Уравнение зависимости угловой скорости от времени

iSopromat.ru

Рассмотрим понятия угловой скорости и углового ускорения при вращении твердого тела:

Угловая скорость

Угловой скоростью называют скорость вращения тела, определяющаяся приращением угла поворота тела за промежуток времени.

Обозначение: ω (омега).

Формулы угловой скорости

Формула для расчета угловой скорости в зависимости от заданных параметров вращения может иметь вид:

  • если известно количество оборотов n за единицу времени t:
  • если задан угол поворота φ за единицу времени:
  • Количество оборотов за единицу времени [об/мин], [c -1 ].
  • Угол поворота за единицу времени [рад/с].

Быстрота изменения угла φ (перемещения из положения П1 в положение П2) – это и есть угловая скорость:

Например, тело совершающее 1,5 оборота за одну секунду имеет угловую скорость

Приняв k как единичный орт положительного направления оси, получим:

Вектор угловой скорости – скользящий вектор: он может быть приложен к любой точке оси вращения и всегда направлен вдоль оси, при положительном значении угловой скорости направления ω и k совпадают, при отрицательном – противоположны.

Угловое ускорение

Угловое ускорение характеризует величину изменения угловой скорости при вращении твердого тела:

Единицы измерения углового ускорения: [рад/с 2 ], [с -2 ]

Вектор углового ускорения так же направлен по оси вращения. При ускоренном вращении их направления совпадают, при замедленном — противоположны.

Другими словами, при положительном ускорении угловая скорость нарастает, а при отрицательном вращение замедляется.

Для некоторых частных случаев вращательного движения твердого тела могут быть использованы формулы:

    равномерное вращение ( ω — const)

В технике угловая скорость часто задается в оборотах в минуту n [об/мин]. Один оборот – это 2π радиан:

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Вращательное движение и угловая скорость твердого тела

В этой статье речь пойдет о физических величинах, которые характеризуют вращательное движение тела: угловая скорость, угловое перемещение, угловое ускорение, момент сил.

Твердым телом называют совокупность жестко связанных материальных точек. Когда твердое тело производит вращение относительно какой-либо оси, отдельные материальные точки, из которых оно складывается, двигаются по окружностям разных радиусов.

За определенный промежуток времени, например, за которое тело совершит один оборот, отдельные материальные точки, из которых состоит твердое тело, пройдут разные пути, следовательно, отдельные точки будут иметь разные линейные скорости. Описывать вращение твердого тела с помощью линейных скоростей отдельных материальных точек — сложно.

Угловое перемещение

Однако, анализируя движение отдельных материальных точек, можно установить, что за одинаковый промежуток времени все они поворачиваются вокруг оси на одинаковый угол. То есть для описания вращения твердого тела удобно пользоваться такой физической величиной, как угловое перемещение:

Угловая скорость и угловое ускорение

Вращательное движение можно охарактеризовать угловой скоростью: ω = ∆φ/∆t.

Угловая скорость характеризует скорость вращения тела и равняется отношению изменения угла поворота ко времени, за которое оно произошло. Измеряется в радианах за секунду: [ω] = рад/с.

Угловая скорость вращения связана с линейной скоростью следующим соотношением: v = Rω, где R – радиус окружности, по которой двигается тело.

Вращательное движение тела характеризуется еще одной физической величиной — угловым ускорением, которое равно отношению изменения угловой скорости ко времени, за которое оно произошло: ε = ∆ω/∆t. Единица измерения углового ускорения: [ε] = рад/с 2 .

Угловая скорость и угловое ускорение являются псевдовекторами, направление которых зависит от направления вращения. Его можно определить по правилу правого винта.

Равномерное вращательное движение

Равномерное вращательное движение осуществляется с постоянной угловой скоростью и описывается такими уравнениями: ε = 0, ω = const, φ = φ0 + ωt, где φ0 – начальное значение угла поворота.

Равноускоренное вращательное движение

Равноускоренное вращательное движение происходит с постоянным угловым ускорением и описывается такими уравнениями: ε = const, ω = ω0+ εt, φ = φ0 + ω0t + εt 2 /2.

