Уравнение затухающих колебаний материальной точки имеет вид

Уравнение затухающих колебаний материальной точки имеет вид

§6 Затухающие колебания

Декремент затухания. Логарифмический декремент затухания.

Добротность

Свободные колебания технических систем в реальных условиях протекают, когда на них действуют силы сопротивления. Действие этих сил приводит к уменьшению амплитуды колеблющейся величины.

Колебания, амплитуда которых из-за потерь энергии реальной колебательной системы уменьшается с течением времени, называются затухающими.

Наиболее часто встречается случаи, когда сила сопротивления пропорциональна скорости движения

где r — коэффициент сопротивления среды. Знак минус показывает, что FC направлена в сторону противоположную скорости.

Запишем уравнение колебаний в точке, колеблющийся в среде, коэффициент сопротивлений которой r . По второму закону Ньютона

где β — коэффициент затухания. Этот коэффициент характеризует скорость затухания колебаний, При наличии сил сопротивления энергия колеблющейся системы будет постепенно убывать, колебания будут затухать.

— дифференциальное уравнение затухающих колебаний.

— у равнение затухающих колебаний.

ω – частота затухающих колебаний:

Период затухающих колебаний:

Затухающие колебания при строгом рассмотрении не являются периодическими. Поэтому о периоде затухаюших колебаний можно гово­рить, когда β мало.

Если затухания выражены слабо (β→0), то . Затухающие колебания можно

рассматривать как гармонические колебания, амплитуда которых меняется по экспоненциальному закону

В уравнении (1) А0 и φ0 — произвольные константы, зависящие от выбора момента времени, начиная е которого мы рассматриваем колебания

Рассмотрим колебание в течение, некоторого времени τ, за которое амплитуда уменьшится в е раз

τ — время релаксации.

Коэффициент затихания β обратно пропорционален времени, в течение которого амплитуда уменьшается в е раз. Однако коэффициента затухания недостаточна для характеристики затуханий колебаний. Поэтому необходимо ввести такую характеристику для затухания колебаний, в которую входит время одного колебаний. Такой характеристикой является декремент (по-русски: уменьшение) затухания D , который равен отношению амплитуд, отстоящих по времени на период:

Логарифмический декремент затухания равен логарифму D :

Логарифмический декремент затухания обратно пропорционален числу колебаний, в результате которых амплитуда колебаний умень­шилась в е раз. Логарифмический декремент затухания — постоянная для данной системы величина.

Еще одной характеристикой колебательной система является добротность Q .

Добротность пропорциональна числу колебаний, совершаемых системой, за время релаксации τ.

Добротность Q колебательной системы является мерой относительной диссипации (рассеивания) энергии.

Добротность Q колебательной системы называется число, показывающее во сколько раз сила упругости больше силы сопротивления.

Чем больше добротность, тем медленнее происходит затухание, тем затухающие колебания ближе к свободным гармоническим.

§7 Вынужденные колебания.

Резонанс

В целом ряде случаев возникает необходимость создания систем, совершающих незатухающие колебания. Получить незатухающие колебания в системе можно, если компенсировать потери энергии, воздействуя на систему периодически изменяющейся силой.

Запишем выражение для уравнения движения материальной точки, совершающей гармоническое колебательное движение под действием вынуждающей силы.

По второму закону Ньютона:

(1)

— дифференциальное уравнение вынуж­денных колебаний.

Это дифференциальное уравнение является линейным неоднородным.

Его решение равно сумме общего решения однородного уравнения и частного решения неоднородного уравнения:

Найдем частное решение неоднородного уравнения. Для этого перепишем уравнение (1) в следующем виде:

(2)

Частное решение этого уравнения будем искать в виде:

т.к. выполняется для любого t , то должно выполняться равенство γ = ω , следовательно,

Это комплексное число удобно представить в виде

где А определяется по формуле (3 ниже), а φ — по формуле (4), следовательно, решение (2),в комплексной форме имеет вид

Его вещественная часть, являвшаяся решением уравнения (1) равна:

(3)

(4)

Слагаемое Хо.о. играет существенную роль только в начальной стадии при установлении колебаний до тех пор, пока амплитуда вынужденных колебаний не достигнет значения определяемого равенством (3). В установившемся режиме вынужденные колебания происходят с частотой ω и являются гармоническими. Амплитуда (3) и фаза (4) вынужденных колебаний зависят от частоты вынуждающей силы. При определенной частоте вынуждающей силы амплитуда может достигнуть очень больших значений. Резкое возрастание амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте механи­ческой системы, называется резонансом.

Частота ω вынуждающей силы, при которой наблюдается резонанс, называется резонансной. Для того чтобы найти значение ωрез, необходимо найти условие максимума амплитуды. Для этого нужно определить условие минимума знаменателя в (3) (т.е. исследовать (3) на экстремум).

Зависимость амплитуды колеблющейся величины от частоты вынуждающей силы называется резонансной кривой. Резонансная кривая будет тем выше, чем меньше коэффициент затухания β и с уменьшением β, максимум резонансных кривых смешается вправо. Если β = 0, то

При ω→0 все кривые приходят к значению — статическое отклонение.

Параметрический резонанс возникает в том случае, когда периодическое изменение одного из параметров система приводит к резкому увеличению амплитуды колеблющейся системы. Например, кабины, делающие «солнышко» за счет изменения положения центра тяжести система.(То же в «лодочках».) См. §61 .т. 1 Савельев И.В.

