Уравнения движения и законы сохранения

Законы сохранения в механике

Импульс тела

Импульс тела – это векторная физическая величина, равная произведению массы тела на его скорость:

Обозначение – ​ \( p \) ​, единицы измерения – (кг·м)/с.

Импульс тела – это количественная мера движения тела.
Направление импульса тела всегда совпадает с направлением скорости его движения.
Изменение импульса тела равно разности конечного и начального значений импульса тела:

где ​ \( p_0 \) ​ – начальный импульс тела,
​ \( p \) ​ – конечный импульс тела.

Если на тело действует нескомпенсированная сила, то его импульс изменяется. При этом изменение импульса тела равно импульсу подействовавшей на него силы.

Импульс силы – это количественная мера изменения импульса тела, на которое подействовала эта сила.

Обозначение – ​ \( F\!\Delta t \) ​, единицы измерения — Н·с.
Импульс силы равен изменению импульса тела:

Направление импульса силы совпадает по направлению с изменением импульса тела.

Второй закон Ньютона (силовая форма):

Важно!
Следует всегда помнить, что совпадают направления векторов:

Импульс системы тел

Импульс системы тел равен векторной сумме импульсов тел, составляющих эту систему:

При рассмотрении любой механической задачи мы интересуемся движением определенного числа тел. Совокупность тел, движение которых мы изучаем, называется механической системой или просто системой.

Рассмотрим систему, состоящую из трех тел. На тела системы действуют внешние силы, а между телами действуют внутренние силы.
​ \( F_1,F_2,F_3 \) ​ – внешние силы, действующие на тела;
​ \( F_<12>, F_<23>, F_<31>, F_<13>, F_<21>, F_ <32>\) ​ – внутренние силы, действующие между телами.
Вследствие действия сил на тела системы их импульсы изменяются. Если за малый промежуток времени сила заметно не меняется, то для каждого тела системы можно записать изменение импульса в виде уравнения:

В левой части каждого уравнения стоит изменение импульса тела за малое время ​ \( \Delta t \) ​.
Обозначим: ​ \( v_0 \) ​ – начальные скорости тел, а ​ \( v^ <\prime>\) ​ – конечные скорости тел.
Сложим левые и правые части уравнений.

Но силы взаимодействия любой пары тел в сумме дают нуль.

Важно!
Импульс системы тел могут изменить только внешние силы, причем изменение импульса системы пропорционально сумме внешних сил и совпадает с ней по направлению. Внутренние силы, изменяя импульсы отдельных тел системы, не изменяют суммарный импульс системы.

Закон сохранения импульса

Закон сохранения импульса
Векторная сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых взаимодействиях тел этой системы между собой:

Замкнутая система – это система, на которую не действуют внешние силы.
Абсолютно упругий удар – столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций.
При абсолютно упругом ударе взаимодействующие тела до и после взаимодействия движутся отдельно.

Закон сохранения импульса для абсолютно упругого удара:

Абсолютно неупругий удар – столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое.

Закон сохранения импульса для абсолютно неупругого удара:

Реактивное движение – это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-то его части.
Принцип реактивного движения основан на том, что истекающие из реактивного двигателя газы получают импульс. Такой же по модулю импульс приобретает ракета.
Для осуществления реактивного движения не требуется взаимодействия тела с окружающей средой, поэтому реактивное движение позволяет телу двигаться в безвоздушном пространстве.

Реактивные двигатели
Широкое применение реактивные двигатели в настоящее время получили в связи с освоением космического пространства. Используются они также для метеорологических и военных ракет различного радиуса действия. Кроме того, все современные скоростные самолеты оснащены воздушно-ракетными двигателями.
Реактивные двигатели делятся на два класса:

В ракетных двигателях топливо и необходимый для его горения окислитель находятся непосредственно внутри двигателя или в его топливных баках.

Ракетный двигатель на твердом топливе
При горении топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Сила давления на переднюю стенку камеры больше, чем на заднюю, где находится сопло. Выходящие через сопло газы не встречают на своем пути стенку, на которую могли бы оказать давление. В результате появляется сила, толкающая ракету вперед.

Сопло – суженная часть камеры, служит для увеличения скорости истечения продуктов сгорания, что, в свою очередь, повышает реактивную силу. Сужение струи газа вызывает увеличение его скорости, так как при этом через меньшее поперечное сечение в единицу времени должна пройти такая же масса газа, что и при большем поперечном сечении.

Ракетный двигатель на жидком топливе

В ракетных двигателях на жидком топливе в качестве горючего используют керосин, бензин, спирт, жидкий водород и др., а в качестве окислителя – азотную кислоту, жидкий кислород, перекись водорода и пр.
Горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру сгорания, где температура достигает 3000 0С и давление до 50 атм. В остальном работает так же, как и двигатель на твердом топливе.

Воздушно-реактивный двигатель

В носовой части находится компрессор, засасывающий и сжижающий воздух, который затем поступает в камеру сгорания. Жидкое горючее (керосин) попадает в камеру сгорания с помощью специальных форсунок. Раскаленные газы выходят через сопло, вращают газовую турбину, приводящую в движение компрессор.
Основное отличие воздушно-реактивных двигателей от ракетных двигателей состоит в том, что окислителем для горения топлива служит кислород воздуха, поступающего внутрь двигателя из атмосферы.

