Уравнением называется корнем уравнения называется решить уравнение

Что такое уравнение и корни уравнения? Как решить уравнение?

Уравнения бывают разные. Вы изучите их многие виды в курсе математике, но все они решаются по одним правилам, эти правила мы сейчас рассмотрим подробно.

Что такое уравнение? Смысл и понятия.

Узнаем сначала все понятия, связанные с уравнением.

Определение:
Уравнение – это равенство, содержащее переменные и числовые значения.

Переменные (аргументы уравнения) или неизвестные уравнения – их обозначают в основном латинскими буквами (x, y, z, f и т.д.). При подстановки числового значения переменной в уравнение получаем верное равенство – это корень уравнения.

Решить уравнение – это значит найти все корни уравнения или доказать, что у данного уравнения нет корней.

Корни уравнения – это значение переменной при котором уравнение превращается в верное равенство.

Рассмотрим теперь, все термины на простом примере:
x+1=3

В данном случае x – переменная или неизвестное значение уравнения.

Можно устно решить данное уравнение. Какое надо число прибавить к 1, чтобы получить 3? Конечно, число 2. То есть наша переменная x =2. Корень уравнения равен 2. Проверим правильно ли мы решили уравнение? Чтобы проверить уравнение, нужно вместо переменной подставить полученный корень уравнения.

Получили верное равенство. Значит, правильно нашли корни уравнения.

Но бывают более сложные уравнения, которые устно не решить. Нужно прибегать к правилам решения уравнений. Рассмотрим правила решения уравнений ниже, которые объяснят нам как решать уравнения.

Правила уменьшения или увеличения уравнения на определенное число.

Чтобы понять правило рассмотрим подробно простой пример:
Решите уравнение x+2=7

Решение:
Чтобы решить данное уравнение нужно левую и правую часть уменьшить на 2. Это нужно сделать для того, чтобы переменная x осталась слева, а известные (т.е. числа) справа. Что значит уменьшить на 2? Это значит отнять от левой части двойку и одновременно от правой части отнять двойку. Если мы делаем какое-то действие, например, вычитание применяя его одновременно к левой части уравнения и к правой, то уравнение не меняет смысл.

Нужно остановиться на этом моменте подробно. Другими словами, мы +2 перенесли с левой части на правую и знак поменяли стало число -2.

Как проверить правильно ли вы нашли корень уравнения? Ведь не все уравнения будут простыми как данное. Чтобы проверить корень уравнения его значение нужно поставить в само уравнение.

Проверка:
Вместо переменной x подставим 5.

x+2=7
5+2=7
Получили верное равенство, значит уравнение решено верно.
Ответ: 5.

Разберем следующий пример:
Решите уравнение x-4=12.

Решение:
Чтобы решить данное уравнение нужно увеличить левую и правую часть уравнения на 4, чтобы переменная x осталось в левой стороне, а известные (т.е. числа) в правой стороне. Прибавим к левой и правой части число 4. Получим:

Другими словами, мы -4 перенесли из левой части уравнения в правую и получили +4. При переносе через равно знаки меняются на противоположные.

Теперь выполним проверку, вместо переменной x подставим в уравнение полученное число 16.
x-4=12
16-4=12
Ответ: 16

Очень важно понять правила переноса частей уравнения через знак равно. Не всегда нужно переносить числа, иногда нужно перенести переменные или даже целые выражения.

Рассмотрим пример:
Решите уравнение 4+3x=2x-5

Решение:
Чтобы решить уравнение необходимо неизвестные перенести в одну сторону, а известные в другую. То есть переменные с x будут в левой части, а числа в правой части.
Сначала перенесем 2x с правой стороны в левую сторону уравнения и получим -2x.

