Уравнения динамики вращательного движения для материальной точки

Динамика вращательного движения материальной точки

Лк-3.

Сила тяжести – частный вид гравитационной силы. Величина гравитационной силы притяжения двух точечных масс m1 и m2 определена Ньютоном и известна как закон всемирного тяготения:

, (3.1)

где r — расстояние между массами, а G = 6,67 10 -11 Нм 2 /кг 2 — гравитационная постоянная. В частности, для силы тяжести на поверхности земли:

( 3.2 )

Откуда определится формула для ускорения свободного падения:

Радиус земли известен Rземл=6380 км. Данная формула позволяет вычислить массу земли.

Динамика вращательного движения материальной точки

Рассмотрим ситуацию вращательного движения материальной точки с массой m вокруг оси, которую для определенности направим вертикально, как показано на рис. 2.5. Линейная скорость движения точки по окружности — v связана с угловой скоростью — ω формулой (2…)

Импульс точки . Назовем моментом импульса величину

(3.3)

Подставим в (2.14) вместо р его выражение через линейную скорость:

(3.4)

Величина называется моментом инерции материальной точки, а формула (3.4) по форме аналогична формуле импульса, в которую вместо массы точки подставлен ее момент инерции, а вместо скорости — угловая скорость. Продифференцируем по времени (3.4)

Первое слагаемое в правой части равно нулю, так как векторы импульса — р и скорости dr/dt параллельны. Во втором слагаемом производная от импульса, согласно второму закону Ньютона, представляет силу, действующую на точку. Следовательно

(3.5)

(3.6)

называется моментом силы F относительно оси вращения. Таким образом, производная по времени от момента импульса равна моменту силы. Вновь получаем аналогию с поступательным движением, при котором производная по времени от импульса равна силе.

С другой стороны, взяв производную по времени от (3.4), получим

, где ε — угловое ускорение. Заменив dN/dt моментом силы, получим аналог второго закона Ньютона для вращательного движения:

(3.7)

Все формулы для вращательного движения материальной точки легко запомнить, поскольку по форме они аналогичны формулам поступательного движения. Необходимо только заменить массу на момент инерции, силу — на момент силы, скорость — на угловую скорость, импульс — на момент импульса.

Поступательное движениеВращательное движение
Масса mМомент инерции j=mr 2
Линейная скорость Угловая скорость
Линейное ускорение Угловое ускорение
Сила Момент силы
Импульс Момент импульса
Основное уравнение динамики Основное уравнение динамики

Пример: Качание тела, подвешенного на нити длиной l, является движением по окружности с центром в точке подвеса. Составить уравнение движения тела, используя в качестве координаты угол отклонения нити от вертикали. Поместим начало координат в точку подвеса — О. Координатой материальной точки будет угол α между нитью подвеса и вертикалью. Этот угол мы считаем векторной величиной, причем направлен этот вектор перпендикулярно плоскости рисунка от нас. В ту же сторону направим ось Z. Очевидно, что точка будет совершать колебательное движение по окружности с радиусом |r|. Составим уравнение движения. Само уравнение движения очень простое, его можно записать в форме (3.7). Однако, для этого необходимо выразить векторы момента силы и углового ускорения через данные задачи. Мы считаем данными длину нити подвеса |r|=l. Обозначим через m массу мат. точки.

Момент силы тяжести:

Момент инерции J=m|r| 2 =ml 2

Уравнение движения:

Подставим это в уравнение движения

После сокращения на m приходим к выводу о том, что масса точки не влияет на характер движения.

При работе с векторами на какой-то стадии требуется переход к скалярным величинам. Этот переход осуществляется путем проецирования векторов на произвольно выбранную ось. Умножим левую и правую части векторного уравнения на единичный вектор оси, перпендикулярной плоскости рисунка.

Векторное произведение направлено против оси Z, поэтому . Вектор углового ускорения со направлен с осью Z, поэтому . В результате получим скалярное уравнение

Это и есть искомое уравнение движения. Его нужно сократить на l и вместо углового ускорения — ε подставить вторую производную по времени от угла α:

Если решить это уравнение, то мы получим зависимость угла α от времени. Из вида уравнения следует, что единственным параметром этой зависимости является отношение g/l.

