Уравнением прямой перпендикулярной оси ординат будет

Прямые на координатной плоскости

Линейная функция
График линейной функции
Прямые, параллельные оси ординат
Уравнения вида px + qy = r . Параллельные прямые. Перпендикулярные прямые

Линейная функция

Линейной функцией называют функцию, заданную формулой

y = kx + b,(1)

где k и b – произвольные (вещественные) числа.

При любых значениях k и b графиком линейной функции является прямая линия .

Число k называют угловым коэффициентом прямой линии (1), а число b – свободным членом .

График линейной функции

При k > 0 линейная функция (1) возрастает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 1, 2 и 3.

Рис.1
Рис.2
Рис.3

При k = 0 линейная функция (1) принимает одно и тоже значение y = b при всех значениях x , а её график представляет собой прямую линию, параллельную оси абсцисс, и изображен на рис. 4, 5 и 6.

Рис.4
Рис.5
Рис.6

При k линейная функция (1) убывает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 7, 8 и 9.

k y = kx + b1 и y = kx + b2 ,

имеющие одинаковые угловые коэффициенты и разные свободные члены , параллельны .

имеющие разные угловые коэффициенты , пересекаются при любых значениях свободных членов.

y = kx + b1 и

перпендикулярны при любых значениях свободных членов.

Угловой коэффициент прямой линии

y = kx(2)

равен тангенсу угла φ , образованному (рис. 10) при повороте положительной полуоси абсцисс против часовой стрелки вокруг начала координат до прямой (2).

Рис.10
Рис.11
Рис.12

Прямая (1) пересекает ось Oy в точке, ордината которой (рис. 11) равна b .

При прямая (1) пересекает ось Ox в точке, абсцисса которой (рис. 12) вычисляется по формуле

Прямые, параллельные оси ординат

Прямые, параллельные оси Oy , задаются формулой

x = c ,(3)

где c – произвольное число, и изображены на рис. 13, 14, 15.

Рис.13
Рис.14
Рис.15

Замечание 1 . Из рис. 13, 14, 15 вытекает, что зависимость, заданная формулой (3), функцией не является, поскольку значению аргумента x = c соответствует бесконечное множество значений y .;

Уравнение вида px + qy = r . Параллельные прямые. Перпендикулярные прямые

px + qy = r ,(4)

где p, q, r – произвольные числа.

В случае, когда уравнение (4) можно переписать в виде (1), откуда вытекает, что оно задаёт прямую линию .

что и требовалось.

В случае, когда получаем:

откуда вытекает, что уравнение (4) задает прямую линию вида (3).

В случае, когда q = 0, p = 0, уравнение (4) имеет вид

0 = r ,(5)

и при r = 0 его решением являются точки всей плоскости:

В случае, когда уравнение (5) решений вообще не имеет.

Замечание 2 . При любом значении r1 , не совпадающем с r прямая линия, заданная уравнением

px + qy = r1 ,(6)

параллельна прямой, заданной уравнением (4) .

Замечание 3 . При любом значении r2 прямая линия, заданная уравнением

qx + py = r2 ,(7)

перпендикулярна прямой, заданной уравнением (4) .

Пример . Составить уравнение прямой, проходящей через точку с координатами (2; – 3) и

  1. параллельной к прямой
    4x + 5y = 7 ;(8)
  2. перпендикулярной к прямой (8).

В соответствии с формулой (6), будем искать уравнение прямой, параллельной прямой (8), в виде

4x + 5y = r1 ,(9)

где r1 – некоторое число. Поскольку прямая (9) проходит через точку с координатами (2; – 3), то справедливо равенство

Итак, уравнение прямой, параллельной к прямой

В соответствии с формулой (7), будем искать уравнение прямой, перпендикулярной прямой (8), в виде

– 5x + 4y = r2 ,(10)

где r2 – некоторое число. Поскольку прямая (10) проходит через точку с координатами (2; – 3), то справедливо равенство

Love Soft

Инструменты пользователя

Инструменты сайта

Боковая панель

Навигация

Загрузки всякие

Связь

Содержание

Уравнение прямой

Прямая — ГМТ, равноудаленных от двух точек.