Алгоритм применения закона сохранения импульса к решению задач:

  1. Запишите краткое условие задачи.
  2. Определите характер движения и взаимодействия тел.
  3. Сделайте рисунок, на котором укажите направление векторов скоростей тел до и после взаимодействия.
  4. Выберите инерциальную систему отсчета с удобным для нахождения проекций векторов направлением координатных осей.
  5. Запишите закон сохранения импульса в векторной форме.
  6. Спроецируйте его на выбранные координатные оси (сколько осей, столько и уравнений в системе).
  7. Решите полученную систему уравнений относительно неизвестных величин.
  8. Выполните действия единицами измерения величин.
  9. Запишите ответ.

Работа силы

Механическая работа – это скалярная векторная величина, равная произведению модулей вектора силы, действующей на тело, вектора перемещения и косинуса угла между этими векторами.

Обозначение – ​ \( A \) ​, единицы измерения – Дж (Джоуль).

1 Дж – это работа, которую совершает сила в 1 Н на пути в 1 м:

Механическая работа совершается, если под действием некоторой силы, направленной не перпендикулярно, тело перемещается на некоторое расстояние.

Зависимость механической работы от угла ​ \( \alpha \) ​


\( \alpha=180^<\circ>,\, \cos\alpha=-1,\, A=-FS,\,A ​

Геометрический смысл механической работы

На графике зависимости ​ \( F=F(S) \) ​ работа силы численно равна площади фигуры, ограниченной графиком, осью перемещения и прямыми, параллельными оси силы.

Формулы для вычисления работы различных сил

Работа силы тяжести:

Работа силы упругости:

Коэффициент полезного действия механизма (КПД) — это физическая величина, равная отношению полезной работы, совершенной механизмом, ко всей затраченной при этом работе.
Обозначение – ​ \( \eta \) ​, единицы измерения – %.

​ \( A_<\mathit<пол.>> \) ​ – полезная работа – это та работа, которую нужно сделать;
​ \( A_<\mathit<зат.>> \) – затраченная работа – это та работа, что приходится делать на самом деле.

Важно!
КПД любого механизма не может быть больше 100%.

Мощность

Мощность – это количественная мера быстроты совершения работы.

Обозначение – ​ \( N \) ​, единицы измерения – Вт (Ватт).
Мощность равна отношению работы к времени, за которое она была совершена: .

1 Вт – это мощность, при которой за 1 с совершается работа в 1 Дж:

1 л. с. (лошадиная сила) = 735 Вт.

Связь между мощностью и скоростью равномерного движения:

Таким образом, мощность равна произведению модуля вектора силы на модуль вектора скорости и на косинус угла между направлениями этих векторов.

Важно!
Если интервал времени стремится к нулю, то выражение представляет собой мгновенную мощность, определяемую через мгновенную скорость.

Работа как мера изменения энергии

Если система тел может совершать работу, то она обладает энергией.

Работа и изменение кинетической энергии (теорема о кинетической энергии)

Если под действием силы тело совершило перемещение и вследствие этого его скорость изменилась, то работа силы равна изменению кинетической энергии.
Силы, работа которых не зависит от формы траектории, называются консервативными.

Работа и изменение потенциальной энергии тела, поднятого над землей

Работа силы тяжести равна изменению потенциальной энергии, взятому с противоположным знаком.

Работа и изменение потенциальной энергии упруго деформированного тела

Работа силы упругости равна изменению потенциальной энергии, взятому с противоположным знаком.

Кинетическая энергия

Кинетическая энергия – это энергия, которой обладает тело вследствие своего движения.

Обозначение – ​ \( W_k (E_k) \) ​, единицы измерения – Дж.

Кинетическая энергия равна половине произведения массы тела на квадрат его скорости:

Важно!
Так как кинетическая энергия отдельного тела определяется его массой и скоростью, то она не зависит от того, взаимодействует ли это тело с другими телами или нет. Значение кинетической энергии зависит от выбора системы отсчета, как и значение скорости. Кинетическая энергия системы тел равна сумме кинетических энергий отдельных тел, входящих в эту систему.

Потенциальная энергия

Потенциальная энергия – это энергия взаимодействия тел или частей одного и того же тела.

Обозначение – ​ \( W_p (E_p) \) ​, единицы измерения – Дж.

Потенциальная энергия тела, поднятого на некоторую высоту над землей, равна произведению массы тела, ускорения свободного падения и высоты, на которой он находится:

Потенциальная энергия упруго деформированного тела равна половине произведения жесткости на квадрат удлинения:

Важно!
Величина потенциальной энергии зависит от выбора нулевого уровня. Нулевым называется уровень, на котором потенциальная энергия равна нулю. Нулевой уровень выбирается произвольно, исходя из удобства решения задачи.

Закон сохранения механической энергии

Полная механическая энергия – это энергия, равная сумме кинетической и потенциальной энергий.

Обозначение – ​ \( W (E) \) ​, единицы измерения – Дж.

Закон сохранения механической энергии
В замкнутой системе тел, между которыми действуют только консервативные силы, механическая энергия сохраняется, т. е. не изменяется с течением времени:

Если между телами системы действуют кроме сил тяготения и упругости другие силы, например сила трения или сопротивления, действие которых приводит к превращению механической энергии в тепловую, то в такой системе тел закон сохранения механической энергии не выполняется.