Работа и энергия. Элементарной работой dA силы F на перемещении dl называется их скалярное произведение ( см. рис):

(3.8)

В декартовой системе координат величину элементарной работы ( по правилам записи скалярного произведения ) можно записать в следующем виде:

где Fx , Fy , Fz — проекции силы на оси координат и dx, dy, dz — cоответствующие проекции перемещения. Для подсчета работы переменной силы на конечном перемещении необходимо просуммировать все элементарные работы

Когда суммируются бесконечно много бесконечно малых слагаемых типа , вместо значка Σ используется значок ∫, а вместо индекса суммирования –i указываются начальная и конечная точки пути, например a и b. В результате запись формулы для работы примет следующий вид:

Размерность работы [Н*м] называется Джоулем: 1Дж=1Н*1м.

Пятиминутка. Человек везет сани, как показано на рисунке. Пройденный путь – 1 км, модуль приложенной силы 10 Н, угол α=60 о . Вычислить совершенную работу.

Кинетическая энергия. Если на тело массы m действует некоторая сила F, сообщая ему ускорение — а, то эта сила совершает работу, которая связана с изменением скорости тела. Вычислим элементарную работы на участке траектории dl.

Поменяем местами множители в скалярном произведении:

Скалярное произведение v*dv представляет собой произведение модуля скорости — v на проекцию приращения скорости на направление вектора скорости. Эта проекция называется тангенциальным приращением скорости, которое равно увеличению ее модуля. Следовательно

Или так: . В данном случае v – это модуль скорости. Определим скалярную величину, производная от которой по модулю скорости равна mv, и назовоем ее кинетической энергией.

Эта величина называется кинетической энергией движущегося тела. Поскольку и , мы приходим к выводу о том, что dA=dWк. Элементарная работа, совершенная силой, разгоняющей материальную точку, перешла в приращение кинетическую энергию этой точки. Этот же вывод справедлив и на конечном участке траектории: работа, совершенная разгоняющей силой равна приращению кинетической энергии тела.

Пятиминутка. Тело массой 1 кг брошено горизонтально с начальной скоростью 50 м/с. Вычислить работу силы тяжести и кинетическую энергию в конце 2 секунды движения.

Потенциальная энергия. Во многих случаях сила, действующая на тело, оказывается зависимой от его положения, от координат тела. И величину силы вдоль координатной оси можно вычислить путем дифференцирования некоторой величины по этой координате.

(3.12)

В этом случае сила называется потенциальной, а величина U – потенциальной энергией тела.

Элементарная работа потенциальной силы

Т.е. равна убыли потенциальной энергии тела.

В качестве примера рассмотрим вычисление работы центральной силы, т.е. силы, которая действует по прямой, соединяющей два взаимодействующих тела (материальные точки), и величина этой силы зависит только от расстояния между ними. Пусть материальная точка О действует на другую точку В центральной силой F. Точка В перемещается из положения 1 с радиусом-вектором r1 в близкую точку 2 , радиус-вектор которой — r2 ( см. рис.3.2 ). Перемещение точки В равно dr и формула для элементарной работы запишется в обычном виде:

Так как сила является центральной она направлена вдоль радиус-вектора, поэтому скалярные произведения и оказываются равными произведениям модулей силы и радиус-вектора. Тогда

(3.11)

где dr — приращение расстояния между взаимодействующими точками на малом участке траектории. Знак ± соответствует двум возможным знакам скалярного произведения Если вектор силы параллелен радиус-вектору , косинус угла между ними равен 1, ставится знак +. Это случай отталкивания между телами. Если же вектор анти параллелен радиус-вектору , угол между ними равен π, а косинус его равен -1. Этот случай соответствует притяжению между телами, ему соответствует знак -. Работа центральной силы на конечном участке траектории между точками 1-2 находится суммированием всех элементарных работ, с учетом того. что величина силы зависит от расстояния между телами, т.е.