4+3x= 2x -5
4+3x -2x =-5

Далее 4 с левой стороны уравнения перенесем на правую сторону и получим -4
4 +3x-2x=-5
3x-2x=-5 -4

Теперь, когда все неизвестные в левой стороне, а все известные в правой стороне посчитаем их.
(3-2)x=-9
1x=-9 или x=-9

Сделаем проверку, правильно ли решено уравнение? Для этого вместо переменной x в уравнение подставим -9.
4+3x=2x-5
4+3⋅ (-9) =2⋅ (-9) -5
4-27=-18-5
-23=-23

Получилось верное равенство, уравнение решено верно.
Ответ: корень уравнения x=-9.

Правила уменьшения или увеличения уравнения в несколько раз.

Данное правило подходит тогда, когда вы уже посчитали все неизвестные и известные, но какой-то коэффициент остался перед переменной. Чтобы избавится от не нужного коэффициента мы применяем правило уменьшения или увеличения в несколько раз коэффициент уравнения.

Рассмотрим пример:
Решите уравнение 5x=20.

Решение:
В данном уравнение не нужно переносить переменные и числа, все компоненты уравнения стоят на месте. Но нам мешает коэффициент 5 который стоит перед переменной x. Мы не можем его просто взять и перенести в правую сторону уравнения, потому что между число 5 и переменно x стоит умножение 5⋅х. Если бы между переменной и числом стоял знак плюс или минус, мы могли бы 5 перенести вправо. Но мы так поступить не можем. За то мы можем все уравнение уменьшить в 5 раз или поделить на 5. Обязательно делим правую и левую сторону одновременно.

5x=20
5x :5 =20 :5
5:5x=4
1x=4 или x=4

Делаем проверку уравнения. Вместо переменной x подставляем 4.
5x=20
5⋅ 4 =20
20=20 получили верное равенство, корень уравнение найден правильно.
Ответ: x=4.

Рассмотрим следующий пример:
Найдите корни уравнения .

Решение:
Так как перед переменной x стоит коэффициент необходимо от него избавиться. Надо все уравнение увеличить в 3 раза или умножить на 3, обязательно умножаем левую часть уравнения и правую часть.

Сделаем проверку уравнения. Подставим вместо переменной x полученный корень уравнения 21.

7=7 получено верное равенство.

Ответ: корень уравнения равен x=21.

Следующий пример:
Найдите корни уравнения

Решение:
Сначала перенесем -1 в правую сторону уравнения относительно знака равно, а в левую сторону и знаки у них поменяются на противоположные.
Теперь нужно все уравнение умножить на 5, чтобы в коэффициенте перед переменной x убрать из знаменателя 5.

Далее делим все уравнение на 3.

3x :3 =45 :3
(3:3)x=15

Сделаем проверку. Подставим в уравнение найденный корень.

Как решать уравнения? Алгоритм действий.

Подведем итог разобранной теме уравнений, рассмотрим общие правила решения уравнений:

  1. Перенести неизвестные в одну сторону, а известные в другую сторону уравнения относительно равно.
  2. Преобразовать и посчитать подобные в уравнении, то есть переменные с переменными, а числа с числами.
  3. Избавиться от коэффициента при переменной если нужно.
  4. В итоге всех действий получаем корень уравнение. Выполняем проверку.

Эти правила действуют на любой вид уравнения (линейный, квадратный, логарифмический, тригонометрический, рациональные, иррациональные, показательные и другие виды). Поэтому важно понять эти простые правила и научиться ими пользоваться.

1. Понятие уравнения и его корней

Равенство с переменной называ­ется уравнением. В общем виде урав­нение с одной переменной x записы­вают так: f (я) = g (я).

Под этой краткой записью пони­мают математическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны.

2х = —1 — линейное уравнение; х 2 — 3х + 2 = 0 — квадратное уравнение; чJx + 2 = x — иррациональное уравнение (содер­жит переменную под знаком корня).

Корнем (или решением) уравне­ния с одной переменной называется значение переменной, при подста­новке которого в уравнение получа­ется верное равенство.

