоторых случаях можно преобразовывать второй закон Ньютона, уменьшая число векторов. Делают это за счет вспомогательного построения сумм двух-трех векторов, причем так, чтобы значение результирующего вектора можно было легко рассчитать.

Например, многоугольник сил , изображенный на рис. 26 а, можно упростить следующим образом : 1) найти разность векторов (рис. 26 б); 2) найти сумму векторов (рис. 26 в). Тогда получим следующий многоугольник сил (рис. 26 г).

Следующей операцией является запись уравнений. Это полностью геометрическая задача. Например, пусть в предыдущем примере заданы следующие величины: т = 2 кг, а = 7 м/с 2 , Т1 = 30 Н, N = 40 Н, и надо найти значение и направление вектора .

Решение. Найдем значения (см. рис. 26 б), (см. рис. 26 в). Из прямоугольного треугольника (см. рис. 26 г) находим .

Задачи на закрепление

17. Запишите уравнение второго закона Ньютона для шарика в векторной форме (рис. 27). Используя векторный метод решения, запишите уравнение, связывающее между собой массу шарика m, длину нити l , угол a и скорость вращения шарика.

Решение. Запишем второй закон Ньютона . Векторный многоугольник (прямоугольный треугольник) сил для уравнения изображен на рис. 28. При движении по окружности в горизонтальной плоскости шарик обладает центростремительным ускорением , где . Из прямоугольного треугольника получаем

18. Запишите уравнения второго закона Ньютона в векторной форме для бруска, изображенного на рис. 29. Используя векторный метод решения, запишите уравнение, связывающее между собой величины, указанные на рисунке.

Решение. Уравнения второго закона Ньютона в векторном виде . Векторный многоугольник сил для уравнения изображен на рис. 30 а. Упростим данный многоугольник сил , для этого найдем сумму векторов или (рис. 30 б). Тогда получим следующий многоугольник сил (рис. 30 в). Из прямоугольного треугольника получаем

, или и т.п.

Выделим еще несколько элементарных операций в алгоритме решения:

1) проверьте, является ли полученная система уравнений полной;

2) при необходимости воспользуйтесь дополнительными формулами.

Систему уравнений будем считать полной, если ее решение позволит получить соотношение между требованием и условием задачи. Одним из критериев полноты системы может служить следующее: число уравнений должно быть не меньше числа неизвестных величин. Эта операция отрабатывается на уроках алгебры, и в данной статье рассматриваться не будет.

К дополнительным формулам отнесем расчетные формулы, которые рассматривались выше:

  • сила гравитационного взаимодействия – ;
  • сила тяжести – или ;
  • сила упругости – или , или ;
  • силы сухого трения – ;
  • сила сопротивления – или ;
  • архимедова сила – .

Так же можно применять и кинематические формулы (для движущего тела) и специальные условия, заданные в задаче.

Обобщим выделенные элементарные операции, в результате получив следующий расширенный план второго пункта:

2.1. Запишите второй закон Ньютона в векторном виде.

2.2. Составьте систему уравнений.

Для координатного метода решения:

2.2.1. Выберите систему координат.

2.2.2. Запишите второй закон Ньютона в проекциях на оси координат.

Для векторного метода решения:

2.2.3. При необходимости сделайте преобразование второго закона Ньютона.

2.2.4. Постройте векторный многоугольник сил.

2.2.5. Запишите уравнения.

2.3. Проверьте, является ли полученная система уравнений полной.

2.4. При необходимости воспользуйтесь дополнительными формулами.

3. Решите полученные уравнения

Эта операция отрабатывается на уроках математики, и в данной статье рассматриваться не будет.

Рекомендую при проверке задач, решенных по расширенном плану, фиксировать выполнение каждой элементарной операции отдельно. Это позволит определить какому ученику над какой операцией еще необходимо поработать, а какому можно уже выполнять отдельные операции в уме.

Рассмотрим пример решения задачи по расширенному плану.

19. При проведении лабораторной работы были получены следующие данные: длина наклонной плоскости 1 м, высота 20 см, масса деревянного бруска 200 г, сила тяги, измеренная динамометром при равномерном движении бруска вверх, 1 Н. Найдите коэффициент трения.

1.1. Сделайте чертеж, на которых тела изобразите в виде прямоугольников (или окружностей).

Чертеж изображен на рис. 31 а.

1.2. Определите все действующие на тело силы.