Важно!
В случае, если кроме консервативных сил (тяжести, упругости, тяготения) существуют еще и неконсервативные силы, например сила трения, а также внешние силы, то

Теорема о кинетической энергии справедлива для сил любой природы:

Если на систему тел действуют неконсервативные и внешние силы, то изменение полной энергии равно сумме работ неконсервативных и внешних сил.

Закон сохранения и превращения энергии
Энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой или передается от одного тела к другому.

Законы сохранения в физике — основные понятия, формулы и определения с примерами

Содержание:

Три закона Ньютона являются основой механики. Выдающийся американский физик XX ст. P Фейнман в своих знаменитых «Фейнмановских лекциях» отметил, что вся классическая механика содержится в этих законах. C их помощью в принципе можно решить любую задачу о движении тел с малыми скоростями.

Значение законов Ньютона заключается не только в этом. Они позволили создать стройную физическую теорию механического движения тел, ввести такие фундаментальные физические величины, как энергия и импульс, установить для них законы сохранения, являющиеся фундаментальными законами природы. C помощью этих законов в динамике решаются задачи, когда силы взаимодействия тел неизвестны. Например, при столкновении тел трудно определить значения сил взаимодействия между ними.

Законы сохранения в механике

Все изменения, наблюдаемые нами в природе, -результат взаимодействия между телами. Взаимодействия бывают электромагнитные, гравитационные и ядерные. Их интенсивность зависит не только от их природы, но и от расстояний между телами, их характеристик.

При определенных условиях один вид взаимодействия может быть интенсивнее другого. Так, на больших расстояниях существенным является гравитационное взаимодействие, в то время как ядерное будет существенным только на расстояниях, соизмеримых с размерами ядра атома.

Одновременно сделать расчеты всех взаимодействий тяжело, да и не всегда нужно. Поэтому ученые, как правило, рассматривают физические явления, пренебрегая некоторыми второстепенными взаимодействиями. Например, при расчетах силы трения, действующей на колеса автомобиля, существенной является сила притяжения Земли, а действием Луны можно пренебречь.

Ученые, рассматривая физические явления, как правило, пренебрегают второстепенными взаимодействиями.

При расчетах движения межпланетного корабля в пределах Солнечной системы нельзя пренебречь действием на корабль Солнца и планет, а вот действие далеких звезд можно не принимать во внимание.

Таким образом, в общей картине природы рассматривается лишь некоторая совокупность физических тел, условно изолированных от окружающей среды и объединенных общими признаками.

Группа объединенных по общим признакам тел, на которые не действуют другие тела или их действие несущественно в данных условиях, называется замкнутой (изолированной) системой.

Замкнутость системы — понятие относительное и определяется задачами, которые ставятся перед исследованиями, и уровнем развития их экспериментального или теоретического методов решения. Если система по определенным соображениям объявляется замкнутой, то она не становится абсолютно изолированной, «вне природы», в ней действуют те же физические законы. Это подтверждается многочисленными исследованиями, свидетельствующими об однородности пространства. Ни одной точке пространства нельзя дать преимущество по сравнению с другими точками, а протекание физических явлений не изменяется в случае перехода из одной точки пространства в другую. Поэтому не случайно закон гравитационного взаимодействия называется всемирным.

Наличие однородности в полной мере присуще и времени. Течение времени в разных точках пространства происходит одинаково. Поэтому некоторые физические величины в замкнутых системах остаются неизменными, например масса, энергия, импульс, т. е. подчиняются законам сохранения. В механике основными такими законами являются закон сохранения энергии и закон сохранения импульса.

Импульс тела и импульс системы тел

Еще в XVII в. в механике появилось понятие «количество движения». В настоящее время количество движения тела называют импульсом тела (от латинского impulses — толчок). Чему он равен? Как его можно изменить?

В механике Ньютона импульсом тела называется векторная величина, равная произведению массы тела на скорость его движения:

Импульс тела направлен так же, как скорость движения тела. Единица импульса в СИ — I килограмм-метр в секунду

Из определения следует, что импульс зависит и от скорости, и от массы. Например, импульс груженого самосвала БЕЛАЗ гораздо больше импульса движущегося с такой же скоростью автомобиля (рис. 225).

Согласно первому закону Ньютона скорость движения тела, на которое не действуют силы или действие сил скомпенсировано, постоянна. Значит, в этом случае постоянен и его импульс. Изменить импульс тела можно, только приложив к нему силу.

Рассмотрим пример. Тележку массой т, имеющую начальную скорость в течение промежутка времени разгоняют, действуя постоянной силой F (рис. 226). Па сколько изменится импульс тележки?

Найдем результирующую силу, действующую на тележку. Силами сопротивления можно пренебречь, сила реакции N и сила тяжести mg (рис. 226) компенсируют друг друга. Тогда по второму закону Ньютона

Подставляя в эту формулу ускорение получим Действие силы F привело к изменению импульса тележки:

Величину называют импульсом силы.

Импульс силы — это векторная величина, равная произведению силы на время ее действия.

Формула (2) выражает закон изменения импульса тела.

Изменение импульса тела равно импульсу результирующей всех сил, приложенных к нему.

