Уравнения движения точки в плоскости ху

Точка В движется и плоскости ху (рис. К 1.0 – К 1.9, табл. К1; траектории точки на рисунках показана условно). Закон движения точки задан уравнениями x = f1(t), у…

Точка В движется и плоскости ху (рис. К 1.0 – К 1.9, табл. К1; траектории точки на рисунках показана условно). Закон движения точки задан уравнениями x = f1(t), у = f2(t), где x и у выражены в сантиметрах, t – в секундах. Найти уравнение траектории точки; для момента времени t1 = 1 с определить скорость и ускорение точки; а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей точке траектории. Зависимость x = f1(t) указана непосредственно на рисунках, а зависимость у = f2(t)дана в табл. К1 (для рис. 0 – 2 в столбце 2, для рис. 3 – 6 в столбце 3, для рис. 7 – 9 в столбце 4). Как и в задачах С1 – С2, номер рисунка выбирается по предпоследней цифре шифра; а номер условия в табл. К1 – по последней.

Точка Вдвижется в плоскости xy (Табл. 1, 2). Закон движения точки задан уравнениями: x=f

Главная > Документ

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Точка В движется в плоскости xy (Табл. К1.1, К1.2). Закон движения точки задан уравнениями: x=f 1 ( t ), y=f 2 ( t ), где x и y выражены в сантиметрах, t — в секундах.

Найти уравнение траектории точки; для момента времени t 1 =1c определить скорость и ускорение точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей точке траектории.

Зависимость x=f 1 ( t ) указана в табл. К1.1, а зависимость y=f 2 (t) дана в табл. К1.2 (для вар.0 — 2 в столбце 2, для вар.3 — 6 в столбце 3, для вар.7 — 9 в столбце 4). Номер варианта в табл. К1.1 выбирается по предпоследней цифре шифра, а номер условия в табл. К1.2 — по последней.

Указания . Задача К1 относится к кинематике точки и решается с помощью формул, по которым определяются скорость и ускорение

КИНЕМАТИКА

Точка В движется в плоскости ху(рис. К1.0 – К1.9, табл.К1; траектория точки на рисунках показана условно). Закон движения точки задан уравнениями: х = f2 (t),y = f2 (t), где хи увыражены в сантиметрах, t в секундах.

Найти уравнение траектории точки; для момента времени t1 =1сопределить скорость и ускорение точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей точке траектории.

Зависимость x = f1 (t) указана непосредственно на рисунках, а зависимость y = f2 (t) дана в табл.К1 (для рис. 0-2 в столбце 2, для рис. 3-6 в столбце 3, для рис. 7-9 в столбце 4).

Указания. Задача К1 относится к кинематике точки и решается с помощью формул, по которым определяются скорость и ускорение точки в декартовыхкоординатах (координатный способ задания движения точки), а также формул, по которым определяются касательное и нормальное ускорение точки.

В данной задаче все искомые величины нужно определить только для момента времени t1 = 1c. В некоторых вариантах задачи при определении траектории или при последующих расчетах (для их упрощения) следует учесть известные из тригонометрии формулы:

cos2a = 1 – 2sin 2 a =2cos 2 α –1,

sin2a = 2sina× cos a

Рис. К1.0-9

Пример К1.Даны уравнения движения точки в плоскости ху:

;

(х,у – в сантиметрах, t – в секундах).

Определить уравнение траектории точки; для момента времени t1 = 1с найти скорость и ускорение точки, а также ее касательное и нормальное ускорение и радиус кривизны в соответствующей точке траектории.

Решение. 1. Для определения уравнения траектории точки исключим из данных уравнений движения время t.

