Уравнение затухающих колебаний некоторого осциллятора имеет вид

Уравнение затухающих колебаний некоторого осциллятора имеет вид

§6 Затухающие колебания

Декремент затухания. Логарифмический декремент затухания.

Добротность

Свободные колебания технических систем в реальных условиях протекают, когда на них действуют силы сопротивления. Действие этих сил приводит к уменьшению амплитуды колеблющейся величины.

Колебания, амплитуда которых из-за потерь энергии реальной колебательной системы уменьшается с течением времени, называются затухающими.

Наиболее часто встречается случаи, когда сила сопротивления пропорциональна скорости движения

где r — коэффициент сопротивления среды. Знак минус показывает, что FC направлена в сторону противоположную скорости.

Запишем уравнение колебаний в точке, колеблющийся в среде, коэффициент сопротивлений которой r . По второму закону Ньютона

где β — коэффициент затухания. Этот коэффициент характеризует скорость затухания колебаний, При наличии сил сопротивления энергия колеблющейся системы будет постепенно убывать, колебания будут затухать.

— дифференциальное уравнение затухающих колебаний.

— у равнение затухающих колебаний.

ω – частота затухающих колебаний:

Период затухающих колебаний:

Затухающие колебания при строгом рассмотрении не являются периодическими. Поэтому о периоде затухаюших колебаний можно гово­рить, когда β мало.

Если затухания выражены слабо (β→0), то . Затухающие колебания можно

рассматривать как гармонические колебания, амплитуда которых меняется по экспоненциальному закону

В уравнении (1) А0 и φ0 — произвольные константы, зависящие от выбора момента времени, начиная е которого мы рассматриваем колебания

Рассмотрим колебание в течение, некоторого времени τ, за которое амплитуда уменьшится в е раз

τ — время релаксации.

Коэффициент затихания β обратно пропорционален времени, в течение которого амплитуда уменьшается в е раз. Однако коэффициента затухания недостаточна для характеристики затуханий колебаний. Поэтому необходимо ввести такую характеристику для затухания колебаний, в которую входит время одного колебаний. Такой характеристикой является декремент (по-русски: уменьшение) затухания D , который равен отношению амплитуд, отстоящих по времени на период:

Логарифмический декремент затухания равен логарифму D :

Логарифмический декремент затухания обратно пропорционален числу колебаний, в результате которых амплитуда колебаний умень­шилась в е раз. Логарифмический декремент затухания — постоянная для данной системы величина.

Еще одной характеристикой колебательной система является добротность Q .

Добротность пропорциональна числу колебаний, совершаемых системой, за время релаксации τ.

Добротность Q колебательной системы является мерой относительной диссипации (рассеивания) энергии.

Добротность Q колебательной системы называется число, показывающее во сколько раз сила упругости больше силы сопротивления.

Чем больше добротность, тем медленнее происходит затухание, тем затухающие колебания ближе к свободным гармоническим.

§7 Вынужденные колебания.

Резонанс

В целом ряде случаев возникает необходимость создания систем, совершающих незатухающие колебания. Получить незатухающие колебания в системе можно, если компенсировать потери энергии, воздействуя на систему периодически изменяющейся силой.

Запишем выражение для уравнения движения материальной точки, совершающей гармоническое колебательное движение под действием вынуждающей силы.

По второму закону Ньютона:

(1)

— дифференциальное уравнение вынуж­денных колебаний.

Это дифференциальное уравнение является линейным неоднородным.

Его решение равно сумме общего решения однородного уравнения и частного решения неоднородного уравнения:

Найдем частное решение неоднородного уравнения. Для этого перепишем уравнение (1) в следующем виде:

(2)

Частное решение этого уравнения будем искать в виде:

т.к. выполняется для любого t , то должно выполняться равенство γ = ω , следовательно,

Это комплексное число удобно представить в виде

где А определяется по формуле (3 ниже), а φ — по формуле (4), следовательно, решение (2),в комплексной форме имеет вид

Его вещественная часть, являвшаяся решением уравнения (1) равна:

(3)

(4)

Слагаемое Хо.о. играет существенную роль только в начальной стадии при установлении колебаний до тех пор, пока амплитуда вынужденных колебаний не достигнет значения определяемого равенством (3). В установившемся режиме вынужденные колебания происходят с частотой ω и являются гармоническими. Амплитуда (3) и фаза (4) вынужденных колебаний зависят от частоты вынуждающей силы. При определенной частоте вынуждающей силы амплитуда может достигнуть очень больших значений. Резкое возрастание амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте механи­ческой системы, называется резонансом.

Частота ω вынуждающей силы, при которой наблюдается резонанс, называется резонансной. Для того чтобы найти значение ωрез, необходимо найти условие максимума амплитуды. Для этого нужно определить условие минимума знаменателя в (3) (т.е. исследовать (3) на экстремум).

