Уравнения для электронного баланса егэ

Как решать задачи С1 (30) на ЕГЭ по химии.

Задача №30 на ЕГЭ по химии посвящена теме «Окислительно — восстановительные реакции». Ранее задание этого типа входило в вариант ЕГЭ под номером С1.

Смысл задания 30: необходимо расставить коэффициенты в уравнении реакции методом электронного баланса. С 2018 года само уравнение не приводится в условии задачи. Дается лишь список веществ, которые могли бы участвовать в окислительно-восстановительной реакции. Необходимо выбрать нужные соединения, самостоятельно составить уравнение ОВР и расставить коэффициенты методом электронного баланса.

Полное решение задачи оценивается в 2 балла.

Первый шаг : вспоминаем степени окисления

Мы должны начать с понятия степени окисления элемента . Если вы еще незнакомы с этим термином, обратитесь к разделу «Степень окисления» в справочнике по химии. Вы должны научиться уверенно определять степени окисления всех элементов в неорганических соединениях и даже в простейших органических веществах. Без 100%-ного понимания данной темы двигаться дальше бессмысленно.

Шаг второй : окислители и восстановители. Окислительно — восстановительные реакции

Хочу напомнить, что все химические реакции в природе можно разделить на два типа: окислительно — восстановительные и протекающие без изменения степеней окисления.

В ходе ОВР (именно такое сокращение мы будем использовать далее для окислительно — восстановительных реакций) некоторые элементы меняют свои степени окисления.

Пример 1 . Рассмотрим реакцию серы с фтором:

Расставьте самостоятельно степени окисления всех элементов. Мы видим, что степень окисления серы повышается (от 0 до +6), а степень окисления фтора понижается (от 0 до -1). Вывод: S — восстановитель, F 2 — окислитель. В ходе процесса сера окисляется, а фтор — восстанавливается.

Пример 2 . Обсудим реакцию оксида марганца (IV) с соляной кислотой:

MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O.

В ходе реакции степень окисления марганца понижается (от +4 до +2), а степень окисления хлора повышается (от -1 до 0). Вывод: марганец (в составе MnO 2 ) — окислитель, хлор (в составе HCl — восстановитель). Хлор окисляется, марганец восстанавливается.

Обратите внимание: в последнем примере не все атомы хлора поменяли степень окисления. Это никак не повлияло на наши выводы.

Пример 3 . Термическое разложение бихромата аммония:

(NH 4 ) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O.

Мы видим, что и окислитель, и восстановитель находятся в составе одной «молекулы»: хром меняет степень окисления от +6 до +3 (т. е., является окислителем), а азот — от -3 до 0 (следовательно, азот — восстановитель).

Пример 4 . Взаимодействие диоксида азота с водным раствором щелочи:

2NO 2 + 2NaOH = NaNO 3 + NaNO 2 + H 2 O.

Расставив степени окисления (надеюсь, вы делаете это без труда!), мы обнаруживаем странную картину: меняется степень окисления лишь одного элемента — азота. Часть атомов N повышают свою степень окисления (от +4 до +5), часть — понижают (от +4 до +3). В действительности, ничего странного в этом нет! В данном процессе N(+4) является одновременно и окислителем, и восстановителем.

Поговорим немного о классификации окислительно-восстановительных реакций. Напомню, что все ОВР делятся на три типа:

  • 1) межмолекулярные ОВР (окислитель и восстановитель находятся в составе разных молекул);
  • 2) внутримолекулярные ОВР (окислитель и восстановитель находятся в одной молекуле);
  • 3) реакции диспропорционирования (окислитель и восстановитель — это атомы одного элемента с одинаковой начальной степенью окисления в составе одной молекулы).

Думаю, что, опираясь на эти определения, вы без труда поймете, что реакции из примеров 1 и 2 относятся к межмолекулярным ОВР, разложение бихромата аммония — пример внутримолекулярной ОВР, а взаимодействие NO 2 со щелочью — пример реакции диспропорционирования.

Шаг третий : начинаем осваивать метод электронного баланса

Чтобы проверить, насколько хорошо вы усвоили предыдущий материал, задам вам простой вопрос: «Можно ли привести пример реакции, в которой происходит окисление, но нет восстановления, или, наоборот, присутствует окисление, но нет восстановления?»

Правильный ответ: «Нет, нельзя!»

Действительно, пусть в ходе реакции степень окисления элемента Х повышается. Это означает, что Х отдает электроны . Но кому? Ведь электроны не могут просто испариться, исчезнуть без следа! Есть какой-то другой элемент Y, атомы которого будут принимать эти электроны. Электроны имеют отрицательный заряд, следовательно, степень окисления Y будет понижаться.