Таблица К1

№ условияУ = f2 (t)
Рис. 0 – 2Рис. 3 — 6Рис. 7 — 9
2t 3

Поскольку t входит в аргументы тригонометрических функций, где один аргумент вдвое больше другого, используем формулу

Из уравнений движения находим выражения соответствующих функций и подставляем в равенство (1). Получим

следовательно,

Откуда окончательно находим следующее уравнение траектории точки (парабола, рис.К1):

2. Скорость точки найдем по ее

проекциям на координатные оси:

Рис. К1

(3) Рис. К1.10

3. Аналогично найдем ускорение точки:

(4)

4. Касательное ускорение найдем, дифференцируя по времени равенство

Получаем

(5)

Числовые значения всех величин, входящих в правую часть выражения (5), определены и даются равенствами (3) и (4). Подставив сюда эти числа, найдем сразу, что при t1 =1c, a1t =0,66см/c 2 .

5. Нормальное ускорение точки Подставляя сюда найденные числовые значения a1 и a1t , получим, что при t1 = 1с , a1n = 0,58 см/c 2 .

6. Радиус кривизны траектории r =u 2 /an . Подставляя сюда числовые значения u1 и a1n , найдем, что при t1 = 1c r1 = 3,05см.

Плоский механизм состоит из: колёс 1, 2 и 3, планки 4 и груза 5. Диски и груз соединены между собой нерастяжимыми нитями. Диски, касающиеся планки, при движении механизма не проскальзывают.

Схемы механизмов показаны на рис. К2.0-9, необходимые для расчёта данные помещены в таблице К2.

ДаноНайти
№ условияуравнение движения груза скоростиускорения
смсмсмсмсмс
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , , ,
, , ,
, , ,

По заданному направлению поступательного движения груза 5 определить в заданной момент времени угловые скорости и ускорения тел и линейные скорости и ускорения точек, указанных в таблице К2.

Указания. Студенту при решении задач следует учесть следующее. 1. Что скорости точек контакта тел, находящихся в зацеплении, равны между собой. 2. Два вращающихся тела связаны нерастяжимой ременной передачей, и скорости точек ремня равны скоростям соприкасающихся с ним точек тел. 3. Тело 1 представляет собой ступенчатое колесо с радиусами : — большой ступени, — малой ступени


Рис. К2.0-9

Пример К2.Груз 5 подвешен на нерастяжимой нити, намотанной на большую ступень колеса 1. Движение груза задано уравнением: . Колеса 1 и 3 связаны нерастяжимой ременной передачей, как показано на рис. К2.10. Между колесом 2 и малой ступенью колеса 1 зажатая рейка 4, которая движется в горизонтальных направляющих. Радиусы колёс: см, см, см..

Рис. К2.10Определить скорости точек и Е , , ускорения точки Е и рейки 4 , , а также угловую скорость колеса 1 и угловое ускорение колеса 2 в момент времени = 2 с. Решение Обозначим точки контакта взаимодействующих тел через K, L, M, D, E. Груз 5 опускаясь приводит во вращательное движение колесо 1. Скорость точки K контакта колеса и нити равна скорости груза, т. е. . Вектор скорости направлен в сторону увеличения координаты , вектор — по касательной к окружности радиуса . Искомая угловая скорость колеса 1.

Чтобы определить скорость точки колеса 3 , отметим, что , а . Векторы и направлены по касательным к окружностям радиусов и соответственно.

Зубчатая рейка 4 связана с колесом 2 и 1, как показано на рисунке К2.10, и движется в направляющих поступательно. Линейные скорости точек , ободов колес и точек планки равны между собой, т.е. . Но , следовательно, . Вектор направлен вдоль направляющих в сторону движения планки.

Ускорение планки . Если положительно, то направление вектора ускорения совпадает с направлением вектора скорости , если отрицательна, то вектор направлен в сторону, обратную направлению .

Тогда, угловая скорость колеса 2 , а угловое ускорение колеса . Скорость точки равна скорости точки , т. е. . Вектор направлен по касательной к окружности радиуса . Линейное ускорение модуль ускорения

Таким образом .

Вектор направлен по касательной к окружности радиуса , вектор — по радиусу к центру окружности , вектор — по диагонали параллелограмма, построенного на векторах , .