Решить уравнение — значит най­ти все его корни (и обосновать, что других корней нет) или доказать, что корней нет.

x = 2 — корень уравнения \/x + 2 = x, так как при x = 2 получаем верное равенство: -\Д = 2, то есть 2 = 2.

2. Область допустимых значений (ОДЗ)

Областью допустимых зна­чений (или областью опреде­ления) уравнения называется общая область определения для функций f (x) и g (x), стоя­щих в левой и правой частях уравнения.

Для уравнения л/x + 2 = x ОДЗ: x + 2 1 0, то есть x 1 —2, так как область определения функции f (x) = yj x + 2 опре­деляется условием: x + 2 1 0, а область определения функции g (x) = x — множе­ство всех действительных чисел.

Если каждый корень первого уравне­ния является корнем второго, то второе уравнение называется следствием пер­вого уравнения.

Если из правильности первого равенства следует правильность каждого последую­щего, то получаем уравнения-следствия.

При использовании уравнений-след­ствий не происходит потери корней ис­ходного уравнения, но возможно появление посторонних корней. Поэтому при исполь­зовании уравнений-следствий проверка полученных корней подстановкой их в ис­ходное уравнение является составной час­тью решения (см. пункт 5 этой таблицы).

► Возведем обе части уравне­ния в квадрат:

(x + 2) = x 2 , x + 2 = x 2 , x 2 — x — 2 = 0, x1 = 2, x2 = —1. Проверка. x = 2 — корень (см. выше); x = —1 — посторонний ко­рень (при х = —1 получаем не­верное равенство 1 = —1). Ответ: 2. 2 = х обла­стью допустимых значений являются все действительные числа. Это можно записать, например, так. ОДЗ: R, поскольку функции f (x) = x 2 и g (x) = x имеют области определения R.

Понятно, что каждый корень данного уравнения принадлежит как об­ласти определения функции f (x), так и области определения функции g (x) (иначе мы не сможем получить верное числовое равенство). Поэтому каж­дый корень уравнения обязательно принадлежит ОДЗ этого уравнения. Это позволяет в некоторых случаях применить анализ ОДЗ уравнения при его решении.

Например, в уравнении л/x — 2 + \/1 — x = x функция g (x) = x определена при всех действительных значениях x, а функция f (x) = л/x — 2 + VT — x ко при условии, что под знаком квадратного корня будут стоять неотрица­тельные выражения. Следовательно, ОДЗ этого уравнения задается систе-

мой -! из которой получаем систему -! не имеющую решений.

[1 — x 10, [x 2 — 1 = 0. Но тогда верно, что (х — 1)(х + 1) = 0. Последнее урав­нение имеет два корня: х = 1 и х = —1. Подставляя их в заданное уравнение, видим, что только корень х = 1 удовлетворяет исходному уравнению. По­чему это случилось?

Это происходит поэтому, что, используя уравнения-следствия, мы гаран­тируем только то, что корни заданного уравнения не теряются (каждый корень первого уравнения является корнем второго). Но второе уравнение, кроме корней первого уравнения, имеет еще и другой корень, который не яв­ляется корнем первого уравнения. Для первого уравнения этот корень явля­ется посторонним, и, чтобы его отсеять, выполняется проверка подстановкой корней в исходное уравнение. (Более полно причины появления посторон­них корней рассмотрены в таблице 7 на с. 54.) Таким образом, чтобы пра­вильно применять уравнения-следствия для решения уравнений, необходи­мо помнить еще один о р и е н т и р: при использовании уравнений-следствий возможно появление посторонних корней, и поэтому проверка подстанов­кой корней в исходное уравнение является составной частью решения.

Схема применения этих ориентиров дана в таблице 6. В пункте 3 этой таблицы приведено решение уравнения

Замечание. Переход от данного уравнения к уравнению-следствию мож­но обозначить специальным значком ^, но его использование для записи решения не является обязательным. Вместе с тем, если этот значок запи­сан, то это свидетельствует о том, что мы воспользовались уравнениями- следствиями, и поэтому обязательно в запись решения необходимо вклю­чить проверку полученных корней.