Вывод: если есть восстановитель Х, то обязательно будет и окислитель Y! Более того, число электронов, отданных одним элементом, будет в точности равно числу электронов, принятых другим элементом.

Именно на этом факте и основан метод электронного баланса , используемый в задаче С1.

Начнем осваивать этот метод на примерах.

Пример 4 . Расставьте коэффициенты в уравнении реакции

С + HNO 3 = CO 2 + NO 2 + H 2 O

методом электронного баланса.

Решение . Начнем с определения степеней окисления (сделайте это самостоятельно!). Видим, что в ходе процесса два элемента меняют степени окисления: С (от 0 до +4) и N (от +5 до +4).

Очевидно, что углерод является восстановителем (окисляется), а азот (+5) (в составе азотной кислоты) является окислителем (восстанавливается). Кстати, если вы правильно определили окислитель и в-тель, вам уже гарантирован 1 балл за задачу N 30!

Теперь начинается самое интересное. Напишем т. н. полуреакции окисления и восстановления:

C(0) — 4e=C(+4)(процесс окисления, отдача 4 электронов)
N(+5) + 1e=N(+4)(процесс восстановления, присоединение 1 электрона)

Атом углерода расстается с 4 электронами, атом азота — принимает 1 е. Число отданных электронов не равно числу принятых. Это плохо! Необходимо исправить ситуацию.

«Домножим» первую полуреакицию на 1, а вторую — на 4.

C(0) — 4e=C(+4)(1)
N(+5) + 1e=N(+4)(4)

Вот теперь все отлично: на один атом углерода (отдающий 4 е) приходится 4 атома азота (каждый из которых принимает по одному е). Число отданных электронов равно числу принятых!

То, что мы сейчас написали, собственно, и называется электронным балансом . Если на реальном ЕГЭ по химии вы напишите этот баланс правильно, вам гарантирован еще 1 балл за задачу С1.

Последний этап: осталось перенести полученные коэффициенты в уравнение реакции. Перед формулами С и СО 2 ничего не меняем (т. к. коэффициент 1 в уравнении не ставится), перед формулами HNO 3 и NO 2 ставим четверку (т. к. число атомов азота в левой и правой частях уравнения должно быть равно 4):

С + 4HNO 3 = CO 2 + 4NO 2 + H 2 O.

Осталось сделать последнюю проверку: мы видим, что число атомов азота одинаково слева и справа, то же касается атомов С, а вот с водородом и кислородом пока проблемы. Но все легко исправить: ставим коэффициент 2 перед формулой Н 2 О и получаем окончательный ответ:

С + 4HNO 3 = CO 2 + 4NO 2 + 2H 2 O.

Вот и все! Задача решена, коэффициенты расставлены, а мы получили еще один балл за правильное уравнение. Итог: 3 балла за идеально решенную задачу 30. С чем вас и поздравляю!

Пример 5 . Расставьте коэффициенты в уравнении реакции

NaI + H 2 SO 4 = Na 2 SO 4 + H 2 S + I 2 + H 2 O

методом электронного баланса.

Решение . Расставьте самостоятельно степени окисления всех элементов. Видим, что в ходе процесса два элемента меняют степени окисления: S (от +6 до -2) и I (от -1 до 0).

Сера (+6) (в составе серной кислоты) является окислителем, а йод (-1) в составе NaI — восстановителем. В ходе реакции I(-1) окисляется, S(+6) — восстанавливается.

Записываем полуреакции окисления и восстановления:

2I(-1) — 2e=I 2 (0)(процесс окисления, отдача 2 электронов)
S(+6) + 8e=S(-2)(процесс восстановления, присоединение 8 электронов)

Обратите внимание на важный момент: в молекуле иода два атома. В реакции не может участвовать «половина» молекулы, поэтому в соответствующем уравнении мы пишем не I, а именно I 2 .

«Домножим» первую полуреакицию на 4, а вторую — на 1.

2I(-1) — 2e=I 2 (0)(4)
S(+6) + 8e=S(-2)(1)

Баланс построен, на 8 отданных электронов приходится 8 принятых.

Переносим коэффициенты в уравнение реакции. Перед формулой I 2 ставим 4, перед формулой H 2 S — подразумеваем коэффициент 1 — это, думаю, очевидно.