(3.12)

где U( r ) — потенциал силы.

Из (3.12) видно, что работа центральной силы не зависит от формы траектории и определяется только расстояниями между взаимодействующими мат. Поскольку ребота потенциальных сил не зависит от формы траектории, а определяется только положением начальной и конечной точки, работа потенциальной на траектории, где начальная и конечная точки совпадают, равна нулю.

Для силы тяготения земли, которая является центральной силой, работа при увеличении расстояния от земной поверхности от r1 до r2 согласно выражению (3.12) равна:

В частности, если r1=R3 — радиусу земли, а r2=∞, т.е. тело удаляется от земли в бесконечность, сила притяжения совершает работу

Вращение твердого тела

Для кинематического описания процесса вращения твердого тела нужно ввести такие понятия как угловое перемещение Δ φ , угловое ускорение ε и угловая скорость ω :

ω = ∆ φ ∆ t , ( ∆ t → 0 ) , ε = ∆ φ ∆ t , ( ∆ t → 0 ) .

Углы выражаются в радианах. За положительное направление вращения принимается направление против часовой стрелки.

Когда твердое тело вращается относительно неподвижной оси, все точки этого тела перемещаются с одинаковыми угловыми скоростями и ускорениями.

Рисунок 1. Вращение диска относительно оси, проходящей через его центр O .

Если угловое перемещение Δ φ мало, то модуль вектора линейного перемещения ∆ s → некоторого элемента массы Δ m вращающегося твердого тела можно выразить соотношением:

в котором r – модуль радиус-вектора r → .

Между модулями угловой и линейной скоростей можно установить связь посредством равенства

Модули линейного и углового ускорения также взаимосвязаны:

Векторы v → и a → = a τ → направлены по касательной к окружности радиуса r .

Также нам необходимо учесть возникновение нормального или центростремительного ускорения, которое всегда возникает при движении тел по окружности.

Модуль ускорения выражается формулой:

a n = v 2 r = ω 2 r .

Если разделить вращающееся тело на небольшие фрагменты Δ m i , обозначить расстояние до оси вращения через r i , а модули линейных скоростей через v i , то запись формулы кинестетической энергии вращающегося тела будет иметь вид:

E k = ∑ i ν m v i 2 2 = ∑ i ∆ m ( r i ω ) 2 2 = ω 2 2 ∑ i ∆ m i r i 2 .

Физическая величина ∑ i ∆ m i r i 2 носит название момента инерции I тела относительно оси вращения. Она зависит от распределения масс вращающегося тела относительно оси вращения:

I = ∑ i ∆ m i r i 2 .

В пределе при Δ m → 0 эта сумма переходит в интеграл. Единица измерения момента инерции в С И – килограммметр в квадрате ( к г · м 2 ) . Таким образом, кинетическую энергию твердого тела, вращающегося относительно неподвижной оси, можно представить в виде:

В отличие от выражения, которое мы использовали для описания кинестетической энергии поступательно движущегося тела m v 2 2 , вместо массы m в формулу входит момент инерции I . Также мы принимаем во внимание вместо линейной скорости v угловую скорость ω .

Если для динамики поступательного движения основную роль играет масса тела, то в динамике вращательного движения имеет значение момент инерции. Но если масса – это свойство рассматриваемого твердого тела, которое не зависит от скорости движения и других факторов, то момент инерции зависит от того, вокруг какой оси вращается тело. Для одного и того же тела момент инерции будет определяться различными осями вращения.

В большинстве задач считается, что ось вращения твердого тела проходит через центр его массы.

Положение x C , y C центра масс для простого случая системы из двух частиц с массами m 1 и m 2 , расположенными в плоскости X Y в точках с координатами x 1 , y 1 и x 2 , y 2 определяется выражениями:

x C = m 1 x 1 + m 2 x 2 m 1 + m 2 , y C = m 1 y 1 + m 2 y 2 m 1 + m 2 .

Рисунок 2. Центр масс C системы из двух частиц.

В векторной форме это соотношение принимает вид:

r C → = m 1 r 1 → + m 2 r 2 → m 1 + m 2 .