Зависимость амплитуды колеблющейся величины от частоты вынуждающей силы называется резонансной кривой. Резонансная кривая будет тем выше, чем меньше коэффициент затухания β и с уменьшением β, максимум резонансных кривых смешается вправо. Если β = 0, то

При ω→0 все кривые приходят к значению — статическое отклонение.

Параметрический резонанс возникает в том случае, когда периодическое изменение одного из параметров система приводит к резкому увеличению амплитуды колеблющейся системы. Например, кабины, делающие «солнышко» за счет изменения положения центра тяжести система.(То же в «лодочках».) См. §61 .т. 1 Савельев И.В.

Уравнение затухающих колебаний некоторого осциллятора имеет вид

где r — постоянная, называемая коэффициентом сопротивления. Знак минус обусловлен тем, что сила сопротивления и скорость имеют противоположные направления, следовательно, их проекции на ось x имеют разные знаки.

Запишем уравнение второго закона Ньютона для движения груза на пружине при наличии сил сопротивления:

Введя обозначения: 2β=r/m, ω0 2 =k/m, получим однородное дифференциальное уравнение затухающих колебаний:

где β — коэффициент затухания, ω0 — собственная частота колебаний, т.е. частота, с которой совершались бы свободные колебания системы в отсутствие сопротивления среды (при r=0).

Решение уравнения (32) проведем через анализ рассеяния энергии. Для этого сначала найдем полную энергию гармонического осциллятора при отсутствии сил сопротивления. Подставив в выражение для кинетической энергии скорость осциллятора (3), получим:

Потенциальная энергия упругой деформации после подстановки x из формулы (1) имеет следующий вид:

Выразив из формулы ω0 2 =k/m коэффициент k=mω0 2 и подставив его в (34), получим выражение для полной энергии гармонического осциллятора:

Полная энергия гармонического осциллятора сохраняется в отсутствие сил сопротивления и пропорциональна квадрату амплитуды колебаний. Таким образом, процесс колебаний связан с периодическим переходом энергии из потенциальной в кинетическую и обратно. Средние (за период колебаний) значения потенциальной и кинетической энергии одинаковы, и каждое из них равно E/2.

Выясним, как влияют силы сопротивления на энергию колебательной системы (осциллятора). Будем при этом считать, что сила сопротивления настолько мала, что вызываемые ею потери энергии за один период относительно малы. Потеря энергии телом определится как работа, произведённая силой сопротивления. За время dt эта работа, а с ней и потеря энергии dE равна произведению силы сопротивления (Fсопр=-r·dx/dt) на смещение тела (dx=vdt):

откуда dE/dt=-r·v 2 =(-2r/m)·(mv 2 /2) (36)

При сделанном нами предположении о малости сил сопротивления мы можем в (36) заменить кинетическую энергию половиной полной энергии осциллятора E:

Перепишем это выражение в виде:

Путем интегрирования находим, что lnE=-2βt+const, окончательно:

где E0 – значение энергии в начальный момент времени (t=0).

Таким образом, энергия колебательной системы убывает из-за сил сопротивления по экспоненциальному закону. Вместе с энергией убывает и амплитуда колебаний. Поскольку энергия пропорциональна квадрату амплитуды, получаем:

Таким образом, при не слишком большом затухании общее решение уравнения (32) имеет вид:

Здесь A0 – значение амплитуды в начальный момент времени, α — начальная фаза, ω — частота колебаний.

На рисунке 12 дан график функции (40). Пунктирными линиями показаны пределы, в которых находится смещение x колеблющейся точки. В соответствии с видом функции (40) движение системы можно рассматривать как гармоническое колебание частоты ω с амплитудой, изменяющейся по закону, определяемому формулой (39). Верхняя из пунктирных кривых на рисунке 12 дает график функции A(t). Начальное смещение x0 зависит кроме A0 также от начальной фазы α:

Степень убывания амплитуды определяется коэффициентом затухания. За время τ=1/β амплитуда уменьшается в e раз — это время называется временем релаксации колебаний. Сделанное нами выше предположение о малости сил сопротивления означает, что τ предполагается большим по сравнению с периодом колебаний:

т.е. за время релаксации происходит большое число колебаний Ne=τ/T. Величину, обратную Ne называют логарифмическим декрементом затухания χ:

Итак, логарифмический декремент затухания обратен по величине числу колебаний, совершаемых за время релаксации. Кроме того, логарифмический декремент затухания часто определяют как натуральный логарифм отношения двух последующих амплитуд.