Во время вращения твердого тела центростремительное ускорение каждой точки этого тела можно найти так: ɑц = v 2 /R = (ωR) 2 /R = ω 2 R.

Когда вращение твердого тела ускоренное, можно найти тангенциальное ускорение его точек по формуле: ɑt = ∆v/∆t= ∆(ωR)/∆t= R(∆ω/∆t) = Rε.

Момент сил

Если, рассматривая физическую проблему, мы имеем дело не с материальной точкой, а с твердым телом, то действие нескольких сил на него, приложенных к различным точкам этого тела, нельзя свести к действию одной силы. В этом случае рассматривают момент сил.

Моментом силы называют произведение силы на плечо. Это векторная величина, и ее находят по формуле: M = RFsinα, где α — угол между векторами R и F. Если на тело действует несколько моментов сил, то их действие можно заменить их равнодействующей, векторной суммой этих моментов: M = M1 + M2 + …+ Mn.

Эксперименты и опыт показывают, что под действием момента силы угловая скорость тела меняется, то есть тело имеет угловое ускорение. Выясним, как зависит угловое ускорение материальной точки (совокупности материальных точек) от приложенного момента сил: F = mɑ, RF = Rma = R 2 mβ, β= M/mR 2 = M/I, где I = mR 2 — момент инерции материальной точки. Заметим, что момент инерции тела имеет зависимость как от массы тела, так и от расположения этой массы относительно оси вращения.

Примеры решения задач

Задача 1. Ротор центрифуги делает 2•10 4 об/мин. После того как выключили двигатель, его вращение прекращается через 8 мин. Найдите угловое ускорение, а также число оборотов, которое совершает ротор с момента выключения двигателя до его полной остановки, считая, что движение ротора равноускоренное.

Найдем угловое ускорение, учитывая, что угловая скорость при равноускоренном движении описывается уравнением: ω(t) = ω0 — εt.

Отсюда, учитывая, что в конце движения скорость равна нулю, найдем: ε = ω0/t = 2πn/t.

Переведя данные задачи в систему единиц СИ (n = 333 об/с; t = 480 с), получим: ε = 2π333/480 = 4,36(рад/с 2 ).

Угол поворота ротора центрифуги за время t будет: φ(t)= φ0 + ω0t + εt 2 /2. Учитывая выражение для углового ускорения и то, что φ0 = 0, находим: φ(t)= ω0t/2 = πnt.

Количество оборотов ротора за это время будет: N = φ(t)/2π = πnt/2π = nt = 8•10 4 (об.).

Ответ: угловое ускорение равно 4,36 рад/с 2 ; количество оборотов, сделанное ротором с момента выключения двигателя до его полной остановки, равно 8•10 4 об.

Задача 2. Диск, имеющий массу 1 кг и радиус 20 см, вращается с частотой 120 об. в минуту. Под действием тормозного устройства на край диска начала действовать сила трения 10 Н. Найдите время остановки диска, после того как на него стала действовать сила трения.

Найдем тормозной момент сил, действующий на диск: M = RF.

Найдем угловое ускорение диска: ε = M/I = FR/mR 2 = F/mR.

Найдем время, за которое диск остановится: t = ω0, где ω0 — начальная угловая скорость диска, которая равна 2πv.

Сделаем вычисления: t = 2πv/ ε = 2πvmR/F = 6,28•2•1•0,2/10 = 2,5 (с).

Ответ: время остановки равно 2,5 с.

§ 1.28. Угловая скорость и угловое ускорение

Угловая скорость

Проведем координатную ось X через центр окружности (начало координат), вдоль которой движется точка (рис. 1.86). Тогда положение точки А на окружности в любой момент времени однозначно определяется углом φ между осью X и радиусом-вектором , проведенным из центра окружности к движущейся точке. Углы будем выражать в радианах(1).

При движении точки угол φ изменяется. Обозначим изменение угла за время Δt через Δφ. Для нахождения положения точки в любой момент времени надо знать угол φ0 в начальный момент времени t0 и определить, на сколько изменился угол за время движения (рис. 1.87):

Пусть точка движется по окружности с постоянной по модулю скоростью. Тогда за любые равные промежутки времени радиус-вектор поворачивается на одинаковые углы. Быстрота обращения точки определяется углом поворота радиуса-вектора за данный интервал времени. Например, если радиус-вектор точки за каждую секунду поворачивается на угол 90° = , а другой точки — на угол 45 = , то мы говорим, что первая точка обращается быстрее второй в два раза.