NaI + H 2 SO 4 = Na 2 SO 4 + H 2 S + 4I 2 + H 2 O

А вот дальше могут возникнуть вопросы. Во-первых, неверно будет ставить четверку перед формулой NaI. Ведь уже в самой полуреакции окисления перед символом I стоит коэффициент 2. Следовательно, в левую часть уравнения следует записать не 4, а 8!

8NaI + H 2 SO 4 = Na 2 SO 4 + H 2 S + 4I 2 + H 2 O

Во-вторых, часто в такой ситуации выпускники ставят коэффициент 1 перед формулой серной кислоты. Рассуждают так: «В полуреакции восстановления найден коэффициент 1, этот коэффициент относится к S, значит, перед формулой серной кислоты должна стоять единица».

Эти рассуждения ошибочны! Не все атомы серы меняли степень окисления, часть из них (в составе Na 2 SO 4 ) сохранила степень окисления +6. Эти атомы не учтены в электронном балансе и коэффициент 1 не имеет к ним никакого отношения.

Все это, однако, не помешает нам довести решение до конца. Важно лишь понимать, что в дальнейших рассуждениях мы опираемся уже не на электронный баланс, а просто на здравый смысл. Итак, напоминаю, что коэффициенты перед H 2 S, NaI и I 2 «заморожены», их менять нельзя. А вот остальные — можно и нужно.

В левой части уравнения находится 8 атомов натрия (в составе NaI), в правой — пока всего 2 атома. Ставим перед формулой сульфата натрия коэффициент 4:

8NaI + H 2 SO 4 = 4Na 2 SO 4 + H 2 S + 4I 2 + H 2 O.

Только теперь можно уравнивать количество атомов S. Справа их 5 шт, следовательно, перед формулой серной кислоты нужно поставить коэффициент 5:

8NaI + 5H 2 SO 4 = 4Na 2 SO 4 + H 2 S + 4I 2 + H 2 O.

Последняя проблема: водород и кислород. Ну, думаю, вы и сами догадались, что не хватает коэффициента 4 перед формулой воды в правой части:

8NaI + 5H 2 SO 4 = 4Na 2 SO 4 + H 2 S + 4I 2 + 4H 2 O.

Еще раз тщательно все проверяем. Да, все правильно! Задача решена, мы получили свои законные 3 балла.

Итак, в примерах 4 и 5 мы подробно обсудили алгоритм решения задачи C1 (30) . В вашем решении реальной экзаменационной задачи обязательно должны присутствовать следующие моменты:

  • 1) степени окисления ВСЕХ элементов;
  • 2) указание на окислитель и восстановитель;
  • 3) схема электронного баланса;
  • 4) окончательное уравнение реакции с коэффициентами.

Несколько комментариев по поводу алгоритма.

1. Должны быть указаны степени окисления всех элементов в левой и правой частях уравнения. Всех, а не только окислителя и восстановителя!

2. Окислитель и восстановитель должны быть обозначены четко и ясно: элемент Х (+. ) в составе . является окислителем, восстанавливается; элемент Y(. ) в составе . является восстановителем, окисляется. Надпись мелким подчерком «ок. в-ся» под формулой серной кислоты не все смогут расшифровать как «сера (+6) в составе серной кислоты — окислитель, восстанавливается».

Не жалейте букв! Вы же не объявление в газету даете: «Сд. комн. со вс. уд.»

3. Схема электронного баланса — это просто схема: две полуреакции и соответствующие коэффициенты.

4. Подробные объяснения, как именно вы расставляли коэффициенты в уравнении, на ЕГЭ никому не нужны. Нужно лишь, чтобы все цифры были верны, а сама запись сделана разборчивым почерком. Обязательно несколько раз проверьте себя!

И еще раз по поводу оценивания задачи C-1 на ЕГЭ по химии:

  • 1) выбор правильных веществ из списка, правильное уравнение реакции — 1 балл;
  • 2) схема электронного баланса с верными коэффициентами — 1 балл.

Итог: 2 балла за полное решение задачи N 30.

Я уверен, что вы поняли, в чем заключается идея метода электронного баланса. Поняли в основных чертах, как строится решение примера N 30. В принципе, все не так уж и сложно!

К сожалению, на реальном ЕГЭ по химии возникает следующая проблема: само уравнение реакции не приводится. Будет предложен список веществ; вам необходимо выбрать из этого списка соединения, между которыми может протекать ОВР, и самостоятельно составить уравнение реакции.

Это может оказаться весьма сложным. Универсальных рецептов написания уравнений не существует. В следующей части мы обсудим этот вопрос подробнее и рассмотрим более сложные примеры.

