Уравнения асимптот и расстояние между вершинами равно 48

Гипербола: формулы, примеры решения задач

Определение гиперболы, решаем задачи вместе

Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы имеет вид:

,

где a и b — длины полуосей, действительной и мнимой.

На чертеже ниже фокусы обозначены как и .

На чертеже ветви гиперболы — бордового цвета.

При a = b гипербола называется равносторонней.

Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.

Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:

.

Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.

Точки и , где

,

называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).

называется эксцентриситетом гиперболы.

Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.

Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.

Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,

Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.

То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.

Подставляем и вычисляем:

Получаем требуемое в условии задачи каноническое уравнение гиперболы:

.

Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет .

Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет — это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:

.

Результат — каноническое уравнение гиперболы:

Если — произвольная точка левой ветви гиперболы () и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:

.

Если — произвольная точка правой ветви гиперболы () и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:

.

На чертеже расстояния обозначены оранжевыми линиями.

Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами гиперболы (на чертеже — прямые ярко-красного цвета).

Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы

,

где — расстояние от левого фокуса до точки любой ветви гиперболы, — расстояние от правого фокуса до точки любой ветви гиперболы и и — расстояния этой точки до директрис и .

Пример 4. Дана гипербола . Составить уравнение её директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. . Вычисляем:

.

Получаем уравнение директрис гиперболы:

Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке «Эллипс» это пример 7.

Характерной особенностью гиперболы является наличие асимптот — прямых, к которым приближаются точки гиперболы при удалении от центра.

Асимптоты гиперболы определяются уравнениями

.

На чертеже асимптоты — прямые серого цвета, проходящие через начало координат O.

Уравнение гиперболы, отнесённой к асимптотам, имеет вид:

, где .

В том случае, когда угол между асимптотами — прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.

Пример 5. Даны уравнения асимптот гиперболы и координаты точки , лежащей на гиперболе. Составить уравнение гиперболы.

Решение. Дробь в уравнении асимптот гиперболы — это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения . Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.

.

Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:

Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.

Решить задачи на гиперболу самостоятельно, а затем посмотреть решения

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) b = 4 , а один из фокусов в точке (5; 0)

2) действительная ось 6, расстояние между фокусами 8

3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы

Сборник задач по линейной алгебре и аналитической геометрии Учебное пособие (стр. 8 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9

15.25. Составить уравнение эллипса, если известны его эксцентриситет , фокус F(3,0) и уравнение соответствующей директрисы х+у-1=0.

15.26. Найти точки пересечения прямой х+2у-7=0 и эллипса х2+4у2=25.

15.27. Найти точки пересечения прямой 3х+10у-25=0 и эллипса .

15.28. Найти точки пересечения прямой 3х-4у-40=0 и эллипса .

15.29. Определить, при каких значениях m прямая у = — х + m 1)пересекает эллипс , 2)касается его, 3)проходит вне этого эллипса.

15.30. Составить уравнение касательной к эллипсу параллельной прямой 3х+2у+7=0.

16.1. Составить уравнение гиперболы, фокусы которой расположены на оси ординат симметрично относительно начала координат, зная, кроме того, что ее полуоси =6, b=18 (буквой обозначаем полуось гиперболы, расположенную на оси абсцисс).

16.2. Составить уравнение гиперболы, фокусы которой расположены на оси абсцисс, если расстояние между фокусами 2с=10 и эксцентриситет .

16.3. Составить уравнение гиперболы, фокусы которой расположены на оси ординат симметрично относительно начала координат, если уравнения асимптот у = и расстояние между вершинами равно 48.

16.4. Составить уравнение гиперболы, фокусы которой расположены на оси абсцисс симметрично относительно начала координат, если расстояние между директрисами равно и эксцентриситет .

16.5. Составить уравнение гиперболы, фокусы которой расположены на оси ординат симметрично относительно начала координат, если расстояние между директрисами равно и уравнения асимптот у = .

16.6. Дана гипербола 16х2-9у2 = -144. Найти 1)полуоси и b, 2)фокусы, 3)эксцентриситет, 4)уравнения асимптот, 5) уравнения директрис.

16.7. Вычислить площадь треугольника, образованного асимптотами гиперболы и прямой 9х+2у-24=0.

16.8. Дана гипербола определить фокальные радиусы точки М1.

16.9. Эксцентриситет гиперболы , фокальный радиус ее точки М, проведенный из некоторого фокуса, равен 16. Вычислить расстояние от точки М до односторонней с этим фокусом директрисы.

16.10.Эксцентриситет гиперболы , расстояние от точки М гиперболы до директрисы равно 4. Вычислить расстояние от точки М до фокуса, одностороннего с этой директрисой.