Для характеристики колебательной системы также вводят величину, называемую добротностью колебательной системы:

Из формулы (42) следует, что с ростом коэффициента затухания период колебаний увеличивается. При β>>ω0 движение перестаёт быть периодическим, происходит срыв колебаний, или движение носит апериодический (непериодический) характер — выведенная из положения равновесия система возвращается в положение равновесия, не совершая колебаний.

Затухающий гармонический осциллятор

Взяв за основу ту же модель, добавим в нее силу вязкого трения. Сила вязкого трения направлена против скорости движения груза относительно среды и пропорциональна этой скорости. Тогда полная сила, действующая на груз, записывается так:

Проводя аналогичные действия, получаем дифференциальное уравнение, описывающее затухающий осциллятор:

Здесь введено обозначение: . Коэффициент γ носит название постоянной затухания. Он тоже имеет размерность частоты.

Решение же распадается на три случая.

    При малом трении (γ − γt

  • При сильном же трении γ > ω0 решение выглядит следующим образом:

, где

Критическое затухание примечательно тем, что именно при критическом затухании осциллятор быстрее всего стремится в положение равновесия. Если трение меньше критического, он дойдет до положения равновесия быстрее, однако «проскочит» его по инерции, и будет совершать колебания. Если трение больше критического, то осциллятор будет экспоненциально стремиться к положению равновесия, но тем медленнее, чем больше трение.

Поэтому в стрелочных индикаторах (например, в амперметрах) обычно стараются ввести именно критическое затухание, чтобы прочитать его показания можно было максимально быстро.

Затухание осциллятора также часто характеризуют безразмерным параметром, называемым добротностью. Добротность обычно обозначают буквой Q. По определению, добротность равна:

Чем больше добротность, тем медленнее затухают колебания осциллятора.

У осциллятора с критическим затуханием добротность равна 0,5. Соответственно, добротность указывает характер поведения осциллятора. Если добротность больше 0,5, то свободное движение осциллятора представляет собой колебания; со временем он пересечёт положение равновесия неограниченное количество раз. Добротность меньше или равная 0,5 соответствует неколебательному движению осциллятора; в свободном движении он пересечёт положение равновесия не более одного раза.

Добротность иногда называют коэффициентом усиления осциллятора, так как при некоторых способах возбуждения при совпадении частоты возбуждения с резонансной амплитуда колебаний оказывается примерно в Q раз больше, чем при возбуждении на низкой частоте.

Также добротность примерно равна количеству колебательных циклов, за которое амплитуда колебаний уменьшается в e раз, умноженному на π.

В случае колебательного движения затухание еще характеризуют такими параметрами, как:

  • Время жизни колебаний, оно же время затухания, оно же время релаксации. τ — время, за которое амплитуда колебаний уменьшится в e раз.

Это время рассматривается как время, необходимое для затухания (прекращения) колебаний (хотя формально свободные колебания продолжаются бесконечно долго).

  • Логарифмический декремент затухания. Определяется как логарифм отношения двух последовательных максимальных отклонений в одну сторону. . Величина, обратная d, есть количество колебаний, которое пройдёт за время затухания τ.

Коэффициент затухания

величина, характеризующая скорость затухания колебаний

Закон сохранения энергии — основной закон природы, заключающийся в том, что энергия изолированной (замкнутой) системы сохраняется во времени. Другими словами, энергия не может возникнуть из ничего и не может в никуда исчезнуть, она может только переходить из одной формы в другую. Закон сохранения энергии встречается в различных разделах физики и проявляется в сохранении различных видов энергии. Например, в классической механике закон проявляется в ]] закон сохранения энергии называется первым началом термодинамики и говорит

Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то правильнее называть его не законом, а принципом сохранения энергии.

Добро́тность — характеристика колебательной системы, определяющая остроту резонанса и показывающая, во сколько раз запасы энергии в реактивных элементах контура больше, чем потери энергии на активных за один период колебаний.

Добротность обратно пропорциональна скорости затухания собственных колебаний в системе. То есть, чем выше добротность колебательной системы, тем меньше потери энергии в течение каждого периода. Колебания в системе с высокой добротностью затухают медленно

Общая формула для добротности любой колебательной системы:

,

  • f — частота колебаний
  • W — энергия, запасённая в колебательной системе
  • Pd — рассеиваемая мощность.

Обратимый процесс (то есть равновесный) — термодинамический процесс, который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений.

Обратимый процесс можно в любой момент заставить протекать в обратном направлении, изменив какую-либо независимую переменную на бесконечно малую величину.

Обратимые процессы дают наибольшую работу. Большую работу от системы вообще получить невозможно. Это придает обратимым процессам теоретическую важность. На практике обратимый процесс реализовать невозможно. Он протекает бесконечно медленно, и можно только приблизиться к нему.