С понятием равносильности вы знакомы еще из курса алгебры 7 класса, где равносильными назывались те уравнения, которые имели одни и те же корни. Заметим, что равносильными считались и такие два уравнения, ко­торые не имели корней. Формально будем считать, что и в этом случае урав­нения имеют одни и те же корни, поскольку ответы к таким уравнениям одинаковы: «уравнения не имеют корней» (точнее: одинаковыми являются множества корней таких уравнений — они оба пустые, что обозначается символом 0).

В курсе алгебры и начал математического анализа мы будем рассматри­вать более общее понятие равносильности, а именно: равносильность на определенном множестве.

Два уравнения называются равносильными на некотором множе-
стве, если на этом множестве они имеют одни и те же корни, то
есть каждый корень первого уравнения является корнем второго

и, наоборот, каждый корень второго уравнения является корнем
первого.

Для уравнений, заданных на множестве всех действительных чисел (например, для линейных), мы можем однозначно дать ответ на вопрос: «Равносильны ли данные уравнения?» Например, уравнения х + 3 = 0 и 2х + 6 = 0 — равносильные, поскольку оба имеют одинаковый корень х = —3 и других корней не имеют, таким образом, каждое из них имеет те же решения, что и второе.

При рассмотрении равносильности уравнений на множестве, которое от­личается от множества всех действительных чисел, ответ на вопрос «Равно­сильны ли данные уравнения?» может существенно зависеть от того, на каком множестве мы рассматриваем эти уравнения. Например, если рас­смотреть уравнения:

то, как было показано выше, уравнение (3) имеет единственный корень х = 1, а уравнение (4) — два корня: х = 1 и х = —1. Таким образом, на множестве всех действительных чисел эти уравнения не являются равносильными, по­скольку у уравнения (4) есть корень х = —1, которого нет у уравнения (3). Но на множестве положительных действительных чисел эти уравнения равно­

сильны, поскольку на этом множестве уравнение (3) имеет единственный положительный корень х = 1 и уравнение (4) также имеет единственный положительный корень х = 1. Следовательно, на множестве положительных чисел каждое из этих уравнений имеет те же решения, что и второе.

Укажем, что множество, на котором рассматривается равносильность уравнений, как правило, не задается искусственно (как в последнем слу­чае), а чаще всего таким множеством является ОДЗ исходного уравнения. Договоримся, что далее

все равносильные преобразования уравнений (а также неравенств и си­стем уравнений и неравенств) мы будем выполнять на ОДЗ исходного урав­нения (неравенства или системы). Отметим, что в том случае, когда ОДЗ за­данного уравнения является множество всех действительных чисел, мы не всегда будем ее записывать (как не записывали ОДЗ при решении линейных или квадратных уравнений). И в других случаях главное — не записать ОДЗ в решение уравнения, а реально учесть ее при выполнении равносильных преобразований данного уравнения.

Например, для уравнения \Ix + 2 = x ОДЗ задается неравенством х + 2 1 0. Когда мы переходим к уравнению х + 2 = х 2 , то для всех его корней это уравнение является верным равенством. Тогда выражение х 2 , стоящее в пра­вой части этого равенства, всегда неотрицательно (х 2 1 0), таким образом, и равное ему выражение х + 2 также будет неотрицательным: х + 2 1 0. Но это и означает, что ОДЗ данного уравнения (х + 2 1 0) учтено автоматически для всех корней второго уравнения и поэтому при переходе от уравнения yjx + 2 = x к уравнению х + 2 = х 2 ОДЗ заданного уравнения можно не запи­сывать в решение.

Для выполнения равносильных преобразований попробуем выделить общие ориентиры, аналогичные соответствующим ориентирам получения уравнений-следствий.