Брусок взаимодействует с твердой поверхностью наклонной плоскости , которая под действием веса бруска будет деформироваться, с воздухом и с Землей (по умолчанию). Поэтому на брусок будут действовать: 1) сила реакции опоры доски ( N ) (со стороны деформированной поверхности стола) ; 2) сила тяжести ( m g ) (со стороны Земли) ; 3) сила трения скольжения ( F тр ) (со стороны твердой поверхностью стола) ; 4) сила тяги ( F ). Архимедовой силой (со стороны воздуха) пренебрегаем, т.к. плотность воздуха во много раз меньше плотности бруска.

1.3. Определите направление каждой силы.

Сила реакции опоры доски ( N ) направлена вверх перпендикулярно поверхности; сила тяжести ( m g ) – вертикально вниз; сила трения скольжения ( F тр ) – вдоль поверхности против скорости; сила тяги ( F ) направлена в сторону движения (по умолчанию).

1.4. Укажите направления скорости и ускорения.

Скорость бруска направлена в сторону движения – вверх. Так как брусок движется равномерно, то ускорение равно нулю.

1.5. Изобразите все действующие силы в виде направленных отрезков, начало которых расположено в середине тела (материальной точки).

Все действующие силы и скорость указаны на рисунке 31 б.

2.1. Запишите второй закон Ньютона в векторном виде.

Второй закон Ньютона: .

2.2. Составьте систему уравнений.

Для координатного метода решения

2.2.1. Выберите систему координат.

Направим ось 0Х вдоль скорости (поверхности), тогда ось 0 Y вверх, перпендикулярно поверхности (рис. 32 а).

2.2.2. Запишите второй закон Ньютона в проекциях на оси координат.

Разложим вектор на две составляющее и . Тогда проекции этого уравнения (рис. 32 б):

Для векторного метода решения

2.2.3. При необходимости сделайте преобразование второго закона Ньютона.

Преобразуем второй закон Ньютона следующим образом: , для этого найдем сумму векторов или (рис. 33 а). Тогда получаем .

2.2.4. Постройте векторный многоугольник сил.

Векторный многоугольник сил (рис. 33 б).

2.2.5. Запишите уравнения.

Из прямоугольного треугольника (см. рис. 33 б) получаем

(3)

(4),

(5).

2.3. Проверьте, является ли полученная система уравнений полной.

Данные системы уравнений не являются полными, т.к. ни система уравнений (1)-(2), ни система (3)-(5) не позволяют выполнить требование задачи «найдите коэффициент трения».

2.4. При необходимости воспользуйтесь дополнительными формулами.

Воспользуемся еще несколькими уравнениями

.

3. Решите полученные уравнения.

Для координатного метода решения

Решим систему уравнений (1)-(2) и (6)-(8). Например

, μ ≈ 0,32.

Для векторного метода решения

Решим систему уравнений (4)-(8). Например

, μ ≈ 0,32.

1. Каменецкий С.Е., Орехов В.П. Методика решения задач по физике в средней школе. – М.: Просвещение, 1987. – 336 с.

2. Луцевич А.А., Яковенко С.В. Физика: Учебн. пособие. – Мн.: Выш. шк., 2000. – 495 с.

3. Усова А.В., Тулькибаева Н.Н. Практикум по решению физических задач. – М.: Просвещение, 1992. – 208 с.

4.Физика. Механика. 10 кл.: Учеб. для углубленного изучения физики /Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.

5.Физика. Теория и технология решения задач /Под общ. ред. В.А. Яковенко. – Мн.: ТетраСистемс, 2003. – 560 с.

Законы Ньютона

Ньютон первым обратил внимание на силу, как причину, по которой тела приходят в движение и меняют свою скорость.

Раздел механики, изучающий силы, называется динамикой. По-гречески «динамис», значит «сила».

Что такое сила

Тела действуют друг на друга с помощью сил.

Сила – это мера взаимодействия тел. Измеряя силу, мы измеряем величину взаимного действия тел. В обыденной жизни мы говорим: «как сильно» одно тело действует на другое тело.

Смысл законов Ньютона

Ньютон, в своих законах динамики, хотел сказать следующее:

  • В I законе: Если сила не действует, скорость не меняется. Импульс тела тоже не меняется.
  • Во II законе: Если сила действует, скорость меняется. Импульс тела, также, меняется, появляется ускорение.
  • В III законе: Взаимодействуют два тела — возникают две силы. Они по модулю равны, а по направлению противоположны.

Примечание:

Выражение «векторы равны по модулю», понимаем так: «длины векторов одинаковые».

Перед изучением законов Ньютона рекомендую вспомнить, что такое инерциальные системы отсчета (откроется в новой вкладке).

