Уравнение заряда на пластинах конденсатора

Заряд на пластинах конденсатора колебательного контура изменяется с течением времени t в соответствии с уравнением q = 50 cos

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,292
  • гуманитарные 33,622
  • юридические 17,900
  • школьный раздел 607,160
  • разное 16,830

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Уравнение колебаний

Рис. 15.4

Попробуем выяснить, как зависят от времени заряд на обкладке конденсатора и сила тока в колебательном контуре (рис. 15.4). Но прежде, чем мы приступим к вычислениям, отметим следующее:

1) ток в процессе колебаний течет то в одном, то в другом направлении. Чтобы величина силы тока в данный момент времени была определена однозначно, необходимо задать направление обхода контура. Тогда ток, текущий вдоль направления обхода, считаем положительным, а против – отрицательным;

2) заряды на пластинах конденсатора всегда равны по величине и противоположны по знаку, поэтому надо договориться, заряд какой пластины (1 или 2) в данный момент мы рассматриваем;

3) напряжение между пластинами конденсатора – это разность между потенциалами пластин. Эта величина, как и сила тока, меняет знак в процессе колебаний. Чтобы величина была однозначно определена в данный момент времени, договоримся, что мы считаем напряжением U = j1 – j2 или U = j2 – j1, где j1 и j2 – потенциалы пластин 1 и 2 соответственно.

С учетом данных замечаний приступим к установлению зависимости от времени заряда q(t), тока i(t) и напряжения и(t):

1) зададим направление обхода контура по часовой стрелке (см. рис. 15.4);

2) назовем «первой» ту пластинку конденсатора, которая встретилась первой после катушки при следовании по направлению обхода контура, а «второй» – смежную с ней пластину. Зарядом конденсатора будем называть заряд первой пластины;

3) под напряжением будем понимать величину U = j1 – j2. Если q1 > 0, а q2 = –q1 0. Но величина Dq может быть и отрицательной, если ток в данный момент времени t течет против направления обхода, тогда i(t)

. (15.10)

СТОП! Решите самостоятельно: В1–В3, С1–С2.

Задача 15.1. В каких пределах должна изменяться индуктивность катушки колебательного контура, чтобы в контуре происходили колебания с частотой от f1 = 400 Гц до f2 = 500 Гц. Емкость конденсатора С = 10 мкФ.

f1 = 400 Гц f2 = 500 Гц С = 10 мкФРешение. Воспользуемся формулой (15.9): , отсюда Гн;
L1 = ? L2 = ?

Гн.

Ответ: индуктивность должна изменяться от Гн до Гн.

СТОП! Решите самостоятельно: А1–А4.

Задача 15.2. Период электрических колебаний в контуре 1,0×10 –5 с. При подключении параллельно конденсатору контура дополнительного конденсатора электроемкостью 3,0×10 –8 Ф период колебаний увеличился в два раза. Определите индуктивность катушки и начальную электроемкость конденсатора колебательного контура.

Т1 = 1,0×10 –5 с С2 = 3,0×10 –8 Ф Т2/Т1 = 2Решение. Вспомним, что при параллельном соединении емкости конденсаторов складываются, и применим формулу Томсона для обоих случаев: Т1 = , (1) 2Т1 = , (2)
L = ? C1 = ?

Разделим (2) на (1) и получим

.

Выразим индуктивность L из (1):

Т1 =

Гн.

Ответ: , Гн.

СТОП! Решите самостоятельно: В4–В6, С3–С5.

Задача 15.3. Колебательный контур состоит из катушки индуктивностью L = 0,20 Гн и конденсатора емкостью С = 1,0×10 –5 Ф. Конденсатор зарядили до напряжения U = 2,0 В, и он начал разряжаться. Каким будет ток в момент, когда энергия контура окажется поровну распределенной между электрическим и магнитным полем?

L = 0,20 Гн С = 1,0×10 –5 Ф U = 2,0 В Wм = WэРешение. Энергия контура равна . В тот момент, когда энергии электрического и магнитного полей равны, на долю энергии магнитного поля приходится ровно половина полной энергии контура, поэтому
i = ?

.

Ответ: .

СТОП! Решите самостоятельно: А5–А7, В7–В9.

Задача 15.4.Заряд q на пластинах конденсатора колебатель­ного контура изменяется с течением времени t по закону q = =10 -6 cosl0 4 pt. Записать закон зависимости силы тока от времени i(t). Найти период и частоту колебаний в кон­туре, амплитуду колебаний заряда и амплитуду колеба­ний силы тока. Все величины считать точными и заданными в единицах СИ.

q = 10 -6 cosl0 4 ptРешение. Воспользуемся формулой (15.3) i(t) = = q¢(t): i(t) = (10 -6 cosl0 4 pt)¢ = 10 -6 (–sinl0 4 pt)×10 4 p = = –10 –2 psin10 4 pt.
i(t) = ? T = ? f = ? qm = ? im = ?

Учитывая, что q = qmcoswt, а i = –imsinwt, легко находим значения заряда и тока:

Находим амплитуду колебаний заряда и амплитуду колеба­ний силы тока:

w = 10 4 p Þ Гц;

.

im = 10 –2 p А; w = 5×10 3 Гц; .

Плоский конденсатор. Заряд и емкость конденсатора.

Наряду с резисторами одними из наиболее часто используемых электронных компонентов являются конденсаторы. И в этой статье мы разберемся, из чего они состоят, как работают и для чего применяются 👍 В первую очередь, рассмотрим устройство и принцип работы, а затем плавно перейдем к основным свойствам и характеристикам — заряду, энергии и, конечно же, емкости конденсатора.

Плоский конденсатор.