(I) Общее уравнение прямой на плоскости

Уравнение прямой имеет вид $Ax + By + C = 0$, где $A$, $B$ и $C$ — некоторые числа, причем $A$ и $B$ не равны 0 одновременно.

При $A=0$ прямая параллельна оси oX, при $B=0$ — параллельна оси oY.

При $C=0$ прямая проходит через начало координат.

Вектор с координатами $(A;B)$ называется нормальным вектором, он перпендикулярен прямой.

Также уравнение можно переписать в виде $$A(x-x_0) + B(y-y_0) = 0$$

(II) Уравнение прямой с угловым коэффициентом

Уравнением вида $y = kx + b$ можно задать не любую прямую — а именно, нельзя задать прямую, перпендикулярную оси абсцисс.

(III) Уравнение прямой в отрезках на осях

Если прямая пересекает оси OX и OY в точках с координатами (a, 0) и (0, b), то она может быть найдена используя формулу уравнения прямой в отрезках $$\frac x a + \frac = 1$$

В этом виде невозможно представить прямую, проходящую через начало координат.

(IV) Уравнение прямой, проходящей через две точки

Пусть даны две несовпадающие точки A(x1;y1) и B(x2;y2). Уравнение прямой, проходящей через точки A(x1;y1) и B(x2;y2) имеет вид:

(V) Каноническое уравнение прямой

Если известны координаты точки $P(x_0, y_0)$ лежащей на прямой и направляющего вектора $ \vec v = (a; b)$, то уравнение прямой можно записать в каноническом виде, используя следующую формулу:

(VI) Параметрическое уравнение прямой

Параметрические уравнения прямой могут быть записаны следующим образом $$ x = a t + x_0, y = b t + y_0$$ где $(x_0, y_0)$ — координаты точки лежащей на прямой, $(a, b)$ — координаты направляющего вектора прямой.

(VII) Уравнение прямой в полярных координатах

Уравнение прямой с углом наклона $\alpha$ в полярных координатах $r$ и $\phi$: $$r \cos(\phi-\alpha)=p$$

Калькулятор

Калькулятор для составления уравнения прямой — показывает ход решения

Переход к другой форме записи

От общего уравнения к уравнению с угловым коэффициентом

Выразить переменную y: $Ax + By + C = 0$

$y = -\frac A B x- \frac C B$

От уравнения с угловым коэффициентом к общему уравнению

Перенести все члены в левую часть уравнения

Угловой коэффициент прямой

Угловой коэффициент прямой $k$ = численно равен тангенсу угла между прямой и положительным направлением оси абсцисс.

Тангенс угла может рассчитываться как отношение противолежащего катета к прилежащему.

Slope — угловой коэффициент — наклон, склон холма, показатель насколько крутой холм или гора.

Чтобы найти наклон между двумя точками на плоскости используется формула:

Иногда горизонтальное изменение называют «пробег», а вертикальное изменение — «подъем» или «снижение, спад».

Наклон биссектрисы первого координатного угла равен 1, так как скорость изменения по оси X и по оси Y одинаковы.

Например, найдем наклон между точками (2, 1) и (-9, 7)

Найдем наклон между точками (-1, -3) и (1, 1)

Чем больше модуль числа, чем круче склон. Положительное число означает, что наклон идет вверх при движении слева направо (прямая возрастает). Отрицательное число означает, что наклон идет вниз при движении слева направо (прямая убывает).

Угол между двумя прямыми

Пусть две неперпендикулярные прямые представляются уравнениями $$y= a_1 x+ b_1 \\ y= a_2 x+ b_2$$ Тогда угол между двумя прямыми найдется по формуле $$tg(θ)=\frac<1+ a_1 \cdot a_2>$$

Условие параллельности двух прямых

Две прямые параллельны (или совпадают), если равны их угловые коэффициенты.

Теорема. Прямые $y = k_1 x + b_1$ и $y = k_2 x + b_2$ параллельны тогда и только тогда, когда $k_1 = k_2$ и $b_1 \ne b_2$.