Первый закон Ньютона

Словесная формулировка первого закона Ньютона:

В инерциальной системе отсчета тело свою скорость не меняет, если на него не действуют другие тела (или действие других тел скомпенсировано).

Формула:

\( F = 0 \) – сила на тело не действует (Может быть и так: на тело действуют несколько сил, но их действие компенсируется);

\( a = 0 \) – ускорение отсутствует;

\( v = const \) – скорость тела не изменяется (остается одной и той же);

\( p = const \) – импульс тела не изменяется (остается одним и тем же);

Важно! По первому закону Ньютона, «двигаться с одной и той же скоростью по прямой» и «покоиться» — это равнозначные виды движения.

Значит, если на тело не действуют другие тела (силы), то

  • тело будет двигаться с одной и той же скоростью по прямой, если оно так двигалось до этого,
  • или будет продолжать покоиться, если покоилось в прошлом.

Второй закон Ньютона

Сформулируем словами второй закон Ньютона:

Ускорение, приобретаемое телом,
прямо пропорционально
приложенной силе
и обратно пропорционально
массе этого тела.

Формула второго закона Ньютона с пояснениями

\( a \left( \frac<\text<м>>> \right) \) – ускорение тела

\( m \left( \text <кг>\right) \) – масса тела

\( F \left( H \right) \) – сила, которую приложили к телу

Примечание: Ускорение отвечает на вопрос: «Как быстро меняется скорость тела?». Значит, если изменяется хотя бы одна из характеристик вектора скорости, ускорение есть. А если скорость не изменяется, ускорения нет \( \vec < a >= 0 \)

Ускорение прямо пропорционально силе:

Чем больше сила, тем больше ускорение тела, тем быстрее тело меняет скорость.

Ускорение обратно пропорционально массе:

Чем больше месса тела, тем труднее изменить его скорость.

Формулу второго закона часто записывают в векторном виде:

Мы можем заменить местами правую и левую части, в таком случае получим:

Расшифруем эту запись: Возьмем вектор «F», умножим его на скаляр (1/m) и получим новый вектор «a».

Дробь \( \displaystyle \frac<1> \) – это скалярная величина.

Примечания:

  1. Вместо слов «направлены в одну и ту же сторону» физики пользуются термином «сонаправлены». Лично мне удобнее пользоваться первой формулировкой.
  2. Часто применяют еще один вид записи, его называют так: «Второй закон Ньютона в импульсной форме».

Третий закон Ньютона

Пусть одно тело действует на второе тело. Тогда это второе тело будет в ответ действовать на первое.

Словами третий закона Ньютона можно сформулировать так:

Силы взаимного действия по модулю равны, а направлены противоположно. Они лежат на прямой, которая соединяет центры тел, действующих друг на друга.

\( F_ <12>\left( H \right) \) – сила, с которой первое тело действует на второе тело.

\( F_ <21>\left( H \right) \) – сила, с которой второе тело отвечает первому.

Пояснить формулу можно с помощью такого рисунка:

Обратите внимание, что длины красного и черного векторов равны.

Не важно, перед каким из векторов находится знак «минус». Этот знак показывает, что векторы направлены в противоположные стороны. Поэтому, формулу третьего закона Ньютона можно записать и так:

Примечания:

  1. Если перед каким-либо вектором записан знак «минус», то этот вектор развернут в противоположную от выбранной нами сторону.
  2. Между векторами находится знак равенства. Это значит, что длины векторов одинаковые (векторы по модулю равны).

Советую прочитать еще две статьи. Так как для решения задач кроме знания трех законов Ньютона нужно дополнительно уметь:

  • находить проекции вектора на оси и
  • составлять векторные силовые уравнения (ссылки открываются в новых вкладках).

Законы Ньютона. Динамика.

теория по физике 🧲 динамика

Три закона Ньютона

Динамика — раздел механики, изучающий причины движения тел и способы определения их ускорения. В нем движение тел описывается с учетом их взаимодействия.

Большой вклад в развитие динамики внес английский ученый Исаак Ньютон. Он первым смог выделить законы движения, которым подчиняются все макроскопические тела. Эти законы называют законами Ньютона, законами механики, законами динамики или законами движения тел.

Внимание! Законы Ньютона нельзя применять к произвольным телам. Они применимы только к точке, обладающей массой — к материальной точке.

Основное утверждение механики

Для описания движения тела можно взять любую систему отсчета. Обычно для этого используется система отсчета, связанная с Землей. Если какое-то тело меняет свою скорость, рядом с ним всегда можно обнаружить другое тело, которое на него действует. Так, если поднять камень и отпустить, он не останется висеть в воздухе, а упадет вниз. Следовательно, на него что-то подействовало. В данном случае сама Земля притянула камень к себе. Отсюда следует основное утверждение механики:

Основное утверждение механики

Изменение скорости (ускорение) тела всегда вызывается воздействием на него других тел.