Аналогично, для системы из многих частиц радиус-вектор r C → центра масс определяется выражением

r C → = ∑ m i r i → ∑ m i .

Если мы имеем дело с твердым телом, состоящим из одной части, то в приведенном выражении суммы для r C → необходимо заменить интегралами.

Центр масс в однородном поле тяготения совпадает с центром тяжести. Это значит, что если мы возьмем тело сложной формы и подвесим его за центр масс, то в однородном поле тяготения это тело будет находиться в равновесии. Отсюда следует способ определения центра масс сложного тела на практике: его необходимо последовательно подвесить за несколько точек, одновременно отмечая по отвесу вертикальные линии.

Рисунок 3. Определение положения центра масс C тела сложной формы. A 1 , A 2 , A 3 точки подвеса.

На рисунке мы видим тело, которое подвешено за центр масс. Оно находится в состоянии безразличного равновесия. В однородном поле тяготения равнодействующая сил тяжести приложена к центру масс.

Мы можем представить любое движение твердого тела как сумму двух движений. Первое поступательное, которое производится со скоростью центра масс тела. Второе – это вращение относительно оси, которая проходит через центр масс.

Предположим. Что у нас есть колесо, которое катится по горизонтальной поверхности без проскальзывания. Все точки колеса во время движения перемещаются параллельно одной плоскости. Такое движение мы можем обозначить как плоское.

Теорема о движении центра масс

Кинестетическая энергия вращающегося твердого тела при плоском движении будет равна сумме кинетической энергии поступательного движения и кинетической энергии вращения относительно оси, которая проведена через центр масс и располагается перпендикулярно плоскостям, в которых движутся все точки тела:

E k = m v C 2 2 + I C ω 2 2 ,

где m – полная масса тела, I C – момент инерции тела относительно оси, проходящей через центр масс.

Рисунок 4. Качение колеса как сумма поступательного движения со скоростью v C → и вращения с угловой скоростью ω = v C R относительно оси O , проходящей через центр масс.

В механике используется теорема о движении центра масс.

Любое тело или несколько взаимодействующих тел, которые представляют собой единую систему, обладают центром масс. Этот центр масс под воздействием внешних сил перемещается в пространстве как материальная точка, в которой сосредоточена вся масса системы.

На рисунке мы изобразили движение твердого тела, на которое действуют силы тяжести. Центр масс тела движется по траектории, которая близка к параболе, тогда как траектория остальных точек тела является более сложной.

Рисунок 5. Движение твердого тела под действием силы тяжести.

Теорема Штейнера о параллельном переносе оси вращения

Рассмотрим случай, когда твердое тело движется вокруг некоторой неподвижной оси. Момент инерции этого тела инерции I можно выразить через момент инерции I C этого тела относительно оси, проходящей через центр масс тела и параллельной первой.

Рисунок 6. К доказательству теоремы о параллельном переносе оси вращения.

Для примера возьмем твердое тело, форма которого произвольна. Обозначим центр масс С . Выберем систему координат Х У с началом координат 0 . Совместим центр масс и начало координат.

Одна из осей проходит через центр масс С . Вторая ось пересекает произвольно выбранную точку Р , которая расположена на расстоянии d от начала координат. Выделим некоторый малый элемент массы данного твердого тела Δ m i .

По определению момента инерции:

I C = ∑ ∆ m i ( x i 2 + y i 2 ) , I P = ∑ m i ( x i — a ) 2 + y i — b 2

Выражение для I P можно переписать в виде:

I P = ∑ ∆ m i ( x i 2 + y i 2 ) + ∑ ∆ m i ( a 2 + b 2 ) — 2 a ∑ ∆ m i x i — 2 b ∑ ∆ m i y i .

Два последних члена уравнения обращаются в нуль, так как начало координат в нашем случае совпадает с центром масс тела.

Так мы пришли к формуле теоремы Штейнера о параллельном переносе оси вращения.

Для тела, которое вращается относительно произвольной неподвижной оси, момент инерции, согласно теореме Штейнера, равен сумме момента инерции этого тела относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями.