Итак, простейший конденсатор представляет из себя две плоские проводящие пластины, расположенные параллельно друг другу и разделенные слоем диэлектрика. Причем расстояние между пластинами должно быть намного меньше, чем, собственно, размеры пластин:

Такое устройство называется плоским конденсатором, а пластины — обкладками конденсатора. Стоит уточнить, что здесь мы рассматриваем уже заряженный конденсатор (сам процесс зарядки мы изучим чуть позже), то есть на обкладках сосредоточен определенный заряд. Причем наибольший интерес представляет тот случай, когда заряды пластин конденсатора одинаковы по модулю и противоположны по знаку (как на рисунке).

А поскольку на обкладках сосредоточен заряд, между ними возникает электрическое поле. Поле плоского конденсатора, в основном, сосредоточено между пластинами, однако, в окружающем пространстве также возникает электрическое поле, которое называют полем рассеяния. Очень часто его влиянием в задачах пренебрегают, но забывать о нем не стоит.

Для определения величины этого поля рассмотрим еще одно схематическое изображение плоского конденсатора:

Каждая из обкладок конденсатора в отдельности создает электрическое поле:

  • положительно заряженная пластина ( +q ) создает поле, напряженность которого равна E_
  • отрицательно заряженная пластина ( -q ) создает поле, напряженность которого равна E_

Выражение для напряженности поля равномерно заряженной пластины выглядит следующим образом:

Здесь \sigma — это поверхностная плотность заряда: \sigma = \frac , а \varepsilon — диэлектрическая проницаемость диэлектрика, расположенного между обкладками конденсатора. Поскольку площадь пластин конденсатора у нас одинаковая, как и величина заряда, то и модули напряженности электрического поля, равны между собой:

Но направления векторов разные — внутри конденсатора вектора направлены в одну сторону, а вне — в противоположные. Таким образом, внутри обкладок результирующее поле определяется следующим образом:

Соответственно, вне конденсатора (слева и справа от обкладок) поля пластин компенсируют друг друга и результирующая напряженность равна 0.

Процессы зарядки и разрядки конденсаторов.

С устройством мы разобрались, теперь разберемся, что произойдет, если подключить к конденсатору источник постоянного тока. На принципиальных электрических схемах конденсатор обозначают следующим образом:

Итак, мы подключили обкладки конденсатора к полюсам источника постоянного тока. Что будет происходить?

Свободные электроны с первой обкладки конденсатора устремятся к положительному полюсу источника. Из-за этого на обкладке возникнет недостаток отрицательно заряженных частиц, и она станет положительно заряженной. В то же время электроны с отрицательного полюса источника тока переместятся ко второй обкладке конденсатора. В результате чего на ней возникнет избыток электронов, соответственно, обкладка станет отрицательно заряженной.

Таким образом, на обкладках конденсатора образуются заряды разного знака (как раз этот случай мы и рассматривали в первой части статьи), что приводит к появлению электрического поля, которое создаст между пластинами конденсатора определенную разность потенциалов. Процесс зарядки будет продолжаться до тех пор, пока эта разность потенциалов не станет равна напряжению источника тока. После этого процесс зарядки закончится, и перемещение электронов по цепи прекратится.

При отключении от источника конденсатор может на протяжении длительного времени сохранять накопленные заряды. Соответственно, заряженный конденсатор является источником электрической энергии, это означает, что он может отдавать энергию во внешнюю цепь. Давайте создадим простейшую цепь, просто соединив обкладки конденсатора друг с другом:

В данном случае по цепи начнет протекать ток разряда конденсатора, а электроны начнут перемещаться с отрицательно заряженной обкладки к положительной. В результате напряжение на конденсаторе (разность потенциалов между обкладками) начнет уменьшаться. Этот процесс завершится в тот момент, когда заряды пластин конденсаторов станут равны друг другу, соответственно электрическое поле между обкладками пропадет и по цепи перестанет протекать ток. Именно так происходит разряд конденсатора, в результате которого он отдает во внешнюю цепь всю накопленную энергию. Как видите, здесь нет ничего сложного.

Емкость и энергия конденсатора.

Важнейшей характеристикой является электрическая емкость конденсатора. Это физическая величина, которая определяется как отношение заряда q одного из проводников к разности потенциалов между проводниками:

Емкость конденсатора изменяется в Фарадах, но величина 1 Ф является неимоверно большой, поэтому чаще всего используются микрофарады (мкФ), нанофарады (нФ) и пикофарады (пФ). А поскольку мы уже вывели формулу для расчета напряженности, то давайте выразим напряжение на конденсаторе следующим образом:

Здесь у нас d — это расстояние между пластинами конденсатора, а q — заряд конденсатора. Подставим эту формулу в выражение для емкости:

Если в качестве диэлектрика выступает воздух, то во всех формулах можно подставить \varepsilon = 1 . Для запасенной же энергии конденсатора справедливы следующие выражения:

Помимо емкости конденсаторы характеризуются еще одним параметром, а именно величиной напряжения, которое может выдержать его диэлектрик. При слишком больших значениях напряжения электроны диэлектрика отрываются от атомов, и диэлектрик начинает проводить ток. Это явление называется пробоем конденсатора, и в результате обкладки оказываются замкнутыми друг с другом. Собственно, характеристикой, которая часто используется при работе с конденсаторами является не напряжение пробоя, а рабочее напряжение. Это такая величина напряжения, при которой конденсатор может работать неограниченно долгое время, и пробоя не произойдет.

Итак, резюмируем — сегодня рассмотрели основные свойства конденсаторов, их устройство и характеристики, так что на этом заканчиваем статью, а в следующей мы будем обсуждать различные варианты соединений и маркировку.


источники:

http://helpiks.org/7-83588.html

http://microtechnics.ru/ploskij-kondensator-zaryad-i-emkost-kondensatora/