Уравнение зависимости сопротивления от температуры

Зависимость сопротивления от температуры, формула

Удельное сопротивление проводников и непроводников зависит от температуры.

Сопротивление металлических проводников увеличивается с повышением температуры. У полупроводников сопротивление сильно уменьшается при повышении температуры

У некоторых металлов при температуре, близкой к абсолютному нулю, сопротивление скачком уменьшается до нуля (явление сверхпроводимости).

В таблицах значения удельного сопротивления проводников обычно приводятся для температуры 20°C. Сопротивление или удельное сопротивление при других значениях температуры можно найти пересчетом.

ρtудельное сопротивление при температуре t,Ом·м
ρ20удельное сопротивление при температуре 20°C,
табличное значение удельного сопротивления проводников
Ом·м
Rtсопротивление проводника при температуре t,Ом
R20сопротивление проводника при температуре 20°C,Ом
αтемпературный коэффициент сопротивления,1 / K
tтемпература,°C

то зависимость сопротивления от температуры выражается формулами:

Зависимость сопротивления проводника от температуры

Практически в электротехнике выло выявлено, что с увеличением температуры сопротивление проводников из металла возрастает, а с понижением уменьшается. Для всех проводников из металла это изменение сопротивления почти одинаково и в среднем равно 0,4% на 1°С.

Если быть точным, то на самом деле при изменении температуры проводника изменяется его удельное сопротивление, которое имеет следующую зависимость:

где ρ и ρ0, R и R0 — соответственно удельные сопротивления и сопротивления проводника при температурах t и 0°С (шкала Цельсия), α — температурный коэффициент сопротивления, [α] = град -1 .

Изменение удельного сопротивления проводника приводит к изменения самого сопротивления, что видно из следующего выражения:

Зная электронную теорию строения вещества можно дать следующее объяснение увеличению сопротивления металлических проводников с повышением температуры. При увеличении температуры проводник получает тепловую энергию, которая несомненно передается всем атомам вещества, в результате чего .возрастает их тепловое движение. Увеличившееся тепловое движение атомов создает большее сопротивление направленному движению свободных электронов (увеличивается вероятность столкновения свободных электронов с атомами), от этого и возрастает сопротивление проводника.

С понижением температуры направленное движение электронов облегчается (уменьшается возможность столкновения свободных электронов с атомами), и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов. Сверхпроводимость, т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре —273° С, называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.

График звисимости сопротивления металлического проводника от температуры представлен на рисунке 1.

Рисунок 1. График зависимости удельного сопротивления металлического проводника от температуры

Необходимо сказать, что сопротивление электролитов и полупроводников (уголь, селен и другие) с увеличением температуры уменьшается.

Температурная зависимость сопротивления электролита объясняется также в основном изменением удельного сопротивления,однако всегда температурный коэффициент сопротивления — α

Поэтому кривая зависимости сопротивленя электролита от температуры имеет вид, представленый на рисунке 2.

Рисунок 1. График зависимости удельного сопротивления электролита от температуры

Ддя полупроводников характер изменения удельного сопротивления от температуры будет схож с таковым для элетролитов.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Зависимость сопротивления от температуры

Электрическое сопротивление металлов находится в прямой зависимости от температуры. Чем выше температура металлического провода, тем выше скорость теплового движения частиц. Следовательно растёт количество столкновений свободных электронов, и снижение их свободного пробега τ . Снижение свободного пробега уменьшает удельную проводимость и, одновременно, увеличивает удельное электрическое сопротивление материала.

Удельное сопротивление электролитов и угля при нагревании наоборот уменьшается, поскольку кроме уменьшения времени τ повышается концентрация носителей зарядов.

Температурный коэффициент сопротивления

В узких границах изменения температуры 0-100°С относительное приращение сопротивления Δr большинство металлических проводов пропорционально приращению температуры Δt = t1 — t2.

Обозначения через r1 и r2 сопротивления при температурах t1 и t2 можно выразить формулой

где α — Температурный коэффициент сопротивления, численно равен относительному приращению сопротивления при нагревании проводника на 1°С.

Температурный коэффициент сопротивления для чистых металлов приблизительно равен α = 0,004°С -1 , это значит, что их сопротивление увеличится на 4%, при росте температуры на 10°С.

Некоторых сплавы, например, как манганин и константан обладают повышенным удельным сопротивлением и крайне низким температурным коэффициентом сопротивления. Так как обладают неправильной структурой и небольшим временем «свободного» пробега электронов. Данные сплавы нашли широкое применение при изготовлении образцовых катушек сопротивления и резисторов с постоянным (независимым от температуры) сопротивлением.

Материал такие как уголь и электролиты обладают отрицательным коэффициентом сопротивления α ≈ -0,02 на 1°С.

Явление сверхпроводимости

В ряде материалов и сплавов при снижении температуры до очень низких значений порядка единиц или десятка градусов Кельвина (0 К ≈ -273°С) возникает явление сверхпроводимости. Температура при которой наступает это явление, называется критической (Ткр) или «точкой скачка».

Проводник в котором возникает явление сверхпроводимости называют сверхпроводником. В таком проводнике может протекать электрический ток, даже если к его концам не будет приложено напряжения иначе говоря сопротивление проводника будет стремится к нулю. В таких проводниках не выделяется тепло даже при значительной плотности тока, т.е. электроны в нём не встречают препятствий и не сталкиваются при свободном движении.

Также, сверхпроводники не имеют магнитного поля. Даже если ранее оно присутствовало, то при критических температурах поле пропадет, поскольку в поверхностном слое 10 -5 см образуются токи, магнитное поле которых компенсирует внешнее магнитное поле.

Состояние сверхпроводимости разрушает как сильное внешнее магнитное поле, так и поле, вызванное большим электрическим током, проходящим через сверхпроводник. Данное обстоятельство затрудняет получение в сверхпроводнике больших токов и больших плотностей тока.


источники:

http://www.sxemotehnika.ru/zavisimost-soprotivleniia-provodnika-ot-temperatury.html

http://electrikam.com/zavisimost-soprotivleniya-ot-temperatury/