I P = I C + m d 2 ,

где m – полная масса тела.

Рисунок 7. Модель момента инерции.

На рисунке ниже изображены однородные твердые тела различной формы и указаны моменты инерции этих тел относительно оси, проходящей через центр масс.

Рисунок 8. Моменты инерции I C некоторых однородных твердых тел.

Основное уравнение динамики вращательного движения твердого тела

В тех случаях, когда мы имеем дело с твердым телом, которое вращается относительно неподвижной оси, мы можем обобщить второй закон Ньютона. На рисунке ниже мы изобразили твердое тело произвольной формы, вращающееся относительно некоторой оси, проходящей через точку О . Ось вращения расположена перпендикулярно плоскости рисунка.

Δ m i – это произвольный малый элемент массы, на который оказывают воздействие внешние и внутренние силы. Равнодействующая всех сил есть F i → . Ее можно разложить на две составляющие: касательную составляющую F i τ → и радиальную F i r → . Радиальная составляющая F i r → создает центростремительное ускорение a n .

Рисунок 9. Касательная F i τ → и радиальная F i r → составляющие силы F i → действующей на элемент Δ m i твердого тела.

Касательная составляющая F i τ → вызывает тангенциальное ускорение a i τ → массы Δ m i . Второй закон Ньютона, записанный в скалярной форме, дает

∆ m i a i τ = F i τ sin θ или ∆ m i r i ε = F i sin θ ,

где ε = a i τ r i – угловое ускорение всех точек твердого тела.

Если обе части написанного выше уравнения умножить на r i , то мы получим:

∆ m i r i 2 ε = F i r i sin θ = F i l i = M i .

Здесь l i – плечо силы, F i , → M i – момент силы.

Теперь нужно аналогичные соотношения записать для всех элементов массы Δmi вращающегося твердого тела, а затем просуммировать левые и правые части. Это дает:

∑ ∆ m i r i 2 ε = ∑ M i .

Стоящая в правой части сумма моментов сил, действующих на различные точки твердого тела, состоит из суммы моментов всех внешних сил и суммы моментов всех внутренних сил.

∑ M = ∑ M i в н е ш н + ∑ M i в н у т р .

Но сумма моментов всех внутренних сил согласно третьему закону Ньютона равна нулю, поэтому в правой части остается только сумма моментов всех внешних сил, которые мы будем обозначать через M . Так мы получили основное уравнение динамики вращательного движения твердого тела.

Угловое ускорение ε и момент сил M в этом уравнении являются величинами алгебраическими.

Обычно за положительное направление вращения принимают направление против часовой стрелки.

Возможна и векторная форма записи основного уравнения динамики вращательного движения, при которой величины ω → , ε → , M → определяются как векторы, направленные по оси вращения.

Закон сохранения момента импульса

В разделе, посвященном поступательному движению тела, мы ввели понятие импульса тела p → . По аналогии с поступательным движением для вращательного движения мы вводим понятие момента импульса.

Момент импульса вращающегося тела – это физическая величина, которая равняется произведению момента инерции тела I на угловую скорость ω его вращения.

Для обозначения момента импульса используется латинская буква L .

Поскольку ε = ∆ ω ∆ t ; ∆ t → 0 , уравнение вращательного движения можно представить в виде:

M = I ε = I ∆ ω ∆ t или M ∆ t = I ∆ ω = ∆ L .

M = ∆ L ∆ t ; ( ∆ t → 0 ) .

Мы получили это уравнение для случая, когда I = c o n s t . Но оно будет справедливо и тогда, когда момент инерции тела будет изменяться в процессе движения.

Если суммарный момент M внешних сил, действующих на тело, равен нулю, то момент импульса L = I ω относительно данной оси сохраняется: ∆ L = 0 , если M = 0 .

L = l ω = c o n s t .

Так мы пришли к закону сохранения момента импульса.

В качестве примера приведем рисунок, на котором изображено неупругое вращательное столкновение дисков, которые насажены на общую для них ось.