Если при равномерном обращении за время Δt радиус-вектор повернулся на угол Δφ, то быстрота обращения определится углом поворота в единицу времени. Быстроту обращения характеризуют угловой скоростью.

Угловой скоростью при равномерном движении точки по окружности называется отношение угла Δφ поворота радиуса-вектора к промежутку времени Δt, за который этот поворот произошел.

Обозначим угловую скорость греческой буквой ω (омега). Тогда по определению(2)

В СИ(3) угловая скорость выражается в радианах в секунду (рад/с).

Радиан в секунду равен угловой скорости равномерно обращающейся точки, при которой за время 1 с радиус-вектор этой точки поворачивается на угол 1 рад.

Например, угловая скорость точки земной поверхности равна 0,0000727 рад/с, а точильного диска более 100 рад/с.

Угловую скорость можно выразить через частоту обращения, т. е. число оборотов за 1с. Если точка делает п оборотов в секунду, то время одного оборота равно .

Это время называют периодом обращенияи обозначают буквой Т. Таким образом, частота и период обращения связаны следующим соотношением:

T = . (1.28.3)

Полному обороту точки на окружности соответствует угол Δφ = 2π. Поэтому, согласно формуле (1.28.2),

Частота обращения точек рабочих колес мощных гидротурбин составляет 1—10 с -1 , винта вертолета — 4—6 с -1 , ротора газовой турбины — 200—300 с -1 .

Если при равномерном обращении точки угловая скорость известна, то можно найти изменение угла поворота Δφ за время Δt. Оно равно Δφ = ωΔt. С учетом этого формула (1.28.1) примет вид: φ = φ0 + ωΔt. Приняв начальный момент времени t0 равным нулю, получим, что Δt = t — t0 = t. Тогда угол поворота равен

По этой формуле можно найти положение точки на окружности в любой момент времени.

Угловое ускорение

В случае переменной угловой скорости вводится новая физическая величина, характеризующая быстроту ее изменения, — угловое ускорение:

Угловое ускорение равно производной угловой скорости по времени. Если β = const, то ω(t) = ω0 + β(t — t0), где ω0 — угловая скорость в начальный момент времени t0. При t0 = 0

Эта формула подобна формуле проекции скорости vx = v0x + axt при прямолинейном движении точки. Соответственно угол поворота

Эту формулу можно получить точно таким же способом, как и уравнение координаты при прямолинейном движении х =

Связь между линейной и угловой скоростями

Скорость точки, движущейся по окружности, часто называют линейной скоростью, чтобы подчеркнуть ее отличие от угловой скорости. Между линейной скоростью точки, обращающейся по окружности, и ее угловой скоростью существует связь. При равномерном движении точки по любой траектории модуль скорости равен отношению пути s ко времени Δt, за которое этот путь пройден. Точка А, движущаяся по окружноcти радиусом R, за время Δt проходит путь, равный длине дуги (рис. 1.88): s = = ΔφR. Модуль линейной скорости движения

Итак, модуль линейной скорости точки, движущейся по окружности, равен произведению угловой скорости на радиус окружности:

Эта формула справедлива как для равномерного, так и для неравномерного движения точки по окружности.

Из выражения (1.28.9) видно, что чем больше радиус окружности, тем больше линейная скорость точки. Для точек земного экватора v = 463 м/с, а на широте Санкт-Петербурга — 233 м/с. На полюсах Земли v = 0.

Модуль ускорения точки, движущейся равномерно по окружности (центростремительное, или нормальное, ускорение) можно выразить через угловую скорость тела и радиус окружности. Так как а = = и v = ωR, то

Чем больше радиус окружности, тем большее по модулю ускорение имеет точка при заданной угловой скорости. Ускорение любой точки поверхности Земли на экваторе составляет 3,4 см/с 2 .