Как указывалось выше, выполняя равносильные преобразования уравне­ний, необходимо учесть ОДЗ данного уравнения — это и есть первый о р и — ентир для выполнения равносильных преобразований уравнений.

По определению равносильности уравнений необходимо гарантировать, чтобы каждый корень первого уравнения был корнем второго и наоборот — каждый корень второго уравнения был корнем первого. Для первой части этого требования мы уже выделили общий ориентир: достаточно гарантиро­вать сохранение правильности равенства при переходе от первого уравнения ко второму (с. 49).

Но тогда, чтобы выполнить вторую часть этого требования, достаточно второе уравнение рассмотреть как верное равенство (то есть взять такое значение переменной, которое является корнем второго уравнения) и га­рантировать, что при переходе к первому верное равенство сохраняется (этот корень остается и корнем первого уравнения). Фактически из опреде­ления равносильности уравнений получаем, что каждое из равносильных уравнений является следствием другого уравнения). Таким образом, при

выполнении равносильных преобразований мы должны гарантировать со­хранение правильности равенства на каждом шаге решения не только при прямых, но и при обратных преобразованиях — это и является вторым о р и — ен т и р ом для решения уравнений с помощью равносильных преобразова­ний. (Соответствующие ориентиры схематически представлены в пункте 5 табл. 6.)

Например, чтобы решить с помощью равносильных преобразований урав-

——- = 0, достаточно учесть его ОДЗ: х + 1 Ф 0 и условие равенства

дроби нулю (дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель не равен нулю). Также следует обратить внима­ние на то, что на ОДЗ все необходимые преобразования можно выполнить как в прямом, так и в обратном направлениях с сохранением правильности равенства.

Запись решения в этом случае может быть такой:

= 0. ► ОДЗ: х + 1 Ф 0. Тогда х 2 —1 = 0. Отсюда х = 1 (удовлетворяет

условию ОДЗ) или х = —1 (не удовлетворяет условию ОДЗ). Ответ: 1. 2 + л/ x — 2 = 6x + >/ x — 2. Перенесем из правой части уравнения в левую слагаемое \tx — 2 с противоположным знаком и приведем подобные члены.

Получим х 2 — 6х = 0, х1 = 0, х2 = 6

к уравнению, ОДЗ которого шире, чем ОДЗ заданного уравнения;

Приведение обе­их частей урав­нения к обще­му знаменателю (при сокращении знаменателя)

4 + 7 = 4 x + 2 x + 3 x 2 + 5x + 6 Умножим обе части уравнения на общий знаменатель всех дробей (х + 2)(х + 3).

4 (х + 3) + 7 (х + 2) = 4,

Возведение обеих частей иррацио­нального уравне­ния в квадрат

yj2x +1 =Vx. 2х + 1 = х,

б) выполне­ние преоб­разований, при которых происходит неявное умно­жение на нуль;

Умножение обеих частей уравнения на выражение с пере­менной

х 2 + х + 1 = 0. Умножим обе части уравнения на х —1.

(х — 1)(х 2 + х + 1) = 0. Получим х 3 — 1 = 0, х = 1

Как получить правильное (или полное) решение

Пример правильного (или полного) решения

при решении уравнения

х1 = 0 не является корнем заданного уравнения

Выполнить про­верку подстановкой корней в заданное уравнение

x 2 + V x — 2 = 6x + >/ x — 2.

► х 2 — 6х = 0, х1 = 0, х2 = 6. Проверка показывает, что х1 = 0 — посторонний корень, х2 = 6 — корень.

Ответ: 6. x + 2 x + 3 x 2 + 5x + 6

► 4 (x + 3) + 7 (x + 2) = 4;

11x = —22, x = —2. Проверка показывает, что х = -2 — посторонний корень. Ответ: корней нет. 2 + х + 1 = 0.