Окислительно-восстановительные реакции

Окислительно-восстановительные реакции — это химические реакции, сопровождающиеся изменением степени окисления у атомов реагирующих веществ. При этом некоторые частицы отдают электроны, а некоторые получают.

Окислители и восстановители

Окислители — это частицы (атомы, молекулы или ионы), которые принимают электроны в ходе химической реакции. При этом степень окисления окислителя понижается. Окислители при этом восстанавливаются.

Восстановители — это частицы (атомы, молекулы или ионы), которые отдают электроны в ходе химической реакции. При этом степень окисления восстановителя повышается. Восстановители при этом окисляются.

Химические вещества можно разделить на типичные окислители, типичные восстановители, и вещества, которые могут проявлять и окислительные, и восстановительные свойства. Некоторые вещества практически не проявляют окислительно-восстановительную активность.

К типичным окислителям относят:

  • простые вещества-неметаллы с наиболее сильными окислительными свойствами (фтор F2, кислород O2, хлор Cl2);
  • сложные вещества, в составе которых есть ионыметаллов или неметаллов с высокими положительными (как правило, высшими) степенями окисления : кислоты (H N +5 O3, H Cl +7 O4), соли (K N +5 O3, K Mn +7 O4), оксиды ( S +6 O3, Cr +6 O3)
  • соединения, содержащие некоторые катионы металлов, имеющих высокие степени окисления: Pb 4+ , Fe 3+ , Au 3+ и др.

Типичные восстановители – это, как правило:

  • простые вещества-металлы (восстановительные способности металлов определяются рядом электрохимической активности);
  • сложные вещества, в составе которых есть атомы или ионы неметаллов с отрицательной (как правило, низшей) степенью окисления: бинарные водородные соединения (H2S, HBr), соли бескислородных кислот (K2S, NaI);
  • некоторые соединения, содержащие катионы с минимальной положительной степенью окисления (Sn 2+ , Fe 2+ , Cr 2+ ), которые, отдавая электроны, могут повышать свою степень окисления;
  • соединения, содержащие сложные ионы, состоящие из неметаллов с промежуточной положительной степенью окисления (S +4 O3) 2– , (НР +3 O3) 2– , в которых элементы могут, отдавая электроны, повышать свою положительную степень окисления.

Большинство остальных веществ может проявлять как окислительные, так и восстановительные свойства.

Типичные окислители и восстановители приведены в таблице.

В лабораторной практике наиболее часто используются следующие окислители :

К восстановителям , которые применяются в лабораторной практике относятся:

  • магний (Mg), алюминий (Al), цинк (Zn) и другие активные металлы;
  • водород (Н2) и углерод (С);
  • иодид калия (KI);
  • сульфид натрия (Na2S) и сероводород (H2S);
  • сульфит натрия (Na2SO3);
  • хлорид олова (SnCl2).

Классификация окислительно-восстановительных реакций

Окислительно-восстановительные реакции обычно разделяют на четыре типа: межмолекулярные, внутримолекулярные, реакции диспропорционирования (самоокисления-самовосстановления), и реакции контрдиспропорционирования.

Межмолекулярные реакции протекают с изменением степени окисления разных элементов из разных реагентов. При этом образуются разные продукты окисления и восстановления .

2 Al 0 + Fe +3 2O3 → Al +3 2O3 + 2 Fe 0 ,

C 0 + 4H N +5 O3(конц) = C +4 O2 ↑ + 4 N +4 O2 ↑+ 2H2O.

Внутримолекулярные реакции – это такие реакции, в которых разные элементы из одного реагента переходят в разные продукты, например:

2 Na N +5 O -2 3 → 2 Na N +3 O2 + O 0 2↑.

Реакции диспропорционирования (самоокисления-самовосстановления) – это такие реакции, в которых окислитель и восстановитель – один и тот же элемент одного реагента, который при этом переходит в разные продукты:

3Br2 + 6 KOH → 5KBr + KBrO3 + 3 H2O,

Репропорционирование (конпропорционирование, контрдиспропорционирование ) – это реакции, в которых окислитель и восстановитель – это один и тот же элемент, который из разных реагентов переходит в один продукт. Реакция, обратная диспропорционированию.

2H2 S -2 + S +4 O2 = 3 S + 2H2O

Основные правила составления окислительно-восстановительных реакций

Окислительно-восстановительные реакции сопровождаются процессами окисления и восстановления:

Окисление — это процесс отдачи электронов восстановителем.

Восстановление — это процесс присоединения электронов окислителем.

Окислитель восстанавливается , а восстановитель окисляется .