16.11. Эксцентриситет гиперболы , центр ее лежит в начале координат, один из фокусов F(12,0). Вычислить расстояние от точки М, гиперболы с абсциссой, равной 13, до директрисы, соответствующей заданному фокусу.

16.12. Эксцентриситет гиперболы , центр ее лежит в начале координат, одна из директрис дана уравнением х = -8. Вычислить расстояние от точки М1 гиперболы с абсциссой, равной 10, до фокуса, соответствующего заданной директрисе.

16.13. Определить точки гиперболы , расстояние которых до правого фокуса равно 4,5.

16.14. Определить точки гиперболы , расстояние которых до левого фокуса равно 7.

16.15. Составить уравнение гиперболы, фокусы которой лежат на оси абсцисс симметрично относительно начала координат, если даны точки М1(6,-1) и М2() гиперболы.

16.16. Составить уравнение гиперболы, фокусы которой лежат на оси ординат симметрично относительно начала координат, если даны точка гиперболы и эксцентриситет .

16.17. Составить уравнение гиперболы, фокусы которой лежат на оси абсцисс, симметрично относительно начала координат, если даны точка М гиперболы и уравнения асимптот у = .

16.18. Составить уравнение гиперболы, фокусы которой расположены на оси ординат симметрично относительно начала координат, если даны точка М1 гиперболы и уравнения директрис х = .

16.19. Составить уравнение гиперболы, фокусы которой расположены на оси абсцисс, симметрично относительно начала координат, если даны уравнения асимптот у = уравнения директрис х = .

16.20. Фокусы гиперболы совпадают с фокусами эллипса . Составить уравнения гиперболы, если ее эксцентриситет .

16.21. Составить уравнения гиперболы, фокусы которой лежат в вершинах эллипса , а директрисы проходят через фокусы этого эллипса.

16.22. Найти центр, полуоси, эксцентриситет, уравнения асимптот и уравнения директрис гиперболы 16х2-9у2-64х-54у-161=0.

16.23. Найти центр, полуоси, эксцентриситет, уравнения асимптот и уравнения директрис гиперболы 9х2-16у2+90х+32у-367=0.

16.24. Составить уравнения гиперболы, зная, что расстояние между ее вершинами равно 24 и фокусы F1(-10,2) и F2(16,2).

16.25. Составить уравнение гиперболы, зная, что фокусы F1(3,4) и F2(-3,-4) и расстояние между директрисами равно 3,6.

16.26. Составить уравнение гиперболы, если угол между асимптотами равен 90˚ и фокусы F1(4,-4) и F2(-2,2).

16.27. Составить уравнение гиперболы, если известны ее эксцентриситет , фокус F(5,0) и уравнение соответствующей директрисы 5х-16=0.

16.28. Найти точки пересечения прямой 2х-у-10=0 и гиперболы .

16.29. Найти точки пересечения прямой 4х-3у-16=0 и гиперболы .

17.1. Составить уравнение параболы, вершина которой находится в начале координат, зная, что парабола расположена симметрично относительно оси ОХ и проходит через точку А(9,6).

17.2. Составить уравнение параболы, вершина которой находится в начале координат, если парабола расположена симметрично оси ОХ и проходит через точку В(-1,3).

17.3. Составить уравнение параболы, вершина которой находится в начале координат, если парабола расположена симметрично относительно оси ОУ и проходит через точку С(1,1).

17.4. Составить уравнения параболы, вершина которой находится в начале координат, если парабола расположена симметрично относительно оси ОУ и проходит через точку D(4,-8).

17.5. Найти фокус F и уравнение директрисы параболы у2=24х.

17.6. Вычислить фокальный радиус точки М параболы у2=20х, если абсцисса точки М равна 7.

17.7. Вычислить фокальный радиус точки М параболы у2=12х, если ордината точки М равна 6.

17.8. На параболе у2=16х найти точки, фокальный радиус которых равен 13.

17.9. Составить уравнение параболы, если дан фокус F(-7,0) и уравнение директрисы х-7=0.

17.10. Найти вершину параболы и ее параметр у2=4-6х.

17.11. Найти вершину и параметр параболы х=-у2+2у-1.

17.12. Составить уравнение параболы, если даны ее фокус F(7,2) и директриса х-5=0.

17.13.Составить уравнение параболы, если ее фокус F(4,3) и директриса у+1=0.

17.14. Составить уравнение параболы, если даны ее фокус F(2,-1) и директриса х-у-1=0.

17.15. Даны вершина параболы А(6,-3) и уравнение ее директрисы

3х-5у+1=0. Найти фокус F этой параболы.

17.16. Даны вершина параболы (-2,-1) и уравнение ее директрисы х+2у-1=0. Составить уравнение этой параболы.