Рисунок 10. Неупругое вращательное столкновение двух дисков. Закон сохранения момента импульса: I 1 ω 1 = ( I 1 + I 2 ) ω .

Мы имеем дело с замкнутой системой. Для любой замкнутой системы закон сохранения момента импульса будет справедливым. Он выполняется и в условиях экспериментов по механике, и в условиях космоса, когда планеты движутся по своим орбитам вокруг звезды.

Мы можем записать уравнение динамики вращательного движения как для неподвижной оси, так и для оси, которая перемещается равномерно или с ускорением. Вид уравнения не изменится и в том случае, если ось движется ускоренно. Для этого должно выполняться два условия: ось должна проходить через центр массы тела, а ее направление в пространстве остается неизменным.

Предположим, что у нас есть тело (шар или цилиндр), которое катится по наклонной плоскости с некоторым трением.

Рисунок 11. Качение симметричного тела по наклонной плоскости.

Ось вращения O проходит через центр масс тела. Моменты силы тяжести m g → и силы реакции N → относительно оси O равны нулю. Момент M создает только сила трения: M = F т р R .

Уравнение вращательного движения:

I C ε = I C a R = M = F т р R ,

где ε – угловое ускорение катящегося тела, a – линейное ускорение его центра масс, I C – момент инерции относительно оси O , проходящей через центр масс.

Второй закон Ньютона для поступательного движения центра масс записывается в виде:

m a = m g sin α — F т р .

Исключая из этих уравнений F т р , получим окончательно:

α = m g sin θ I C R 2 + m .

Из этого выражения видно, что быстрее будет скатываться с наклонной плоскости тело, обладающее меньшим моментом инерции. Например, у шара I C = 2 5 m R 2 , а у сплошного однородного цилиндра I C = 1 2 m R 2 . Следовательно, шар будет скатываться быстрее цилиндра.

Конспект по физике «Динамика вращательного движения» (10 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Основное уравнение динамики вращательного движения .

Абсолютно твердое тело – тело, расстояние между двумя любыми точками которого остается неизменным при любых движениях и деформациях.

Следовательно, форма и размеры абсолютно твердого тела не изменяются при действии на него любых сил.

Абсолютно твердое тело – физическая модель (в природе не существует). Тело можно считать абсолютно твердым, если деформации малы.

Вращательное движение абсолютно твердого тела вокруг неподвижной оси – движение, при котором все точки тела описывают окружности, центры которых находятся на одной прямой, перпендикулярной плоскостям этих окружностей. Сама эта прямая есть ось вращения ( OO ’).

Примеры вращательного движения: вращение валов двигателей, колес, турбин, пропеллеров самолетов, вращение Земли вокруг совей оси.

Динамика вращательного движения абсолютно твердого тела изучает причины появления углового ускорения у тела, которое может вращаться вокруг оси и позволяет вычислить его величину.

При вращательном движении твердого тела вокруг закрепленной оси масса уже не является мерой его инертности, а сила недостаточна для характеристики внешнего воздействия. Таким образом, для описания вращательного движения твердого тела необходимо ввести новые характеристики:

1) При вращательном движении силовое воздействие характеризуется не силой, а

Момент силы (М) – векторная физическая величина, модуль которой равен произведению модуля силы на ее плечо.

Плечо силы ( d ) – длина перпендикуляра, опущенного из оси вращения на линию действия силы.

1Н∙м — момент силы в 1Н, линия действия которой отстоит от оси вращения на 1м.

Если линия действия силы проходит через ось вращения, то момент силы относительно этой оси равен нулю. Эта сила не вызывает вращения.

Вектор момента силы направлен вдоль оси вращения. Направление момента силы определяется по правилу правой руки . Для этого необходимо изобразить вектор силы и радиус вектор точки приложения этой силы исходящими из одной точки. За направление вращения выберем направление поворота от к . Расположим правую руку таким образом, чтобы направление кончиков четырех согнутых пальцев показывало направление поворота от к , тогда направление отогнутого большого пальца укажет направление момента силы.