В окислительно-восстановительных реакциях соблюдается электронный баланс: количество электронов, которые отдает восстановитель, равно количеству электронов, которые получает окислитель. Если баланс составлен неверно, составить сложные ОВР у вас не получится.

Используется несколько методов составления окислительно-восстановительных реакций (ОВР): метод электронного баланса, метод электронно-ионного баланса (метод полуреакций) и другие.

Рассмотрим подробно метод электронного баланса .

«Опознать» ОВР довольно легко — достаточно расставить степени окисления во всех соединениях и определить, что атомы меняют степень окисления:

K + 2 S -2 + 2K + Mn +7 O -2 4 = 2K + 2 Mn +6 O -2 4 + S 0

Выписываем отдельно атомы элементов, меняющих степень окисления, в состоянии ДО реакции и ПОСЛЕ реакции.

Степень окисления меняют атомы марганца и серы:

S -2 -2e = S 0

Mn +7 + 1e = Mn +6

Марганец поглощает 1 электрон, сера отдает 2 электрона. При этом необходимо, чтобы соблюдался электронный баланс. Следовательно, необходимо удвоить число атомов марганца, а число атомов серы оставить без изменения. Балансовые коэффициенты указываем и перед реагентами, и перед продуктами!

Схема составления уравнений ОВР методом электронного баланса:

Внимание! В реакции может быть несколько окислителей или восстановителей. Баланс необходимо составить так, чтобы ОБЩЕЕ число отданных и полученных электронов было одинаковым.

Общие закономерности протекания окислительно-восстановительных реакций

Продукты окислительно-восстановительных реакций зачастую зависят от условий проведения процесса. Рассмотрим основные факторы, влияющие на протекание окислительно-восстановительных реакций .

Самый очевидный фактор, определяющий — среда раствора реакции — кислая, нейтральная или щелочная. Как правило (но не обязательно), вещество, определяющее среду, указано среди реагентов. Возможны такие варианты:

  • окислительная активность усиливается в более кислой среде и окислитель восстанавливается глубже (например, перманганат калия, KMnO4, где Mn +7 в кислой среде восстанавливается до Mn +2 , а в щелочной — до Mn +6 );
  • окислительная активность усиливается в более щелочной среде, и окислитель восстанавливается глубже (например, нитрат калия KNO3, где N +5 при взаимодействии с восстановителем в щелочной среде восстанавливается до N -3 );
  • либо окислитель практически не подвержен изменениям среды.

Среда протекания реакции позволяет определить состав и форму существования остальных продуктов ОВР. Основной принцип — продукты образуются такие, которые не взаимодействуют с реагентами!

Обратите внимание! Е сли среда раствора кислая, то среди продуктов реакции не могут присутствовать основания и основные оксиды, т.к. они взаимодействуют с кислотой. И, наоборот, в щелочной среде исключено образование кислоты и кислотного оксида. Это одна из наиболее частых, и наиболее грубых ошибок.

Также на направление протекания ОВР влияет природа реагирующих веществ. Например , при взаимодействии азотной кислоты HNO3 с восстановителями наблюдается закономерность — чем больше активность восстановителя, тем больше восстанавливается азот N +5 .

При увеличении температуры большинство ОВР, как правило, проходят более интенсивно и более глубоко.

В гетерогенных реакциях на состав продуктов зачастую влияет степень измельчения твердого вещества . Например, порошковый цинк с азотной кислотой образует одни продукты, а гранулированный — совершенно другие. Чем больше степень измельчения реагента, тем больше его активность, как правило.

Рассмотрим наиболее типичные лабораторные окислители.

Основные схемы окислительно-восстановительных реакций

Схема восстановления перманганатов

В составе перманганатов есть мощный окислитель — марганец в степени окисления +7. Соли марганца +7 окрашивают раствор в фиолетовый цвет.

Перманганаты, в зависимости от среды реакционного раствора, восстанавливаются по-разному.

В кислой среде восстановление происходит более глубоко, до Mn 2+ . Оксид марганца в степени окисления +2 проявляет основные свойства, поэтому в кислой среде образуется соль. Соли марганца +2 бесцветны . В нейтральном растворе марганец восстанавливается до степени окисления +4 , с образованием амфотерного оксида MnO2коричневого осадка, нерастворимого в кислотах и щелочах. В щелочной среде марганец восстанавливается минимально — до ближайшей степени окисления +6 . Соединения марганца +6 проявляют кислотные свойства, в щелочной среде образуют соли — манганаты . Манганаты придают раствору зеленую окраску .