17.17. Определить точки пересечения прямой х+у-3=0 и параболы х2=4у.

17.18. Определить точки пересечения прямой 3х+4у-12=0 и параболы у2=-9х.

17.19. Определить точки пересечения прямой 3х-2у+6=0 и параболы у2=6х.

17.20. Определить при каких значениях углового коэффициента kпрямая

у = kх+2 а)пересекает параболу у2=4х, б)касается ее, в)проходит вне этой параболы.

17.21. Составить уравнение прямой, которая касается параболы у2=8х и параллельна прямой 2х+2у-3=0.

Как найти координаты фокусов гиперболы

Гиперболой Называется геометрическое место точек на плоскости, разность расстояний которых до двух данных точек, называемых фокусами, есть величина постоянная.

Обозначим эту постоянную через 2А, расстояние между фокусами через 2С, а оси координат выберем так же, как в разделе 2.3.

Пусть М(Х, У) – произвольная точка гиперболы (рисунок 2.4).

По определению гиперболы F2MF1М = ±2A. (Знак плюс в правой части надо выбрать, если F2M > F1М, и минус, если F2M A).

Исследуем формулу гиперболы.

1. Уравнение (2.7) содержит квадраты текущих координат, следовательно, оси координат являются осями симметрии гиперболы. Ось симметрии, на которой находятся фокусы, называется фокальной осью, точка пересечения осей симметрии – центром гиперболы. Для гиперболы, заданной уравнением (2.7), фокальная ось совпадает с осью ОХ, а центр – с началом координат.

В этом случае координаты фокусов гиперболы имеют вид F1(с,0), F2(-с,0).

2. Точки пересечения с осями симметрии. Точки пересечения гиперболы с осями симметрии называются Вершинами гиперболы. Полагая в уравнении (2.7) У = 0, найдем абсциссы точек пересечения с осью ОХ:

или X2 = А2, откуда Х = ±А.

Итак, точки и являются вершинами гиперболы.

Если же в уравнении (2.7) принять x = 0, получим

или У2 = –B2,

Т. е. для У мы получили мнимые значения. Это означает, что гипербола не пересекает ось ОY.
В соответствии с этим ось симметрии, пересекающая гиперболу, называется действительной осью (фокальная ось); ось симметрии, которая не пересекает гиперболу, – ее мнимой осью. Для гиперболы, заданной уравнением (2.7), действительной осью симметрии является ось ОХ, а мнимой осью – ось ОY. Длина отрезка А1А2 = 2А, число А называется действительной полуосью гиперболы. Отложим на мнимой оси гиперболы по обе стороны от центра симметрии O отрезки ОВ1 и ОВ2 длиною B, тогда отрезок В1B2 = 2B называют мнимой осью, а величину B – мнимой полуосью гиперболы.

Из уравнения (2.7) видно, что , следовательно, |X| ³ A. Кривая имеет форму, изображенную на рисунке 2.5. Она располагается вне прямоугольника со сторонами, равными 2А и 2B, с центром в начале координат, и состоит из двух отдельных ветвей, простирающихся в бесконечность (см. рисунок 2.5). Диагонали этого прямоугольника определяются уравнениями

(2.8)

И являются Асимптотами гиперболы.

Если A = B, гипербола называется равносторонней.

Замечание 1. Если мнимая ось гиперболы равна 2А и расположена на оси ОХ, а действи-тельная ось равна 2B и расположена на оси ОY, то уравнение такой гиперболы (рисунок 2.6) имеет вид (каноническое уравнение гиперболы, если ее фокальная ось – ось Y)

(2.9)

Координаты фокусов в этом случае имеет вид F1(0,с) и F2(0,-с).

Гиперболы (2.7) и (2.9) называются Сопряженными гиперболами.

Замечание 2. Эксцентриситетом Гиперболы называется отношение фокусного расстояния к действительной полуоси гиперболы

(2.10)

Для любой гиперболы ε > 1, это число определяет форму гиперболы.

Пример 2.3. Найти координаты фокусов и вершин гиперболы

Написать уравнение ее асимптот и вычислить эксцентриситет.

Решение. Напишем каноническое уравнение гиперболы, для чего обе части уравнения поделим на 144. После сокращения получим

.

Отсюда видно, что А2 = 9, т. е. A = 3 и B2 = 16, т. е. B = 4.

Для гиперболы С2 = А2 + B2 = 16 + 9 = 25, отсюда C = 5.

Теперь можем написать координаты вершин и фокусов гиперболы:

Эксцентриситет , а уравнения асимптот имеют вид

и .

Определение гиперболы, решаем задачи вместе

Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы имеет вид:

,

где a и b – длины полуосей, действительной и мнимой.