Согласно утверждению, если на тело не действуют никакие силы, его ускорение будет нулевым, и оно будет либо покоиться, либо двигаться равномерно и прямолинейно (с постоянной скоростью).

Но в нашем мире мы не всегда это наблюдаем. И этому есть объяснение. Если тело покоится, оно действительно не меняет свою скорость. Так, мяч лежит на траве до тех пор, пока его не пнут. После того, как его пнут, он начинает катиться, но затем останавливается. Пока мяч катится, к нему больше не прикасаются. Казалось бы, согласно основному утверждению механики, мяч должен катиться вечно. Но этого не происходит, потому что на мяч действует сила трения, возникающая между его поверхностью и травой.

Основное утверждение механики можно проиллюстрировать в открытом космосе в месте, где сила притяжения космических тел пренебрежимо мала. Если в космосе придать телу скорость и отпустить, оно будет двигаться с такой скоростью по прямой линии до тех пор, пока на него не подействуют другие силы. Ярким примером служат межгалактические звезды, или звезды-изгои. Гравитационно они не связаны ни с одной из галактик, а потому движутся с постоянной скоростью. Так, звезда HE 0437-5439 удаляется от нашей галактики с постоянной скоростью 723 км/с.

Свободное тело — тело, на которое не действуют другие тела. Свободное тело либо покоится, либо движется прямолинейно и равномерно.

Первый закон Ньютона

Исаак Ньютон, изучая движение тел, заметил, что относительно одних систем отсчета свободные тела сохраняют свою скорость, а относительно других — нет. Он разделил их на две большие группы: инерциальные системы отсчета и неинерциальные. В этом кроется первый закон динамики.

Первый закон Ньютона

Существуют такие системы отсчета, называемые инерциальными, относительно которых тела движутся равномерно и прямолинейно или находятся в состоянии покоя, если на них не действуют другие тела или их действие компенсировано.

Примером инерциальной системы отсчета служит система отсчета, связанная с Землей (геоцентрическая). Другой пример — гелиоцентрическая система отсчета (связанная с Солнцем).

Неинерциальная система отсчета — система отсчета, в которой тела могут менять свою скорость при отсутствии на них действия других тел.

Примером неинерциальной системы отсчета служит автобус. Когда он движется равномерно и прямолинейно, стоящие внутри пассажиры находятся относительно него в состоянии покоя. Но когда автобус останавливается, пассажиры падают вперед, т. е. меняют свою скорость, хотя на них не действуют другие тела.

Второй закон Ньютона

В примере с автобусом видно, что пассажиры стараются сохранить свою скорость относительно Земли — инерциальной системы отсчета. Такое явление называется инерцией.

Инерция — явление, при котором тело сохраняет состояние покоя или равномерного прямолинейного движения.

Инертность — физическое свойство, заключающееся в том, что любое тело оказывает сопротивление изменению его скорости (как по модулю, так и по направлению).

Не все тела одинаково инертны. Вы можете взять мячик и придать ему большое ускорение. Но вы не можете придать такое же ускорение гире, хотя она обладает похожим размером. Но мячик и гиря различаются между собой массой.

Масса — скалярная физическая величина, являющаяся мерой инертности тела. Чем больше масса, тем больше инертность тела.

Масса обозначается буквой m. Единица измерения массы — кг. Прибор для измерения массы — весы.

Чтобы придать одинаковую скорость двум телам с разной инертностью, к телу с большей инертностью придется приложить больше силы. Попробуйте сдвинуть с места стол, а затем — шкаф. Сдвинуть с места стол будет проще.

Если же приложить две одинаковые силы к телам с разной инертностью, будет видно, что тело с меньшей инертностью получает большее ускорение. Если приставить к пружине теннисный шарик, а затем сжать ее и резко отпустить, шарик улетит далеко. Если вместо теннисного шарика взять железный, он лишь откатится на некоторое расстояние.

Описанные выше примеры показывают, что между силой, прикладываемой к телу, и ускорением, которое оно получает в результате прикладывания этой силы, и массой этого тела есть взаимосвязь. Она раскрывается во втором законе Ньютона.

Второй закон Ньютона

Сила, действующая на тело, равна произведению массы этого тела на ускорение, которое сообщает эта сила.