Рассмотрим взаимодействие перманганата калия KMnO4 с сульфидом калия в кислой, нейтральной и щелочной средах. В этих реакциях продуктом окисления сульфид-иона является S 0 .

3 K2S + 2 KMnO4 + 4 H2O = 2 MnO2↓ + 3 S↓ + 8 KOH,

Распространенной ошибкой в этой реакции является указание на взаимодействие серы и щелочи в продуктах реакции. Однако, сера взаимодействует с щелочью в довольно жестких условиях (повышенная температура), что не соответствует условиям этой реакции. При обычных условиях правильно будет указывать именно молекулярную серу и щелочь отдельно, а не продукты их взаимодействия.

При составлении этой реакции также возникают трудности. Дело в том, что в данном случае написание молекулы среды (КОН или другая щелочь) в реагентах не требуется для уравнивания реакции. Щелочь принимает участие в реакции, и определяет продукт восстановления перманганата калия, но реагенты и продукты уравниваются и без ее участия. Этот, казалось бы, парадокс легко разрешим, если вспомнить, что химическая реакция — это всего лишь условная запись, которая не указывает на каждый происходящий процесс, а всего лишь является отображением суммы всех процессов. Как определить это самостоятельно? Если действовать по классической схеме — баланс-балансовые коэффициенты-уравнивание металла, то вы увидите, что металлы уравниваются балансовыми коэффициентами, и наличие щелочи в левой части уравнения реакции будет лишним.

Перманганаты окисляют:

  • неметаллы с отрицательной степенью окисления до простых веществ (со степенью окисления 0), исключенияфосфор, мышьяк — до +5 ;
  • неметаллы с промежуточной степенью окисления до высшей степени окисления;
  • активные металлы из простых веществ (ст.окисления 0) до соединений со стабильной положительной степенью окисления металла.

KMnO4 + неМе (низшая с.о.) = неМе 0 + другие продукты

KMnO4 + неМе (промежуточная с.о.) = неМе(высшая с.о.) + др. продукты

KMnO4 + Ме 0 = Ме (стабильная с.о.) + др. продукты

KMnO4 + P -3 , As -3 = P +5 , As +5 + др. продукты

Схема восстановления хроматов/бихроматов

Особенностью хрома с валентностью VI является то, что он образует 2 типа солей в водных растворах: хроматы и бихроматы, в зависимости от среды раствора. Хроматы активных металлов (например, K2CrO4) — это соли, которые устойчивы в щелочной среде. Дихроматы (бихроматы) активных металлов (например, K2Cr2O7) — соли, устойчивые в кислой среде .

Восстанавливаются соединения хрома (VI) до соединений хрома (III) . Соединения хрома Cr +3 — амфотерные, и в зависимости от среды раствора они существуют в растворе в различных формах: в кислой среде в виде солей (амфотерные соединения при взаимодействии с кислотами образуют соли), в нейтральной среде — нерастворимый амфотерный гидроксид хрома (III) Cr(OH)3 , и в щелочной среде соединения хрома (III) образуют комплексную соль, например, гексагидроксохромат (III) калия K3[Cr(OH)6] .

Соединения хрома VI окисляют:

  • неметаллы в отрицательной степени окисления до простых веществ (со степенью окисления 0), исключенияфосфор, мышьяк – до +5 ;
  • неметаллы в промежуточной степени окисления до высшей степени окисления;
  • активные металлы из простых веществ (ст.окисления 0) до соединений со стабильной положительной степенью окисления металла.

Хромат/бихромат + неМе (отрицательная с.о.) = неМе 0 + другие продукты

Хромат/бихромат + неМе (промежуточная положительная с.о.) = неМе(высшая с.о.) + др. продукты

Хромат/бихромат + Ме 0 = Ме (стабильная с.о.) + др. продукты

Хромат/бихромат + P, As (отрицательная с.о.) = P, As +5 + другие продукты

Разложение нитратов

Соли-нитраты содержат азот в степени окисления +5 — сильный окислитель. Такой азот может окислять кислород (О -2 ). Это происходит при нагревании нитратов. При этом в большинстве случаев кислород окисляется до степени окисления 0, т.е. до молекулярного кислорода O2 .

В зависимости от типа металла, образующего соль, при термическом (температурном) разложении нитратов образуются различные продукты: если металл активный (в ряду электрохимической активности находятся до магния), то азот восстанавливается до степени окисления +3, и при разложении образуется соли-нитриты и молекулярный кислород .

Например:

Активные металлы в природе встречаются в виде солей (KCl, NaCl).