2) Мерой инерции при вращательном движении является

Момент инерции материальной точки относительно оси вращения – физическая величина, равная , где — кратчайшее расстояние от оси вращения до точки.

1 кг∙м 2 – момент инерции тела, при котором под действием момента силы в 1Н∙м тело приобретает угловое ускорение в .

Момент инерции тела равен сумме моментов инерции отдельных его частей:

где — масса элемента абсолютно твердого тела; – кратчайшее расстояние от элемента тела до оси вращения.

Если масса тела является инвариантной величиной (одинаковой в различных системах отсчета) и не зависит от того, как тело движется, то момент инерции абсолютно твердого тела зависит :

1) От массы тела;

2) От формы и размеров тела;

3) От распределения массы относительно оси вращения (при переносе оси вращения, изменении ее направления, а также переносе отдельных частей тела его момент инерции изменяется) .

У твердых тел момент инерции относительно данной оси – постоянная величина. Момент инерции тел относительно оси вращения, проходящей через центр масс у многих тел известен:

Ось вращения проходит

через центр обруча, перпендикулярно его плоскости

через центр цилиндра, перпендикулярно плоскости его основания

через центр диска вдоль его диаметра

через центр шара

Стержень длиной l

через середину тонкого стержня, перпендикулярно ему

При переносе оси вращения или отдельных частей тела относительно этой оси его момент инерции изменяется. Соотношение между моментами инерции тела относительно некоторой оси вращения, проходящей через центр масс, относительно произвольной параллельной ей оси устанавливается с помощью теоремы Штейнера : момент инерции тела относительно произвольной оси вращения равен сумме момента инерции этого тела, взятого относительно параллельной ей оси, проходящей через центр масс, и произведения массы тела на квадрат расстояния между осями.

Проведем некоторую ось вращения О, проходящую через центр масс абсолютно твердого тела. Выберем другую произвольную ось О’, параллельную оси О и отстоящую от нее на расстоянии d . Пусть момент инерции относительно центра масс известен и равен Io . Тогда, согласно Тереме Штейнера момент инерции относительно оси O ’ равен:

Выведем основное уравнение динамики вращательного движения. Рассмотрим частицу массы m , вращающуюся вокруг оси по окружности радиуса R , под действием результирующей силы , лежащей в плоскости оси вращения. В инерциальной системе отсчета справедлив II закон Ньютона. Запишем его применительно к произвольному моменту времени: .

Разложим силу на две составляющие: нормальную и тангенциальную . Нормальная составляющая силы не способна вызвать вращение частицы с угловым ускорением, поэтому рассмотрим только действие ее тангенциальной составляющей. В проекции на тангенциальное направление II закон Ньютона примет вид: .

Но

основное уравнение динамики вращательного движения материальной точки.

Этому уравнению можно придать векторный характер, учитывая, что наличие момента сил вызывает появление параллельного ему вектора углового ускорения, направленного вдоль оси вращения:

произведение момента инерции материальной точки на угловое ускорение равно результирующему моменту сил, действующих на материальную точку.

Т.к. то

Для вывода основного уравнения динамики абсолютно твердого тела необходимо разделить это тело на достаточно малые элементы mi , каждый из которых можно считать материальной точкой. Записать для каждой материальной точки основное уравнение динамики вращательного движения материальной точки и все эти уравнения почленно сложить:

основное уравнение динамики вращательного движения абсолютно твердого тела.

Произведение момента инерции тела относительно оси вращения на угловое ускорение тела равно сумме моментов (относительно той же оси)всех внешних сил, приложенных к телу.

Основное уравнение динамики вращательного движения тела устанавливает зависимость углового ускорения от момента силы и момента инерции.

Ускорение при вращательном движении зависит :

1) Не только от массы, но и от ее распределения относительно оси вращения;

2) Не только от силы, но и от точки ее приложения и направления действия.


источники:

http://zaochnik.com/spravochnik/fizika/zakony-sohranenija-v-mehanike/vraschenie-tverdogo-tela/

http://infourok.ru/konspekt-po-fizike-dinamika-vrashatelnogo-dvizheniya-10-klass-5780683.html