Из данного закона следует:

  • изменение импульса тела направлено так же, как результирующая сила F;
  • изменение импульса тела тем больше, чем больше приложенная к нему сила и чем продолжительнее время ее действия.

Формулу (2) можно записать в виде

Для любознательных:

Равенство соответствует формулировке, которая была дана второму закону динамики самим Ньютоном: «Изменение количества движения пропорционально приложенной движущей силе и происходит по прямой, по которой эта сила действует».

Закон изменения импульса объясняет целый ряд явлений повседневной жизни.

Проделаем простой опыт. Возьмем две нити: обычную 1 и резиновую 2 (рис. 227) одинаковой прочности и длины. Привяжем их к одинаковым грузам и дадим грузам возможность падать с одинаковой высоты. Нить 1 порвется, а нить 2 — нет (рис. 227). Почему это происходит?

Дело в том, что промежуток времени торможения At для груза на обычной нити 1 был во много раз меньше, чем для груза на резиновой, легко деформируемой нити 2. Из формулы (3) следует, что сила F тем больше, чем меньше (при равных изменениях импульса). Значит, на обычную нить действовала большая сила.

Это необходимо учитывать в технике. Нельзя делать резких рывков при подъеме грузов и при буксировке транспортных средств. Может произойти обрыв троса.
Чтобы избежать тяжелых последствий при столкновениях, следует уменьшить силу или увеличить время, за которое импульс уменьшится до нуля. Для этой цели вагоны снабжают буферными пружинными амортизаторами (рис. 228), автомобили — бамперами, ремнями безопасности, автоматически срабатывающими воздушными подушками (рис. 229).

И наоборот, для получения больших сил используют удар, при котором импульс изменяется за очень малый промежуток времени At (см. формулу (3)). Примерами служат забивание свай падающим молотом (рис. 230), разрушающее действие пуль, снарядов и т. д.

Мы рассмотрели изменение импульса одного тела. А как изменяется суммарный импульс нескольких тел?

В механике группу из нескольких тел называют механической системой. Тела, не входящие в систему, называются внешними телами.

Например, механической системой является пассажирский вагон (рис. 231). В механическую систему «вагон» входят: корпус вагона, люди, находящиеся в вагоне, багаж и т. д. Внешними телами будут: Земля, локомотив, рельсы, остальные вагоны поезда и т. д.

Силы взаимодействия тел системы друг с другом называют внутренними. Например, в системе «вагон» внутренней будет сила, с которой багаж давит на полку, и сила, с которой полка действует на багаж. Силы, действующие на тела системы со стороны внешних тел, называют внешними силами. Например, сила тяжести, с которой Земля действует на багаж, — это внешняя сила.

Каждое из тел механической системы имеет свой импульс. Векторная сумма импульсов всех тел, входящих в систему, называется импульсом механической системы:

где п — количество тел системы.

Рассмотрим систему из двух тел (1 и 2) (рис. 232). Силы их взаимодействия — это внутренние силы. Пусть на тела 1 и 2 действуют также и внешние силы. Обозначим их . За время из-за действия сил произойдет изменение импульса:

  • •для тела 1:
  • •для тела 2:
  • •для всей системы:

По третьему закону Ньютона силы взаимодействия тел

А если в механическую систему входит больше двух тел? Сумма всех внутренних сил будет по-прежнему равна нулю, а изменение импульса механической системы

где — результирующая всех внешних сил, действующих на тела системы.

Формула (4) выражает закон изменения импульса механической системы.

Изменение импульса механической системы равно импульсу результирующей внешних сил.

Таким образом, только внешние силы могут вызвать изменение импульса механической системы. Внутренние силы не изменяют импульс механической системы в целом, но могут изменить импульс отдельных тел системы.

Ответьте самостоятельно: какая сила увеличивает импульс вагона на участке разгона? Какие силы уменьшают импульс вагона при его торможении? Могут ли пассажиры, находящиеся в вагоне, вызвать изменение импульса механической системы «вагон»?

Главные выводы:

  1. Импульс тела — это векторная величина, равная произведению массы тела на скорость его движения.
  2. Направление импульса тела совпадает с направлением его скорости.
  3. Изменение импульса тела равно импульсу результирующей всех сил, приложенных к нему.
  4. Изменить импульс механической системы могут только внешние силы. Это изменение равно импульсу результирующей внешних сил.

Пример №1

Шарик массой кг свободно надает без начальной скорости с высоты h = 0,20 м на горизонтальную плиту и отскакивает от нее. Считая, что модули скорости шарика перед ударом и сразу после удара равны (рис. 233), определите среднюю силу, с которой шарик во время удара действовал на плиту. Время соударения

Решение

Так как на шарик во время удара действуют сила тяжести и сила, приложенная к нему со стороны плиты, то изменение импульса шарика за время удара , где — средняя сила действия плиты на шарик. Отсюда

где — скорость шарика перед ударом, a — сразу после удара.

В проекции на ось Оу.

Так как шарик свободно падал без начальной скорости с высоты h, то По условию задачи Значит,

По третьему закону Ньютона средняя сила, с которой шарик во время удара действовал на плиту, В результате для модуля F получим:

Сила, с которой шарик во время удара действовал на плиту, направлена по вертикали вниз. Модуль средней силы удара в 81 раз больше, чем вес покоящегося шарика.