Подставляя в найденные аналитические выражения заданное значения параметра с, получим : =5рад /с ; =15см/с ; =15см/с 2 ; =3рад/с 2 ; =15см/с ; =47,1см/с 2 ; =15см/с 2 ; =45см/с 2 .

Плоский механизм состоит из стержней 1, 2, 3, 4 и ползунов В и Е(рис.К3.0.–7) или из стержней 1, 2, 3 и ползунов В и Е (рис К3.8-9), соединенных друг с другом и с неподвижными опорами О1, О2шарнирами; точка D находится в середине стержня АВ. Длины стержней равны соответственно : l1 =0,4м, l2 = 1,2 м, l3 =1,4м, l4 = 0,6м. Положение механизма определяется углами a, b, g, j, q. Значения этих углов и других заданных величин указаны в табл.К3.1 (для рис. К3.0 –4) или в табл.К3.2 (для рис.К3.5–9). Определить величины, указанные в таблицах в столбцах «Найти».

Дуговые стрелки на рисунках показывают, как при построении чертежа механизма должны откладываться соответствующие углы: по ходу или против хода часовой стрелки (например, угол g на рис. К2.8 следует отложить от DB по ходу часовой стрелки, а на рис. К2.9 – против часовой стрелки).

Рис. К3.0-9

Таблица К3.1 (к рис. К3.0-К3.4)

Номер условияУглы, градусыДаноНайти
abgjqw1 рад/сw2 рад/сСкорости точекw звена
В,ЕDE
A,EAB
B,EAB
A,EDE
D,EAB
A,EAB
B,EDE
A,EDE
D,EAB
A,EDE

Таблица К3.2 (к рис. К3.5-К3.9)

Номер условияУглы, градусыДаноНайти
abgjqw1, рад/сuВ, м/сСкорости точекw звена
B,EAB
A,EDE
B,EAB
A,EAB
B,EDE
D,EDE
B,EDE
A,EAB
B,EDE
D,EAB

Указания. Построение чертежа начинать со стержня, направление которого определяется углом a. Заданную угловую скорость считать направленной против часовой стрелки, а заданную скорость — от точки В к в (на рис. К3.5 –.9).

Задача К3 – на исследование плоскопараллельного движения твердого тела. При ее решении для определения скоростей точек механизма и угловых скоростей его звеньев следует воспользоваться теоремой о проекциях скоростей двух точек тела и понятием о мгновенном центре скоростей, применяя эту теорему (или это понятие) к каждому звену механизма в отдельности.

Пример К3. Механизм (рис.К3.10) состоит из двух стержней 1,2,3,4 и ползуна В,соединенных друг с другом и неподвижными опорами О2 и О2шарнирами.

Дано: a = 60 0 , b =150 0 , g = 90 0 , j = 30 0 , q = 30 0 , AD = DB, l1= 0,4 м, l2 = 1,2 м, l3 = 1,4 м, w2 = 2 рад/c (направление w1 – против хода часовой стрелки). Определить: VВ, VЕ, ω2.

1. Строим положение механизма в соответствии с заданными углами (рис.К2.11); на этом рисунке изображаем все векторы скоростей.

2. Определяем . Точка В принадлежит стержню 3. Чтобы найти , надо знать скорость, какой – либо другой точки этого стержня и направление . По данным задачи, учитывая направление , можем определить ; численно

(1)

Направление найдем, учтя, что точка В принадлежит и ползуну B, движущемуся вдоль направляющих поступательно.