Если металл в ряду электрохимической активности находится правее магния и левее меди (включая магний и медь) , то при разложении образуется оксид металла в устойчивой степени окисления, оксид азота (IV) (бурый газ) и кислород . Оксид металла образует также при разложении нитрат лития .

Например , разложение нитрата цинка:

Металлы средней активности чаще всего в природе встречаются в виде оксидов (Fe2O3, Al2O3 и др.).

Ионы металлов , расположенных в ряду электрохимической активности правее меди являются сильными окислителями. При разложении нитратов они, как и N +5 , участвуют в окислении кислорода, и восстанавливаются до простых веществ, т.е. образуется металл и выделяются газы — оксид азота (IV) и кислород .

Например , разложение нитрата серебра:

Неактивные металлы в природе встречаются в виде простых веществ.

Некоторые исключения!

Разложение нитрата аммония :

В молекуле нитрата аммония есть и окислитель, и восстановитель: азот в степени окисления -3 проявляет только восстановительные свойства, азот в степени окисления +5 — только окислительные.

При нагревании нитрат аммония разлагается. При температуре до 270 о С образуется оксид азота (I) («веселящий газ») и вода:

Это пример реакции контрдиспропорционирования .

Результирующая степень окиcления азота — среднее арифметическое степени окисления атомов азота в исходной молекуле.

При более высокой температуре оксид азота (I) разлагается на простые вещества — азот и кислород :

При разложении нитрита аммония NH4NO2 также происходит контрдиспропорционирование.

Результирующая степень окисления азота также равна среднему арифметическому степеней окисления исходных атомов азота — окислителя N +3 и восстановителя N -3

Термическое разложение нитрата марганца (II) сопровождается окислением металла:

Нитрат железа (II) при низких температурах разлагается до оксида железа (II), при нагревании железо окисляется до степени окисления +3:

Нитрат никеля (II) разлагается до нитрита при нагревании до 150 о С под вакуумом и до оксида никеля при более высоких температурах (разложения нитрата никеля в ЕГЭ по химии не должно быть, но это не точно)).

Окислительные свойства азотной кислоты

Азотная кислота HNO3 при взаимодействии с металлами практически никогда не образует водород , в отличие от большинства минеральных кислот.

Это связано с тем, что в составе кислоты есть очень сильный окислитель — азот в степени окисления +5. При взаимодействии с восстановителями — металлами образуются различные продукты восстановления азота.

Азотная кислота + металл = соль металла + продукт восстановления азота + H2O

Азотная кислота при восстановлении может переходить в оксид азота (IV) NO2 (N +4 ); оксид азота (II) NO (N +2 ); оксид азота (I) N2O («веселящий газ»); молекулярный азот N2; нитрат аммония NH4NO3 . Как правило, образуется смесь продуктов с преобладанием одного из них. Азот восстанавливается при этом до степеней окисления от +4 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты . При этом работает правило: чем меньше концентрация кислоты и выше активность металла, тем больше электронов получает азот, и тем более восстановленные продукты образуются .

Некоторые закономерности позволят верно определять основной продукт восстановления металлами азотной кислоты в реакции:

  • при действии очень разбавленной азотной кислоты на металлы образуется, как правило, нитрат аммония NH4NO3;

Например , взаимодействие цинка с очень разбавленной азотной кислотой:

  • концентрированная азотная кислота на холоде пассивирует некоторые металлы — хром Cr, алюминий Al и железо Fe . При нагревании или разбавлении раствора реакция идет;

пассивация металлов — это перевод поверхности металла в неактивное состояние за счет образования на поверхности металла тонких слоев инертных соединений, в данном случае преимущественно оксидов металлов, которые не реагируют с концентрированной азотной кислотой

  • азотная кислота не реагирует с металлами платиновой подгруппызолотом Au, платиной Pt, и палладием Pd;
  • при взаимодействии концентрированной кислоты с неактивными металлами иметаллами средней активности азотная кислота восстанавливается до оксида азота (IV)NO2 ;

Например , окисление меди концентрированной азотной кислотой:

  • при взаимодействии концентрированной азотной кислоты с активными металлами образуется оксид азота(I) N2O ;

Например , окисление натрия концентрированной азотной кислотой:

  • при взаимодействии разбавленной азотной кислоты с неактивными металлами (в ряду активности правее водорода) кислота восстанавливается до оксида азота (II) NO ;
  • при взаимодействии разбавленной азотной кислоты с металлами средней активности образуется либо оксид азота (II) NO, либо оксид азота N2O, либо молекулярный азот N2 — в зависимости от дополнительных факторов (активность металла, степень измельчения металла, степень разбавления кислоты, температура).
  • при взаимодействии разбавленной азотной кислоты с активными металлами образуется молекулярный азот N2.