Закон сохранения импульса и реактивное движение

Знаменитый французский философ и математик Рене Декарт (1596— 1650) утверждал: «Во Вселенной есть известное количество движения, которое никогда не изменяется. И если одно тело приводит в движение другое, то оно теряет столько своего движения, сколько его сообщает». Как вывести это утверждение из закона изменения импульса?

В предыдущем параграфе мы доказали, что импульс системы тел может измениться только под действием внешних сил:

А если результирующая внешних сил ? Тогда изменение импульса , и импульс системы остается постоянным:

Векторное равенство (2) выражает закон сохранения импульса. Импульс механической системы сохраняется, если результирующая внешних сил, действующих на нее, равна нулю.

В каких случаях можно применять закон сохранения импульса? Прежде всего — когда на систему вообще не действуют внешние силы. Такие системы называют замкнутыми. Импульс замкнутой системы не изменяется (сохраняется), как и утверждал Декарт.

Реальные механические системы не бывают замкнутыми. На все окружающие нас тела действует Земля, на Землю действует Солнце и т. д. Однако закон сохранения импульса можно применять и для незамкнутых систем, если:

  • •внешние силы действуют, но их результирующая ;
  • •системы «замкнуты» в данном направлении, т. е. проекция на это направление равна нулю. В этом случае сохраняется проекция импульса на это направление;
  • •внешние силы малы или ими можно пренебречь.

Например, закон сохранения импульса применяют при решении задач о столкновениях тел, выстрелах и т. д., когда в течение крайне малых промежутков времени внутри системы возникают огромные силы. Рассмотрим пример. Деревянный кубик массой М лежит на горизонтальном столе. В кубик попадает пуля массой и застревает в нем (рис. 234). Скорость пули перед соударением горизонтальна. Требуется найти скорость которую приобрел кубик.

Замкнута ли система «кубик + пуля»? Нет. Но сила тяжести системы скомпенсирована силой реакции опоры, а сила трения кубика о стол мала. Значит, величиной (где — время соударения) можно пренебречь и приравнять импульс системы «кубик + пуля» до соударения (равный ) к импульсу этой системы после соударения

Значит, скорость кубика вместе с пулей после удара

Соударение, в результате которого тела объединяются и ведут себя как единое целое, называют абсолютно неупругим ударом.

Рассмотренный пример — частный случай такого удара. Другими примерами являются соединение вагонов при сценке, слипание пластилиновых шариков при соударении и т. д.

Рассмотрим теперь пример, в котором происходит не объединение, а разделение частей системы.

На горизонтальном рельсовом пути стоит платформа (рис. 235) с закрепленной на ней пушкой. Установка может свободно катиться по рельсам. Ствол орудия горизонтален. Пушка производит выстрел. Платформа приобретает скорость, направленную противоположно скорости снаряда.

Как найти скорость платформы? Сила тяжести, действующая па установку, компенсирована силой реакции рельсов. Трением качения можно пренебречь. Значит, как и в предыдущем примере, можно применить закон сохранения импульса.

Так как импульс системы до выстрела был равен нулю, то после выстрела:

где — масса установки, — масса снаряда, — их скорости после выстрела (рис. 235). Из равенства (4) находим скорость платформы:

Почему платформа пришла в движение? Потому что пороховые газы, образовавшиеся в канале ствола при выстреле, действовали как на снаряд, так и на пушку. Сила, приложенная к пушке, вызвала движение платформы с пушкой в направлении, противоположном движению снаряда («отдачу»). Аналогичное явление можно наблюдать на простом опыте. Прикрепим к игрушечному автомобилю надутый воздушный шарик (рис. 236). Проколем его в точке А иглой. Образуется струя воздуха, вырывающегося из шарика, и автомобиль приходит в движение. Оно возникло при отделении от тела его части со скоростью, не равной нулю. Его называют реактивным движением, а силу, ускоряющую тело, — реактивной силой.

Реактивная сила возникает при отделении от тела какой-либо его части со скоростью, не равной нулю (относительно тела).

Устройство, создающее реактивную силу, называется реактивным двигателем.

Реактивными двигателями оснащены скоростные самолеты, современные космические корабли (рис. 237). Упрощенная схема реактивного двигателя показана на рисунке 238.

Какую скорость приобретет ракета массой , если ее двигатель выбросит порцию газа массой со скоростью ?

По закону сохранения импульса из формулы (5) находим модуль скорости, приобретаемой ракетой:

Значит, ракета набирает тем большую скорость, чем больше скорость истечения газов из ее сопла и чем меньше масса ракеты. Отсюда понятна выгода использования многоступенчатых ракет (рис. 238). После выгорания топлива в ступени ее отделяют. Масса ракеты уменьшается, что облегчает ее дальнейший разгон. С помощью многоступенчатых ракет выводят на орбиту искусственные спутники Земли, исследуют околоземное и межпланетное космическое пространство.

Первый в мире искусственный спутник Земли был запущен в 1957 г. в СССР. Первый орбитальный полет человека вокруг Земли совершил летчик-космонавт Ю. Гагарин в 1961 г. Американские астронавты Н. Армстронг и Э. Олдрин в 1969 г. первыми высадились на поверхность Луны.