где F — сила, которую прикладывают к телу, a — ускорение, которое сообщает эта сила, m — масса тела

Сила — количественная мера действия тел друг на друга, в результате которого тела получают ускорения.

Сила — векторная физическая величина. Обозначается F . Единица измерения — Н (Ньютон). Прибор для измерения силы — динамометр.

Пример №1. Определить, с какой силой действует Земля на яблоко, если, упав с ветки, оно получило ускорение 9,8 м/с 2 . Масса яблока равна 200 г.

Сначала переведем массу яблока в кг. 200 г = 0,2 кг. Теперь найдем силу, действующую на яблоко со стороны Земли, по второму закону Ньютона:

F = ma = 0,2 ∙ 9,8 = 1,96 (Н)

Равнодействующая сила

Иногда на тело действуют несколько сил. Тогда при описании его движения вводится понятие равнодействующей силы.

Равнодействующая сила — векторная сумма всех сил, действующих на тело одновременно.

В этом случае второй закон Ньютона формулируется так:

Второй закон Ньютона через равнодействующие силы

Если на тело действует несколько сил, но их равнодействующая R будет равна произведению массы на ускорение этого тела.

Правила сложения сил и их проекций

Сложение двух сил, направленных вдоль одной прямой в одну сторону

Если F 1↑↑ F 2, то:

Равнодействующая сила сонаправлена с обеими силами.

Сложение двух сил, направленных вдоль одной прямой во взаимно противоположных направлениях

Если F 1↑↓ F 2, то:

Равнодействующая сила направлена в сторону направления большей по модулю силы.

Сложение двух сил, перпендикулярных друг к другу

Если F 1 перпендикулярна F 2, то равнодействующая сила вычисляется по теореме Пифагора:

Сложение двух сил, расположенных под углом α друг к другу

Если F 1 и F 2 расположены под углом α друг к другу, равнодействующая сила вычисляется по теореме косинусов:

Сложение трех сил

Способ сложения определяется правилами сложения векторов. В данном случае:

Сложение проекций сил

Проекция на ось ОХ:

Проекция на ось OY:

Третий закон Ньютона

Когда одно тело действует на другое, начинается взаимодействие этих тел. Это значит, если тело А действует на тело В и сообщает ему ускорение, то и тело В действует на тело А, тоже придавая ему ускорение. К примеру, если сжать пружину руками, то руки будут чувствовать сопротивление, оказываемое силой упругости пружины. Если же, находясь в лодке, начать тянуть за веревку вторую лодку, то обе лодки будут двигаться навстречу друг другу. То есть, вы, находясь в своей лодке, тоже будете двигаться навстречу второй лодке.

Иногда на тело действует сразу несколько сил, но тело продолжает покоиться. В этом случае говорят, что силы друг друга компенсируют, то есть их равнодействующая равна нулю.

Две силы независимо от их природы считаются равными по модулю и противоположно направленными, если их одновременное действие на тело не меняет его скорости.

Примером такого явления служит ситуация, когда при перетягивании каната его никто не может перетянуть в свою сторону. Если взять два каната и присоединить между ними два динамометра, а затем начать игру в перетягивание, выяснится, что показания динамометра всегда будут одинаковыми. Это значит, что независимо от масс и придаваемых ускорений два взаимодействующих тела оказывают друг на друга равные по модулю силы. В этом заключается смысл третьего закона Ньютона.

Силы, с которыми тела действуют друг на друга, равны по модулям и направлены по одной прямой в противоположные стороны.

Используя второй закон Ньютона, третий закон механики можно переписать иначе:

Отношение модулей ускорений a 1 и a 2 взаимодействующих друг с другом тел определяется обратным отношением их масс и совершенно не зависит от характера действующих между ними сил.

Пример №2. Определить ускорение, с которым движется Земля к падающему на нее яблоку. Масса яблока равна 0,2 кг. Ускорение свободного падения принять равной за 10 м/с 2 . Массу Земли принять равно 6∙10 24 кг.

Согласно третьему закону Ньютона модули сил, с которыми взаимодействуют Земли и яблоко, равны. Поэтому:

Пусть тело 1 будет яблоко, а тело 2 — Земля. Тогда a1 будет равно g. Отсюда ускорение, с которым движется Земля к падающему на нее яблоку, равна:

Скорость тела массой 5 кг, движущегося вдоль оси Ох в инерциальной системе отсчёта, изменяется со временем в соответствии с графиком (см. рисунок). Равнодействующая приложенных к телу сил в момент времени t=2,5 с равна…


источники:

http://formulki.ru/mehanika/zakony-newtona

http://spadilo.ru/zakony-nyutona-dinamika/