Задача

Проверить, выполняется ли условие параллельности прямых $2x-3y+1=0$ и $4x-6y-5=0$.

Задача

Составить уравнение прямой линии, проходящей через точку $(1;2)$ параллельно прямой $2x-3y+1=0$.

Условие перпендикулярности двух прямых

Условие перпендикулярности прямых заключается в том, что произведение их угловых коэффициентов равно –1: $$k_1 \cdot k_2=-1$$

Задача

При каком значении $k$ уравнение $y=kx+1$ определяет прямую, перпендикулярную к прямой $y=2x-1$?

Задача

Составить уравнение прямой линии, проходящей через точку $(-1;1)$ перпендикулярно к прямой $3x-y+2=0$.

Сводная таблица

угловые коэффициентыпрямые
Если угловые коэффициенты двух линейных функций равны, то прямые, являющиеся их графиками, параллельныПараллельные прямые имеют одинаковый наклон.
Если угловые коэффициенты двух линейных функций не равны, то прямые, являющиеся их графиками, пересекаютсяЕсли прямые пересекаются, то их наклоны не равны
Если произведение угловых коэффициентов равно (-1), то прямые, являющиеся их графиками, перпендикулярны.Если прямые перпендикулярны, то произведение их наклонов всегда = -1.
Если прямая параллельна оси ординат, то формула не применима (возникает деление на 0), и для таких прямых угловой коэффициент не определён.

Задачи — угловой коэффициент на бумаге в клетку

Определить угловой коэффициент прямой:

Расстояние от точки до прямой

Когда прямая на плоскости задана уравнением $ax + by + c = 0$, где a, b и c — такие вещественные константы, что a и b не равны нулю одновременно, и расстояние от прямой до точки $(x_0,y_0)$ равно

Точка на прямой, наиболее близкая к $(x_0,y_0)$, имеет координаты

Прямая линия. Уравнение прямой.

Свойства прямой в евклидовой геометрии.

Через любую точку можно провести бесконечно много прямых.

Через любые две несовпадающие точки можно провести единственную прямую.

Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются

параллельными (следует из предыдущего).

В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:

  • прямые пересекаются;
  • прямые параллельны;
  • прямые скрещиваются.

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия

задается на плоскости уравнением первой степени (линейное уравнение).

Общее уравнение прямой.

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

уравнением прямой. В зависимости от значений постоянных А, В и С возможны следующие частные случаи:

C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

А = 0, В ≠0, С ≠0 — прямая параллельна оси Ох

В = 0, А ≠0, С ≠ 0 – прямая параллельна оси Оу

В = С = 0, А ≠0 – прямая совпадает с осью Оу

А = С = 0, В ≠0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных

Уравнение прямой по точке и вектору нормали.

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В)

перпендикулярен прямой , заданной уравнением

Пример. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Решение. Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С

подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно

С = -1. Итого: искомое уравнение: 3х – у – 1 = 0.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 ( x 1 , y 1 , z 1 ) и M2 ( x 2, y 2 , z 2 ), тогда уравнение прямой,

проходящей через эти точки:

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На

плоскости записанное выше уравнение прямой упрощается:

Дробь = k называется угловым коэффициентом прямой.

Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение. Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется

уравнением прямой с угловым коэффициентом k.

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание

прямой через точку и направляющий вектор прямой.

Определение. Каждый ненулевой вектор 1, α2), компоненты которого удовлетворяют условию

Аα1 + Вα2 = 0 называется направляющим вектором прямой.

Пример. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Решение. Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением,

коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0.

при х = 1, у = 2 получаем С/ A = -3, т.е. искомое уравнение:

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на –С, получим:

или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения

прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется

нормирующем множителем, то получим

xcosφ + ysinφ — p = 0 – нормальное уравнение прямой.

Знак ± нормирующего множителя надо выбирать так, чтобы μ * С Что-то не нашли? Ошибка? Предложения? Сообщите нам


источники:

http://xlench.bget.ru/doku.php/mat/algebra/eq-line

http://www.calc.ru/1437.html