Ракетно-космические исследования стали неотъемлемой частью современной цивилизации. Среди космонавтов есть уроженцы Беларуси: П. И. Климук, В. В. Коваленок, О. В. Новицкий. С космодрома «Байконур» 22 июля 2012 г. был запущен Белорусский космический аппарат (БКА) — спутник массой 400 кг. Он обеспечивает дистанционное зондирование территории Беларуси путем съемки из космоса.

Главные выводы:

  1. Если результирующая внешних сил равна нулю, то импульс системы сохраняется.
  2. Закон сохранения импульса можно применить к незамкнутым системам, если влиянием внешних сил можно пренебречь.
  3. Реактивная сила возникает при отделении от тела какой-либо его части с не равной нулю скоростью.

Пример №2

Два вагона массами двигались по горизонтальному участку пути навстречу друг другу. Модули скорости движения вагонов соответственно. Определите модуль и направление скорости движения вагонов после срабатывания автосцепки.

На систему из двух вагонов (рис. 239) действуют внешние силы: силы тяжести и компенсирующие их силы реакции рельсов . Силы трения качения малы, ими можно пренебречь.

В итоге сумма внешних сил, действующих на вагоны, равна нулю. Значит, к системе из двух вагонов можно применить закон сохранения импульса: Здесь — скорость вагонов после сцепки. В проекции на ось Ох получим:

Отсюда

Знак «—» указывает на то, что после автосцепки вагоны будут двигаться противоположно направлению оси Ох.

Ответ: скорость v направлена противоположно оси Ох;

Механическая работа и мощность

В 7-м классе вы познакомились с физической величиной, называемой «механическая работа». Вы узнали, что; в случае когда направление силы F совпадает с направлением движения, работа, которую совершает эта сила, определяется по формуле:

А если сила направлена под углом к перемещению? Как определить работу в этом случае?

Рассмотрим пример. Трактор передвигает бетонный блок, действуя на него силой (рис. 242). Сила составляет угол а с перемещением блока . Разложим силу на две составляющие: перпендикулярную перемещению и параллельную ему .

В направлении силы блок не перемещается. Эта сила работы не совершает. Значит, работа силы равна работе ее составляющей , которая направлена по движению блока:

Так как (рис. 242), то

Механическая работа равна модулю силы, умноженному на модуль перемещения и на косинус угла между силой и перемещением.

Работа — скалярная величина.

Единицей работы в СИ является 1 джоуль (1 Дж). Он равен работе, совершаемой силой 1 ныотон при перемещении тела на 1 метр в направлении этой силы (1 Дж = 1 Н • м).

Работа силы может быть положительной, отрицательной или равной нулю. Это зависит от угла между силой и перемещением. Из формулы (1) следует:

  • •если угол а острый, то cos а > 0 и работа положительна;
  • •если прямой — равна нулю (cosа = 0);
  • •если тупой — отрицательна (cos а

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Кратко о гидродинамике: уравнения движения

Написав предыдущий пост, исторический и отчасти рекламный (хотя потенциальные абитуриенты такое вряд ли читают), можно перейти и к разговору «по существу». К сожалению, высокой степени популярности описания добиться вряд ли получится, но всё же постараюсь не устраивать курс сухих лекций. Хотя, от сухости избавиться не удалось, да и пост писался в результате ровно месяц.

В нынешней публикации описаны основные уравнения движения идеальной и вязкой жидкости. По возможности кратко рассмотрен их вывод и физический смысл, а также описаны несколько простейших примеров их точных решений. Увы, этими несколькими примерами доступные аналитически решения уравнений Навье-Стокса в значительной мере исчерпываются. Напомню, что Институт Клэя отнёс доказательство существования и гладкости решений к проблемам тысячелетия. Гении уровня Перельмана и выше — задача вас ждёт.

Понятие сплошной среды

В, если можно так выразиться, «традиционной» гидродинамике, сложившейся исторически, фундаментом является модель сплошной среды. Она отвлекается от молекулярной структуры вещества, и описывает среду несколькими непрерывными полевыми величинами: плотностью, скоростью (определяемой через суммарный импульс молекул в заданном элементе объёма) и давлением. Модель сплошной среды предполагает, что в любом бесконечно малом объёме содержится ещё достаточно много частиц (как принято говорить, термодинамически много — числа, близкие по порядку величины к числу Авогадро — 10 23 шт.). Таким образом, модель ограничена снизу дискретностью молекулярной структуры жидкости, что в задачах типичных пространственных масштабов совершенно несущественно.

Однако, такой подход позволяет описать не только воду в пробирке или водоёме, и оказывается куда более универсальным. Поскольку наша Вселенная на больших масштабах практически однородна, то, как ни странно, она начиная с некоторого масштаба превосходно описывается как сплошная среда, с учётом, конечно же, самогравитации.

Другими, более приземлёнными применениями сплошной среды являются описание свойств упругих тел, динамики плазмы, сыпучих тел. Также можно описывать топлу людей как сжимаемую жидкость.

Параллельно с приближением сплошной среды, в последние годы набирает обороты кинетическая модель, основанная на дискретизации среды на небольшие частицы, взаимодействующие между собой (в простейшем случае — как твердые шарики, отталкивающиеся при столкновении). Такой подход возник в первую очередь благодаря развитию вычислительной техники, однако существенно новых результатов в чистую гидродинамику не превнёс, хотя оказался крайне полезен для задач физики плазмы, которая на микроуровне не является однородной, а содержит электроны и положительно заряженные ионы. Ну и опять же для моделирования Вселенной.