► D = —3 2 = (2х + 1) 2 . Получим 3х 2 + 6х = 0, х1 = 0, х2 = —2

2. Потеря корней

Явное или неяв­ное сужение ОДЗ заданного урав­нения, в частно­сти выполнение преобразований, в ходе которых происходит не­явное деление на нуль

1. Деление обеих ча­стей уравнения на выражение с пе­ременной

Поделив обе части уравнения на х, получим

2. Сложение, вычи­тание, умноже­ние или деление обеих частей уравнения на выражение, ОДЗ которого уже, чем ОДЗ задан­ного уравнения

Если к обеим частям уравнения прибавить \[x, то получим уравнение

x 2 + yfx = 1 + yfx, у которого только один корень х = 1

Уравнение и его корни: определения, примеры

После того, как мы изучили понятие равенств, а именно один из их видов – числовые равенства, можно перейти к еще одному важному виду – уравнениям. В рамках данного материала мы объясним, что такое уравнение и его корень, сформулируем основные определения и приведем различные примеры уравнений и нахождения их корней.

Понятие уравнения

Обычно понятие уравнения изучается в самом начале школьного курса алгебры. Тогда оно определяется так:

Уравнением называется равенство с неизвестным числом, которое нужно найти.

Принято обозначать неизвестные маленькими латинскими буквами, например, t , r , m др., но чаще всего используются x , y , z . Иными словами, уравнение определяет форма его записи, то есть равенство будет уравнением только тогда, когда будет приведен к определенному виду – в нем должна быть буква, значение которое надо найти.

Приведем несколько примеров простейших уравнений. Это могут быть равенства вида x = 5 , y = 6 и т.д., а также те, что включают в себя арифметические действия, к примеру, x + 7 = 38 , z − 4 = 2 , 8 · t = 4 , 6 : x = 3 .

После того, как изучено понятие скобок, появляется понятие уравнений со скобками. К ним относятся 7 · ( x − 1 ) = 19 , x + 6 · ( x + 6 · ( x − 8 ) ) = 3 и др. Буква, которую надо найти, может встречаться не один раз, а несколько, как, например, в уравнении x + 2 + 4 · x − 2 − x = 10 . Также неизвестные могут быть расположены не только слева, но и справа или в обеих частях одновременно, например, x · ( 8 + 1 ) − 7 = 8 , 3 − 3 = z + 3 или 8 · x − 9 = 2 · ( x + 17 ) .

Далее, после того, как ученики знакомятся с понятием целых, действительных, рациональных, натуральных чисел, а также логарифмами, корнями и степенями, появляются новые уравнения, включающие в себя все эти объекты. Примерам таких выражений мы посвятили отдельную статью.

В программе за 7 класс впервые возникает понятие переменных. Это такие буквы, которые могут принимать разные значения (подробнее см. в статье о числовых, буквенных выражениях и выражениях с переменными). Основываясь на этом понятии, мы можем дать новое определение уравнению:

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

То есть, к примеру, выражение x + 3 = 6 · x + 7 – это уравнение с переменной x , а 3 · y − 1 + y = 0 – уравнение с переменной y .

В одном уравнении может быть не одна переменная, а две и более. Их называют соответственно уравнениями с двумя, тремя переменными и др. Запишем определение:

Уравнениями с двумя (тремя, четырьмя и более) переменными называют уравнения, которые включают в себя соответствующее количество неизвестных.

К примеру, равенство вида 3 , 7 · x + 0 , 6 = 1 является уравнением с одной переменной x , а x − z = 5 – уравнением с двумя переменными x и z . Примером уравнения с тремя переменными может быть выражение x 2 + ( y − 6 ) 2 + ( z + 0 , 6 ) 2 = 26 .

Корень уравнения

Когда мы говорим об уравнении, сразу возникает необходимость определиться с понятием его корня. Попробуем объяснить, что оно означает.

Нам дано некое уравнение, включающее в себя одну переменную. Если мы подставим вместо неизвестной буквы число, то уравнение станет числовым равенством – верным или неверным. Так, если в уравнении a + 1 = 5 мы заменим букву числом 2 , то равенство станет неверным, а если 4 , то получится верное равенство 4 + 1 = 5 .