Связь линейного ускорения с угловым

С изменением угловой скорости точки меняется и ее линейная скорость. Нормальное ускорение связано согласно формуле (1.28.10) с угловой скоростью и не зависит, следовательно, от углового ускорения. Но тангенциальное ускорение, определяемое формулой (1.27.4), выражается через угловое ускорение:

Мы научились полностью описывать движение точки по окружности. При фиксированном радиусе окружности модуль скорости (линейная скорость) пропорционален угловой скорости, а нормальное ускорение пропорционально ее квадрату. Тангенциальное ускорение пропорционально угловому ускорению.

Упражнение 5

  1. Поезд движется по закруглению радиусом 200 м со скоростью 36 км/ч. Найдите модуль нормального ускорения.
  2. Тело брошено с поверхности Земли под углом 60° к горизонту. Модуль начальной скорости равен 20 м/с. Чему равен радиус кривизны траектории в точке максимального подъема?
  3. Определите радиус кривизны траектории снаряда в момент вылета из орудия, если модуль скорости снаряда равен 1 км/с, а скорость составляет угол 60° с горизонтом.
  4. Снаряд вылетает из орудия под углом 45° к горизонту. Чему равна дальность полета снаряда, если радиус кривизны траектории в точке максимального подъема равен 15 км?
  5. Сферический резервуар, стоящий на земле, имеет радиус R. При какой наименьшей скорости камень, брошенный с поверхности Земли, может перелететь через резервуар, коснувшись его вершины? Под каким углом к горизонту должен быть при этом брошен камень?
  6. Въезд на один из самых высоких в Японии мостов имеет форму винтовой линии, обвивающей цилиндр радиусом r. Полотно дороги составляет угол α с горизонтальной плоскостью. Найдите модуль ускорения автомобиля, движущегося по въезду с постоянной по модулю скоростью v.
  7. Точка начинает двигаться равноускоренно по окружности радиусом 1 м и за 10 с проходит путь 50 м. Чему равно нормальное ускорение точки через 5 с после начала движения?
  1. Поезд въезжает на закругленный участок пути с начальной скоростью 54 км/ч и проходит путь 600 м за 30 с. Радиус закругления равен 1 км. Определите модуль скорости и полное ускорение поезда в конце этого пути, считая тангенциальное ускорение постоянным по модулю.
  2. Груз Р начинает опускаться с постоянным ускорением а = 2 м/с 2 и приводит в движение ступенчатый шкив радиусами г = 0,25 м и R = 0,50 м (рис. 1.89). Какое ускорение а1, будет иметь точка М через t = 0,50 с после начала движения?

    Рис. 1.89

  3. Маховик приобрел начальную угловую скорость ω = 2π рад/с. Сделав 10 оборотов, он вследствие трения в подшипниках остановился. Найдите угловое ускорение маховика, считая его постоянным.
  4. Маховое колесо радиусом R = 1 м начинает движение из состояния покоя равноускоренно. Через t1 = 10 с точка, лежащая на его ободе, приобретает скорость v1 = 100 м/с. Найдите скорость, а также нормальное, касательное и полное ускорения этой точки в момент времени t2 = 15 с.
  5. Шкив радиусом R = 20 см начинает вращаться с угловым ускорением β = 3 рад/с2. Через какое время точка, лежащая на его ободе, будет иметь ускорение а = 75 см/с2?
  6. Точка начинает обращаться по окружности с постоянным ускорением β = 0,04 рад/с2. Через какое время вектор ее ускорения будет составлять с вектором скорости угол а = 45°?

(1) Напомним, что радиан равен центральному углу, опирающемуся на дугу, длина которой равна радиусу окружности. 1 рад приблизительно равен 57°17’48». В радианной мере угол равен отношению длины дуги окружности к ее радиусу: .

(2) Когда точка движется неравномерно, то мгновенная угловая скорость определяется как предел отношения Δφ к Δt при условии, что Δt —> 0:

(3) СИ — Международная система единиц. В этой системе за единицу длины принят 1 м, за единицу времени — 1с. Подробнее о СИ будет рассказано в дальнейшем.


источники:

http://www.syl.ru/article/188269/new_vraschatelnoe-dvijenie-i-uglovaya-skorost-tverdogo-tela

http://tepka.ru/fizika_10/37.html