Следует отметить, что термодинамическая обратимость процесса отличается от химической обратимости. Химическая обратимость характеризует направление процесса, а термодинамическая — способ его проведения.

понятие равновесного состояния и обратимого процесса играют большую роль в термодинамике. Все количественные выводы термодинамики применимы только к равновесным состояниям и обратимым процессам.

Вынужденные колебания — колебания, происходящие под действием внешней силы, меняющейся во времени.

Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.

Наиболее простой и содержательный пример вынужденных колебаний можно получить из рассмотрения гармонического осциллятора и вынуждающей силы, которая изменяется по закону: .

Резона́нс (фр. resonance, от лат. resono — откликаюсь) — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс — явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы.

Но это далеко не полное определение явления резонанса. Для более детального восприятия этой категории необходимы некоторые факты из теории дифференциальных уравнений и математического анализа. В теории обыкновенных дифференциальных уравнений известна проблема собственных векторов и собственных значений. Резонанс в динамической системе, описываемой дифференциальными уравнениями (и не только ими), формально наступает, когда проблема собственных значений приводит к кратным собственным числам. При этом в математическом аспекте не очень существенно, являются ли собственные числа комплексными или действительными. В физическом аспекте явление резонанса обычно связывают только с колебательными динамическими системами. Наиболее ярко понятие явления резонанса развито в современной теории динамических систем. Примером является известная теория Колмогорова-Арнольда-Мозера. Центральная проблема этой теории — вопрос сохранения квазипериодического или условно-периодического движения на торе (теорема КАМ). Эта теорема дала мощный толчок к развитию современной теории нелинейных колебаний и волн. В частности, стало ясно, что резонанс может и не наступить, хоть собственные числа совпадают или близки. Напротив, резонанс может проявиться в системе, где никакие собственные числа не совпадают, а удовлетворяют лишь определенным резонансным соотношениям или условиям синхронизма.

теплова́я маши́на

машина (тепловой двигатель, тепловой насос и др.), в которой осуществляется преобразование теплоты в работу или работы в теплоту. В основе действия тепловой машины лежит круговой процесс (цикл термодинамический), совершаемый рабочим телом (газом, водяным паром и др.). Если при осуществлении цикла на одних его участках теплота подводится к рабочему телу, а на других отводится (при более низкой температуре), то рабочее тело совершает работу, равную (для идеальной тепловой машины) разности количеств подведённой и отведённой теплоты.

Цикл Карно́ — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадает соответственно с максимальной и минимальной температурами цикла Карно.

КПД тепловой машины Карно

Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно

.

Аналогично, при изотермическом сжатии рабочее тело отдало холодильнику

.

Отсюда коэффициент полезного действия тепловой машины Карно равен

.

Из последнего выражения видно, что КПД тепловой машины Карно зависит только от температур нагревателя и холодильника. Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равна абсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм.

Можно показать, что КПД любой тепловой машины, работающей по циклу, отличному от цикла Карно, будет меньше КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника.

Моме́нт и́мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Замечание: момент импульса относительно точки — это псевдовектор, а момент импульса относительно оси — скалярная величина.

Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки, оно также обладает моментом импульса. Наибольшую роль момент импульса играет при описании собственно вращательного движения.

Момент силы (синонимы: крутящий момент; вращательный момент; вращающий момент) — физическая величина, характеризующая вращательное действие силы на твёрдое тело.

В физике момент силы можно понимать как «вращающая сила». В системе СИ единицами измерения для момента силы является ньютон-метр, хотя сантиньютон-метр (cN•m), футо-фунт (ft•lbf), дюйм-фунт (lbf•in) и дюйм-унция (ozf•in) также часто используются для выражения момента силы. Символ момента силы τ (тау). Момент силы иногда называют моментом пары сил, это понятие возникло в трудах Архимеда над рычагами. Вращающиеся аналоги силы, массы и ускорения есть момент силы, момент инерции и угловое ускорение соответственно. Сила, приложенная к рычагу, умноженная на расстояние до оси рычага, есть момент силы. Например, сила в 3 ньютона, приложенная к рычагу, расстояние до оси которого 2 метра, это то же самое, что 1 ньютон, приложенный к рычагу, расстояние до оси которого 6 метров. Более точно, момент силы частицы определяется как векторное произведение:

где — сила, действующая на частицу, а — радиус-вектор частицы!

Теплоемкость идеального газа — это отношение тепла, сообщенного газу, к изменению температуры δТ, которое при этом произошло.


источники:

http://testent.ru/publ/studenty/fizika/zatukhajushhie_kolebanija_garmonicheskij_oscilljator_pri_nalichii_sil_soprotivlenija/37-1-0-1601

http://lektsia.com/7x4cac.html