Рис. К2.10 Рис. К2.11

Теперь, зная и направление , воспользуемся теоремой о проекциях скоростей двух точек тела (стержня 3) на прямую, соединяющую эти точки (прямая АВ). Сначала по этой теореме устанавливаем, в какую сторону направлен вектор (проекции скоростей должны иметь одинаковые знаки). Затем, вычисляя эти проекции, находим

и (2)

3. Определяем . Точка Е принадлежит стержню 2. Следовательно, по аналогии с предыдущим, чтобы определить , надо сначала найти скорость точки D, принадлежащей одновременно стержню 3. Для этого, зная строим мгновенный центр скоростей (МЦС) стержня 3; это точка С3, лежащая на пересечении перпендикуляров к , восстановленных из точек А и Вперпендикулярен стержень 1). По направлению вектора определяем направление поворота стержня 3 вокруг МЦС С3. Вектор перпендикулярен отрезку С3 D, соединяющему точки D и С3, и направлен в сторону поворота. Величину найдем из пропорции

. (3) 7

Чтобы вычислить C3 D и C3 B, заметим, что ∆ АС3 В – прямоугольный, так что острые углы в нем равны 30 0 и 60 0 , и что С3В = АB sin 30 0 = 0,5 AB =BD.

Тогда ∆ ВС3 D является равносторонним и С3 В = С3 D. В результате равенство (3) дает

(4)

Так как точка Е принадлежит одновременно стержню 4, вращающемуся вокруг О2, то . Тогда, восставляя из точек Е и D перпендикуляры к скоростям , построим МЦС С2 стержня 2. По направлению вектора определяем направление поворота стержня 2 вокруг центра С2. Вектор направлен в сторону поворота этого стержня. Из рис. К2.11 видно, что С2ED = C2DE =30 0 , откуда С2Е = C2D.

Составив теперь пропорцию, найдем, что

(5)

4. Определяем . Так как МЦС стержня 2 известен (точка С2) и С2D = l2 / (2cos30 0 ) = 0, 69 м, то

. (6)

Ответ: VB = 0,46 м /c; VЕ = 0,46 м / с; ω2 = 0,67 рад / c.

(1)

Направление найдем, учтя, что точка В принадлежит и ползуну B, движущемуся вдоль направляющих поступательно.

Теперь, зная и направление , воспользуемся теоремой о проекциях скоростей двух точек тела (стержня 3) на прямую, соединяющую эти точки (прямая АВ). Сначала по этой теореме устанавливаем, в какую сторону направлен вектор (проекции скоростей должны иметь одинаковые знаки). Затем, вычисляя эти проекции, находим

и (2)

3. Определяем . Точка Е принадлежит стержню 2. Следовательно, по аналогии с предыдущим, чтобы определить , надо сначала найти скорость точки D, принадлежащей одновременно стержню 3. Для этого, зная строим мгновенный центр скоростей (МЦС) стержня 3; это точка С3, лежащая на пересечении перпендикуляров к , восстановленных из точек А и Вперпендикулярен стержень 1). По направлению вектора определяем направление поворота стержня 3 вокруг МЦС С3. Вектор перпендикулярен отрезку С3 D, соединяющему точки D и С3, и направлен в сторону поворота. Величину найдем из пропорции

. (3)

Чтобы вычислить C3 D и C3 B, заметим, что ∆ АС3 В – прямоугольный, так что острые углы в нем равны 30 0 и 60 0 , и что С3В = АB sin 30 0 = 0,5 AB =BD.

Тогда ∆ ВС3 D является равносторонним и С3 В = С3 D. В результате равенство (3) дает

(4)

Так как точка Е принадлежит одновременно стержню 4, вращающемуся вокруг О2, то . Тогда, восставляя из точек Е и D перпендикуляры к скоростям , построим МЦС С2 стержня 2. По направлению вектора определяем направление поворота стержня 2 вокруг центра С2. Вектор направлен в сторону поворота этого стержня. Из рис. К3б видно, что С2ED = C2DE =30 0 , откуда С2Е = C2D.

Составив теперь пропорцию, найдем, что

(5)

4. Определяем . Так как МЦС стержня 2 известен (точка С2) и С2D = l2 / (2cos30 0 ) = 0, 69 м, то

. (6) Ответ: VB = 0,46 м /c; VЕ = 0,46 м / с; ω2 = 0,67 рад / c.


источники:

http://gigabaza.ru/doc/71214.html

http://mydocx.ru/10-28928.html