Уравнение затухающих колебаний материальной точки имеет вид

колебаний логарифмический декремент затухания

Контур состоит из катушки с индуктивностью 9,63·10 –2 Гн и сопротивлением 8 Ом и конденсатора емкостью 7,53·10 –9 Ф. Найти логарифмический декремент затухания колебаний в контуре.

К вертикально висящей пружине подвешивают груз. При этом пружина удлиняется на ΔL = 9,8 см. После небольшого воздействия груз начинает совершать вертикальные колебания. Чему равен коэффициент затухания, если логарифмический декремент затухания колебаний λ = 0,06?

Колебательный контур состоит из конденсатора емкостью С = 2,22 нФ и катушки длиной l = 20 см из медной проволоки диаметром d = 0,5 мм. Найти логарифмический декремент затухания χ колебаний.

Контур состоит из катушки с индуктивностью 2,87·10 –2 Гн и сопротивлением 11 Ом и конденсатора емкостью 5,15·10 –9 Ф. Найти логарифмический декремент затухания колебаний в контуре.

Найти логарифмический декремент затухания колебаний маятника, если за 100 колебаний их амплитуда уменьшается в 7,4 раза.

Уравнение затухающих колебаний материальной точки имеет вид x = 0,01e –3t cos(ωt+π/4), м. Логарифмический декремент затухания колебаний λ = 0,02. Найдите частоту ω затухающих колебаний.

Уравнение затухающих колебаний материальной точки имеет вид x = 0,02e –4t cos(ωt+π/3), м. Если логарифмический декремент затухания колебаний λ = 0,1, то чему равен период T затухающих колебаний?

Пружину жесткостью k = 0,6 кН/м с грузиком массой m = 0,5 кг на конце растянули на l = 5 см и отпустили. Запишите уравнение колебаний грузика на пружине, если он находится в среде с коэффициентом сопротивления r = 0,9 кг/с. Через какое время амплитуда колебаний уменьшится в n = 4 раз? Определите логарифмический декремент затухания колебаний.

В колебательном контуре с сопротивлением R = 50 Ом время релаксации равно 10 мс. Максимальная энергия конденсатора Wmax = 10 –3 Дж при амплитудном значении напряжения 5 В. Найти период колебаний и логарифмический декремент затухания.

Пружину жесткостью k = 0,2 кН/м с грузиком массой m на конце растянули на λ = 6 см и отпустили. Запишите уравнение колебаний грузика на пружине, если он находится в среде с коэффициентом сопротивления r = 0,4 кг/с. Через какое время амплитуда колебаний уменьшится в n = 2 раз? Определите логарифмический декремент затухания колебаний.

Примеры решения задач. Пример 5.8.Запишите уравнение затухающих колебаний материальной точки, если смещение х0 точки при составляет 10см

Пример 5.8.Запишите уравнение затухающих колебаний материальной точки, если смещение х0 точки при составляет 10см, период затухающих колебаний Т=3с, логарифмический декремент затухания θ=0,03, начальная фаза колебаний равна нулю.

Дано: ; и х0=10см=0,1м; Т= 3с; θ=0,03.

Решение. Уравнение затухающих колебаний, если начальная фаза равна нулю, имеет вид:

, (1)

Где А0 — амплитуда колебаний в момент времени t=0.

(2)

Коэффициент затухания δ найдём из выражения для логарифмического декремента затухания: θ=δТ, откуда

.

Амплитуду А0 найдём из начальных условий (х0=10см при =1с), согласно уравнению (1), где

,

.

Подставив в формулы (2), (3) и (4) заданные цифры найдём с -1 ; δ=0,01; А0=10,1см. Тогда, подставив эти значения в уравнение (1), запишем искомое уравнение затухающих колебаний:

Ответ:

Пример 5.9.Маятник совершил 100 полных колебаний, при этом его амплитуда уменьшилась в 10 раз. Определить логарифмический декремент затухания маятника.

Дано: N=100; .

Решение. Логарифмический декремент затухания

, (1)

где условный период затухающих колебаний ( ν — частота колебаний); δ – коэффициент затухания.

Амплитуда затухающих колебаний в момент времени t=0.

Из формулы (1) найдём δ= ν θ, где частоту ν вычислим, зная число N полных колебаний за время t, за которое произошло указанное уменьшение амплитуды:

,

откуда и тогда

. (3)

Подставив выражение (3) в формулу (2), получаем

,

Откуда искомый декремент затухания

Пример 5.10.Логарифмический декремент θ затухания камертона, колеблющегося с частотой ν=100Гц, составляет 0,002. Определите промежуток времени, за который амплитуда возбужденного камертона уменьшится в 50 раз.

Дано: ν=100Гц; θ=0,002; .

Решение. Амплитуда затухающих колебаний изменяется со временем по закону

, (1)

где А0 – начальная амплитуда (в момент времени t=0); δ — коэффициент затухания.

Логарифмический декремент затухания θ =δТ, где — условный период затухающих колебаний. Тогда

и выражение (1) можно записать виде

,


источники:

http://reshenie-zadach.com.ua/fizika/1/kolebanij_logarifmicheskij_dekrement_zatuhaniya.php

http://helpiks.org/6-11535.html