Для приближенного определения продуктов восстановления азотной кислоты при взаимодействии с разными металлами я предлагаю воспользоваться принципом маятника. Основные факторы, смещающие положение маятника: концентрация кислоты и активность металла. Для упрощения используем 3 типа концентраций кислоты: концентрированная (больше 30%), разбавленная (30% или меньше), очень разбавленная (меньше 5%). Металлы по активности разделим на активные (до алюминия), средней активности (от алюминия до водорода) и неактивные (после водорода). Продукты восстановления азотной кислоты располагаем в порядке убывания степени окисления:

Чем активнее металл, тем больше мы смещаемся вправо. Чем больше концентрация или меньше степень разбавления кислоты, тем больше мы смещаемся влево.

Например , взаимодействуют концентрированная кислота и неактивный металл медь Cu. Следовательно, смещаемся в крайнее левое положение, образуется оксид азота (IV), нитрат меди и вода.

Взаимодействие металлов с серной кислотой

Разбавленная серная кислота взаимодействует с металлами, как обычная минеральная кислота. Т.е. взаимодействует с металлами, которые расположены в ряду электрохимических напряжений до водорода. Окислителем здесь выступают ионы H + , которые восстанавливаются до молекулярного водорода H2. При этом металлы окисляются, как правило, до минимальной степени окисления.

Например :

Концентрированная серная кислота взаимодействует с металлами, стоящими в ряду напряжений как до, так и после водорода.

H2SO4 (конц) + металл = соль металла + продукт восстановления серы (SO2, S, H2S) + вода

При взаимодействии концентрированной серной кислоты с металлами образуются соль металла (в устойчивой степени окисления), вода и продукт восстановления серы — сернистый газ S +4 O2, молекулярная сера S либо сероводород H2S -2 , в зависимости от степени концентрации, активности металла, степени его измельчение, температуры и т.д. При взаимодействии концентрированной серной кислоты с металлами молекулярный водород не образуется!

Основные принципы взаимодействия концентрированной серной кислоты с металлами:

1. Концентрированная серная кислота пассивирует алюминий, хром, железо при комнатной температуре, либо на холоду;

2. Концентрированная серная кислота не взаимодействует с золотом, платиной и палладием ;

3. С неактивными металлами концентрированная серная кислота восстанавливается до оксида серы (IV).

Например , медь окисляется концентрированной серной кислотой :

Cu 0 + 2H2 S +6 O4(конц) = Cu +2 SO4 + S +4 O2 + 2H2O

4. При взаимодействии с активными металлами и цинком концентрированная серная кислота образует серу S либо сероводород H2S 2- (в зависимости от температуры, степени измельчения и активности металла).

Например , взаимодействие концентрированной серной кислоты с цинком :

Пероксид водорода

Пероксид водорода H2O2 содержит кислород в степени окисления -1. Такой кислород может и повышать, и понижать степень окисления. Таким образом, пероксид водорода проявляет и окислительные, и восстановительные свойства.

При взаимодействии с восстановителями пероксид водорода проявляет свойства окислителя, и восстанавливается до степени окисления -2. Как правило, продуктом восстановления пероксида водорода является вода или гидроксид-ион, в зависимости от условий проведения реакции. Например:

При взаимодействии с окислителями перекись окисляется до молекулярного кислорода (степень окисления 0): O2. Например :

Уравнения для электронного баланса егэ

Используя метод электронного баланса, составьте уравнение реакции:

Определите окислитель и восстановитель.

1) Составлен электронный баланс:

2) Указано, что иод в степени окисления −1 является восстановителем, а азот в степени окисления +3 (или нитрит калия за счёт азота в степени окисления +3) — окислителем.

3) Расставлены коэффициенты в уравнении реакции

прорешала все правильно . Но! Не понимаю я, почему там KI, а не HI?

Можно взять и HI.

Если взять НI, то коэффициенты не выходят.

У воды во втором случае (с HI) должна стоять 4.

Используя метод электронного баланса, составьте уравнение реакции:

Определите окислитель и восстановитель.

1) Составлен электронный баланс:

2) Указано, что кислород в степени окисления −1 является восстановителем, а марганец в степени окисления +7 (или перманганат калия за счёт марганца в степени окисления +7) — окислителем.

3) Расставлены коэффициенты в уравнении реакции


источники:

http://chemege.ru/materials/ovr/

http://chem-ege.sdamgia.ru/test?theme=39