Уравнение неразрывности. Закон сохранения массы

Самый элементарный закон. Пусть у нас есть какой-то совершенно произвольный, но макроскопический объём жидкости V, ограниченный поверхностью F (см. рис.). Масса жидкости внутри него определяется интегралом:

И пусть с жидкостью внутри него не происходит ничего, кроме движения. То есть, там нет химических реакций и фазовых переходов, нет трубок с насосами или чёрных дыр. Ну и всё происходит с маленькими скоростями и для малых масс вещества, потому никакой теории относительности, искривления пространства, самогравитации жидкости (она становится существенна на звёздных масштабах). И пусть сам объём и границы еего неподвижны. Тогда единственное, что может изменить массу жидкости в нашем объёме — это её перетекание через границу объёма (для определённости — пусть масса в объёме убывает):

где вектор j — поток вещества через границу. Точкой, напомним, обозначается скалярное произведение. Поскольку границы объёма, как было сказано, неподвижны, то производную по времени можно внести под интеграл. А правую часть можно преобразовать к такому же, как слева, интегралу по объёму по теореме Гаусса-Остроградского.

В итоге, в обеих частях равенства получается интеграл по одному и тому же совершенно произвольному объёму, что позволяет приравнять подинтегральные выражения и перейти к дифференциальной форме уравнения:

Здесь (и далее) использован векторный оператор Гамильтона. Образно говоря, это условный вектор, компоненты которого — операторы дифференцирования по соответствующим координатам. С его помощью можно очень кратко обозначать разного рода операции над скалярами, векторами, тензорами высших рангов и прочей математической нечистью, основные среди которых — градиент, дивергенция и ротор. Не буду останавливаться на них детально, поскольку это отвлекает от основной темы.

Наконец, поток вещества равен массе, переносимой через единичную площадку за единицу времени:

Окончательно, закон сохранения массы (называемый также уравнением неразрывности) для сплошной среды таков:

Это выражение наиболее общее, для среды, обладающей переменной плотностью. В реальности, эксперимент свидетельствует о крайне слабой сжимаемости жидкости и практически постоянном значении плотности, что с высокой точностью позволяет применять закон сохранения массы в виде условия несжимаемости:

которое с не менее хорошей точностью работает и для газов, пока скорость течения мала по сравнению со звуковой.

Уравнение Эйлера. Закон сохранения импульса

Весь относительно громоздкий процесс колдовства преобразования интегралов, использованный выше, даёт нам не только уравнение неразрывности. Точно такие же по сути преобразования позволяют выразить законы сохранения импульса и энергии, и получить в итоге уравнения для скорости жидкости и для переноса тепла в ней. Однако пока не будем сильно торопиться, и займёмся не просто сохранением импульса, а даже сохранением импульса в идеальной несжимаемой жидкости — т.е. рассмотрим модель с полным отсутствием вязкости.

Рассуждения практически те же самые, только теперь нас интересует не масса, а полный импульс жидкости в том же самом объёме V. Он равен:

При тех же самых условиях, что и выше, импульс в объёме может меняться за счёт:

  • конвективного переноса — т.е. импульс «утекает» вместе со скоростью через границу
  • давления окружающих элементов жидкости
  • просто за счёт внешних сил, например — от силы тяжести.

Соответствующие интегралы (порядок отвечает списку) дают такое соотношение:

Начнём их преобразовывать. Правда, для этого нужно воспользоваться тензорным анализом и правилами работы с индексами. Конкретнее, к первому и второму интегралам применяется теорема Гаусса-Остроградского в обобщённой форме (она работает не только для векторных полей). И если перейти к дифференциальной форме уравнения, то получится следующее:

Крестик в кружочке обозначает тензорное произведение, в данном случае — векторов.

В принципе, это уже уравнение Эйлера, однако его можно чуток упростить — ведь закон сохранения массы никто не отменял. Раскрыв здесь скобки в дифференциальных операторах и приведя затем подобные слагаемые, мы увидим, что три слагаемых благополучно собираются в уравнение неразрывности, и потому дают в сумме ноль. Итоговое уравнение оказывается таким:

Если перейти в систему отсчёта, связанную с движущейся жидкостью (не будем заострять внимание на том, как это делается), мы увидим, что уравнение Эйлера выражает второй закон Ньютона для единицы объёма среды.

Учёт вязкости. Уравнение Навье-Стокса

Идеальная жидкость, это, конечно, хорошо (правда, всё равно точно не решается), но во многих случаях учёт вязкости необходим. Даже в той же конвекции, в течении жидкости по трубам. Без вязкости вода вытекала бы из наших кранов с космическими скоростями, а малейшая неоднородность температуры в воде приводила бы к её крайне быстрому и бурному перемешиванию. Потому давайте учтём сопротивление жидкости самой себе.