Нас больше интересуют именно те значения, с которыми переменная обратится в верное равенство. Они и называются корнями или решениями. Запишем определение.

Корнем уравнения называют такое значение переменной, которое обращает данное уравнение в верное равенство.

Корень также можно назвать решением, или наоборот – оба эти понятия означают одно и то же.

Возьмем пример для пояснения этого определения. Выше мы приводили уравнение a + 1 = 5 . Согласно определению, корнем в данном случае будет 4 , потому что при подстановке вместо буквы оно дает верное числовое равенство, а двойка не будет решением, поскольку ей отвечает неверное равенство 2 + 1 = 5 .

Сколько корней может иметь одно уравнение? Любое ли уравнение имеет корень? Ответим на эти вопросы.

Уравнения, не имеющие ни одного корня, тоже существуют. Примером может быть 0 · x = 5 . Мы можем подставить в него бесконечно много разных чисел, но ни одно из них не превратит его в верное равенство, поскольку умножение на 0 всегда дает 0 .

Также бывают уравнения, имеющие несколько корней. У них может быть как конечное, так и бесконечно большое количество корней.

Так, в уравнении x − 2 = 4 есть только один корень – шесть, в x 2 = 9 два корня ­­– три и минус три, в x · ( x − 1 ) · ( x − 2 ) = 0 три корня – нуль, один и два, в уравнении x=x корней бесконечно много.

Теперь поясним, как правильно записывать корни уравнения. Если их нет, то мы так и пишем: «уравнение корней не имеет». Можно также в этом случае указать знак пустого множества ∅ . Если корни есть, то пишем их через запятую или указываем как элементы множества, заключив в фигурные скобки. Так, если у какого-либо уравнения есть три корня — 2 , 1 и 5 , то пишем — 2 , 1 , 5 или < - 2 , 1 , 5 >.

Допускается запись корней в виде простейших равенств. Так, если неизвестная в уравнении обозначена буквой y , а корнями являются 2 и 7 , то мы пишем y = 2 и y = 7 . Иногда к буквам добавляются нижние индексы, например, x 1 = 3 , x 2 = 5 . Таким образом мы указываем на номера корней. Если решений у уравнения бесконечно много, то мы записываем ответ как числовой промежуток или используем общепринятые обозначения: множество натуральных чисел обозначается N , целых ­– Z , действительных – R . Скажем, если нам надо записать, что решением уравнения будет любое целое число, то мы пишем, что x ∈ Z , а если любое действительное от единицы до девяти, то y ∈ 1 , 9 .

Когда у уравнения два, три корня или больше, то, как правило, говорят не о корнях, а о решениях уравнения. Сформулируем определение решения уравнения с несколькими переменными.

Решение уравнения с двумя, тремя и более переменными – это два, три и более значения переменных, которые обращают данное уравнение в верное числовое равенство.

Поясним определение на примерах.

Допустим, у нас есть выражение x + y = 7 , которое представляет из себя уравнение с двумя переменными. Подставим вместо первой единицу, а вместо второй двойку. У нас получится неверное равенство, значит, эта пара значений не будет решением данного уравнения. Если же мы возьмем пару 3 и 4 , то равенство станет верным, значит, мы нашли решение.

Такие уравнения тоже могут не иметь корней или иметь бесконечное их количество. Если нам надо записать два, три, четыре и более значений, то мы пишем их через запятую в круглых скобках. То есть в примере выше ответ будет выглядеть как ( 3 , 4 ) .

На практике чаще всего приходится иметь дело с уравнениями, содержащими одну переменную. Алгоритм их решения мы подробно рассмотрим в статье, посвященной решению уравнений.


источники:

http://ya-znau.ru/znaniya/zn/274

http://zaochnik.com/spravochnik/matematika/systems/uravnenie-i-ego-korni/