На чертеже ниже фокусы обозначены как и .

На чертеже ветви гиперболы – бордового цвета.

При a = b гипербола называется равносторонней.

Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.

Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:

.

Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.

Точки и , где

,

называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).

называется эксцентриситетом гиперболы.

Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.

Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.

Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,

Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.

То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.

Подставляем и вычисляем:

Получаем требуемое в условии задачи каноническое уравнение гиперболы:

.

Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет .

Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет – это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:

.

Результат – каноническое уравнение гиперболы:

Если – произвольная точка левой ветви гиперболы () и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

.

Если – произвольная точка правой ветви гиперболы () и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

.

На чертеже расстояния обозначены оранжевыми линиями.

Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами гиперболы (на чертеже – прямые ярко-красного цвета).

Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы

,

где – расстояние от левого фокуса до точки любой ветви гиперболы, – расстояние от правого фокуса до точки любой ветви гиперболы и и – расстояния этой точки до директрис и .

Пример 4. Дана гипербола . Составить уравнение её директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. . Вычисляем:

.

Получаем уравнение директрис гиперболы:

Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке «Эллипс» это пример 7.

Характерной особенностью гиперболы является наличие асимптот – прямых, к которым приближаются точки гиперболы при удалении от центра.

Асимптоты гиперболы определяются уравнениями

.

На чертеже асимптоты – прямые серого цвета, проходящие через начало координат O.

Уравнение гиперболы, отнесённой к асимптотам, имеет вид:

, где .

В том случае, когда угол между асимптотами – прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.

Пример 5. Даны уравнения асимптот гиперболы и координаты точки , лежащей на гиперболе. Составить уравнение гиперболы.

Решение. Дробь в уравнении асимптот гиперболы – это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения . Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.

.

Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:

Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.

Решить задачи на гиперболу самостоятельно, а затем посмотреть решения

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) b = 4 , а один из фокусов в точке (5; 0)

2) действительная ось 6, расстояние между фокусами 8

3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы

Определение. Гиперболой называется множество точек плоскости, для которых модуль разности расстояний от двух данных точек, называемых фокусами есть величина постоянная, меньшая расстояния между фокусами.

По определению | r 1r 2 | = 2 a . F 1 , F 2 – фокусы гиперболы. F 1 F 2 = 2 c .

Выберем на гиперболе произвольную точку М(х, у). Тогда :

обозначим с 2 – а 2 = b 2 (геометрически эта величина – меньшая полуось)

Получили каноническое уравнение гиперболы.Гипербола симметрична относительно середины отрезка, соединяющего фокусы и относительно осей координат.

Ось 2а называется действительной осью.

Ось 2 b называется мнимой осью.

Гипербола имеет две асимптоты, уравнения которых

Определение. Отношение называется эксцентриситетом гиперболы, где с – половина расстояния между фокусами, а – действительная полуось.

С учетом того, что с 2 – а 2 = b 2

:

Если а = b , e = , то гипербола называется равнобочной (равносторонней).

Определение. Две прямые, перпендикулярные действительной оси гиперболы и расположенные симметрично относительно центра на расстоянии a/e от него, называются директрисами гиперболы. Их уравнения:

Теорема. Если r – расстояние от произвольной точки М гиперболы до какого- либо фокуса, d – расстояние от той же точки до соответствующей этому фокусу директрисы, то отношение r / d – величина постоянная, равная эксцентриситету.

Доказательство. Изобразим схематично гиперболу.

Из очевидных геометрических соотношений можно записать:

a / e + d = x , следовательно d = x – a / e .

( x – c ) 2 + y 2 = r 2

Из канонического уравнения: , с учетом b 2 = c 2 – a 2 :

Тогда т.к. с/ a = e , то r = ex – a .

Итого:

Для левой ветви доказательство аналогично. Теорема доказана

Пример 1 . Найти уравнение гиперболы, вершины и фокусы которой находятся в соответствующих вершинах и фокусах эллипса

Для эллипса: c 2 = a 2 – b 2 . Для гиперболы: c 2 = a 2 + b 2 .

Уравнение гиперболы:

Пример 2 . Составить уравнение гиперболы, если ее эксцентриситет равен 2, а фокусы совпадают с фокусами эллипса с уравнением

Находим фокусное расстояние c 2 = 25 – 9 = 16.

Для гиперболы: c 2 = a 2 + b 2 = 16, e = c / a = 2; c = 2 a ; c 2 = 4 a 2 ; a 2 = 4;

Итого: – искомое уравнение. Copyright © 2004-2019


источники:

http://pandia.ru/text/80/563/393-8.php

http://dudom.ru/kompjutery/kak-najti-koordinaty-fokusov-giperboly/