Дополнить уравнение Эйлера можно различными (но эквивалентными, конечно же) путями. Воспользуемся базовой техникой тензорного анализа — индексной формой записи уравнения. И пока также отбросим внешние силы, чтобы не путались под руками / под ногами / перед глазами (нужное подчеркнуть). При таком раскладе всё, кроме производной по времени, можно собрать в виде дивергенции одного такого тензора:

По смыслу, это плотность потока импульса в жидкости. К нему и нужно добавить вязкие силы в виде ещё одного тензорного слагаемого. Поскольку они явно приводят к потере энергии (и импульса), то они должны вычитаться:

Идя обратно в уравнение с таким тензором, мы получим обобщённое уравнение движения вязкой жидкости:

Оно допускает любой закон для вязкости.

Принято считать очевидным, что сопротивление зависит от скорости движения. Вязкость же, как перенос импульса между участками жидкости с различными скоростями, зависит от градиента скорости (но не от самой скорости — тому мешает принцип относительности). Если ограничиться разложением этой зависимости до линейных слагаемых, получится вот такой жутковатый объект:

в котором величина перед производной содержит 81 коэффициент. Однако, используя ряд совершенно разумных предположений об однородности и изотропности жидкости, от 81 коэффициента можно перейти всего к двум, и в общем случае для сжимаемой среды, тензор вязких напряжений равен:

где η (эта) — сдвиговая вязкость, а ζ (зета или дзета) — объёмная вязкость. Если же среда ещё и несжимаема, то достаточно одного коэффициента сдвиговой вязкости, т.к. второе слагаемое при этом уходит. Такой закон вязкости

носит название закона Навье, а полученное при его подстановке уравнение движения — это уравнение Навье-Стокса:

Точные решения

Главной проблемой гидродинамики является отсутствие точных решений её уравнений. Как бы с этим ни боролись, но получить действительно всеобщих результатов не удаётся до сих пор, и, напомню, вопрос существования и гладкости решений уравнений Навье-Стокса входит в список Проблем тысячелетия института Клэя.

Однако, несмотря на столь грустные факты, некоторые результаты есть. Здесь будут представлены далеко не все, а лишь самые простые случаи.

Потенциальные течения

Особый интерес представляют течения, в которых жидкость не завихряется. Для такой ситуации можно отказаться от рассмотрения векторного поля скорости, поскольку она выражается через градиент скалярной функции — потенциала. Потенциал же удовлетворяет хорошо изученному уравнению Лапласа, решение которого полностью определяется тем, что задано на границах рассматриваемой области:

Более того, при отсутствии вязкости из уравнения Эйлера можно однозначно выразить и давление, что вовсе замечательно и приводит нас к полному решению задачи. Ах, если бы так было всегда… то гидродинамики, наверное, уже бы и не было как современной и актуальной отрасли.

Дополнительно можно упростить задачу предположением, что течение жидкости двумерно — скажем, всё движется в плоскости (x,y), и ни одна частица не перемещается вдоль оси z. Можно показать, что в таком случае скорость может быть также заменена скалярной функцией (на этот раз — функцией тока):

которая при потенциальном течении удовлетворяет условиям Коши-Лагранжа из теории функций комплексной переменной и воспользоваться соответствующим математическим аппаратом. Полностью совпадающим с аппаратом электростатики. Теория потенциальных течений развита на высоком уровне, и в принципе хорошо описывает большой спектр задач.

Простые течения вязкой жидкости

Решения для вязкой жидкости чаще всего удаётся получить, когда из уравнения Навье-Стокса благодаря свойствам симметрии задачи выпадает нелинейное слагаемое.

Сдвиговое течение Куэтта

Самая элементарная задачка. Канал с неподвижной нижней и подвижной верхней стенкой, которая движется равномерно с некоторой скоростью. На границах жидкость прилипает к ним, так что скорость жидкости равна скорости границы. Этот результат является экспериментальным фактом, и как-то даже авторы первых экспериментов не упоминаются, просто — по совокупности экспериментов.

В такой ситуации от уравнения Навье-Стокса останется уравнение вида v» = 0, и потому профиль скорости в канале окажется линейным:

Данная задача является практически базовой для теории смазки, т.к. позволяет непосредственно определить силу, которую требуется приложить к верхней стенке для её движения с конкретной скоростью.

Течение Пуазейля

Вторая по элементарности — ламинарное течение в канале. Или в трубе. Результат оказывается один — профиль скорости является параболическим:

На основе решения Пуазейля можно определить расход жидкости через сечение канала, но, правда, только при ламинарном течении и гладких стенках. С другой стороны, для турбулентного потока и шероховатых стенок точных решений нет, а есть лишь приближённые эмпирические закономерности.

Стекание слоя жидкости по наклонной плоскости

Тут — почти как в задаче Пуазейля, только верхняя граница жидкости будет свободной. Если предположить, что по ней не бегут никакие волны, и вообще сверху нет трения, то профиль скорости будет практически нижней половинкой предыдущего рисунка. Правда, если из полученной зависимости вычислить скорость течения для средней равнинной речки, она составит около 10 км/с, и вода должна самопроизвольно отправляться в космос. Наблюдаемые в природе низкие скорости течения связаны с развитой завихренностью и турбулентностью потока, которые эффективно увеличивают вязкость воды примерно в 1 млн. раз.

В следующем посте планируется рассказать о законе сохранения энергии и соответствующих ему уравнениях переноса тепла при течении жидкости.


источники:

http://www.evkova.org/zakonyi-sohraneniya-v-fizike

http://habr.com/ru/post/171327/