Уравнения движения точки вдоль прямой имеет вид

Примеры решения задач по теме №1

«Механика и элементы специальной теории относительности»

Задача 1 Уравнение движения точки по прямой имеет вид: x = A+Bt+Ct 3 , где А = 4 м, В = 2 м/c, С = 0,2 м/с 3 . Найти: 1) положение точки в моменты времени t = 2 c и t = 5 с; 2) среднюю скорость за время, протекшее между этими моментами; 3) мгновенные скорости в указан­ные моменты времени; 4) среднее ускорение за указанный промежуток вре­мени; 5) мгно­венные ускорения в указанные моменты времени.

x = A + Bt + Ct 3 A = 4 м B = 2 м/c C = 0,2 м/c 3 t1 = 2 c; t2 = 5 cРешение 1. Чтобы найти координаты точки, надо в уравнение дви­же­­­ния подставить значения t1 и t2: x1 = (4+2×2+0,2×2 3 ) м = 9,6 м, x2 = (4+2×5+0,2×5 3 ) м = 39 м.
x1, x2, — ? u1, u2 — ? , a1, a2 — ?2. Средняя скорость ,

м/с = 9,8 м/с.

3. Мгновенные скорости найдем, продифференцировав по времени уравнение движения:

u1 = (2+3×0,2×2 2 ) м/с = 4,4 м/c;

u2 = (2+3×0,2×5 2 ) м/с = 17 м/с.

4. Среднее ускорение ,

м/c 2 = 4,2 м/с 2 .

5. Мгновенное ускорение получим, если продифференцируем по времени выражение для скорости: a = 2×3×Ct = 6Ct.

a1 = 6×0,2×2 м/c 2 = 2,4 м/с 2 ;

a2 = 6×0,2×5 м/с 2 = 6 м/с 2 .

Ответ: x1 = 9,6 м; x2 = 39 м; áuñ = 9,8 м/с; u1 = 4,4 м/c; u2 = 17 м/с; áаñ = 4,2 м/с 2 ; a1 = 2,4 м/с 2 ; a2 = 6 м/с 2 .

Задача 2 Маховик вращается равноускоренно. Найти угол a, ко­то­рый составляет вектор полного ускорения любой точки маховика с радиусом в тот момент, когда маховик совершит первые N=2 оборота.

w0 = 0 N = 2 e = constРешение Разложив вектор точки М на тангенци­аль­ное и нормальное уско­ре­ния, видим, что иско­мый угол определяется соотно­шением tga=at/an.
a — ?

Поскольку в условии дано лишь число оборотов, перейдем к угловым величинам. Применив формулы: at = eR, an = w 2 R, где R – радиус маховика, получим

tga =

так как маховик вращается равноускоренно, найдем связь между величинами e и w;

Поскольку w0 = 0; j = 2pN, то w 2 = 2e×2pN = 4pNe.

Подставим это значение в формулу, получим:

a » 2,3°.

Задача 3 Две гири с массами m1 = 2 кг и m2 = 1 кг соединены нитью, пе­ре­ки­ну­той через невесомый блок. Найти ускорение a, с которым движутся гири, и силу натяжения нити . Трением в блоке пренебречь.

m1 = 2 кг m2 = 1 кгРешение Воспользуемся для решения задачи основным законом динамики где – равнодействующая всех сил, действующих на тело.
a, FН — ?

На тело 1 и тело 2 действуют только две силы – сила тяжести и сила

натяжения нити. Для первого тела имеем

(1)

для второго тела

. (2)

Так как сила трения в блоке отсутствует,

.

Ускорения тел а1 и а2 направлены в противоположные стороны и равны по модулю:

.

Получаем из выражений (1) и (2) систему уравнений

Выберем ось Х, как показано на рисунке и запишем полученную систему уравнений

в проекции на ось Х

Решая эту систему относительно а и FН, получаем:

= 3,3 м/с 2 ; = 13 Н.

Ответ: a= 3,3 м/c 2 ; FH = 13 Н.

Задача 4 К ободу однородного диска радиусом R=0,2 м прило­жена каса­тель­ная сила F=98,1 Н. При вращении на диск действует момент сил трения

МТР=4,9 Н×м. Найти массу m диска, если известно, что диск вращается с угловым ускорением e=100 рад/с 2 .

R = 0,2 м F = 98,1 Н MТР = 4,9 Н×м e = 100 рад / c 2Решение Воспользуемся основным законом динамики вращательного движения, записанным для оси вращения, направление которой совпадает с направлением угловой скорости: , где — момент сил, приложенных к телу,
m — ?

относительно выбранной оси ( MF — момент силы F, Mтр – момент сил трения);

— момент инерции диска.

Учитывая, что MF=F×R, получаем .

Отсюда ; m = 7,4 кг.

Задача 5 На гладкой горизонтальной поверхности находятся две одинаковые соприкасающиеся шайбы. Третья такая же шайба налетает на них со скоростью v0 = 6 м/с, направленной по общей касательной к неподвижным шайбам. После столкновения налетевшая шайба движется вдоль первоначального направления со скоростью v1 = 2 м/с. Найти величину энергии, перешедшей во внутреннюю энергию тел при столкновении. Масса каждой шайбы m = 100 г.

Решение

Рассмотрим систему, состоящую из трех шайб. Данная система не является консервативной, так как в условии задачи требуется найти энергию, перешедшую во внутреннюю энергию тел при их взаимодействии. Значит, удар не является абсолютно упругим, и механическая энергия системы не сохраняется. Строго говоря, эта система не является и замкнутой, так как на тела действуют внешние силы тяжести и реакции поверхности, на которой находятся шайбы. Однако эти внешние силы направлены вертикально и их проекции на любую горизонтально проведенную ось равны нулю. Поэтому при описании удара тел можно пользоваться законом сохранения импульса (для его проекций на любую горизонтальную ось).

Рассмотрим два состояния выбранной системы тел: 1) налетающая шайба движется со скоростью v0 вдоль горизонтальной оси X, остальные две шайбы покоятся; 2) после частично неупругого удара налетающая шайба движется вдоль оси X с меньшей скоростью v1, а две первоначально покоившиеся шайбы разлетаются со скоростями v2 и v3.

Поскольку размеры всех шайб одинаковы, то скорости v2 и v3, направленные вдоль прямых,

соединяющих центры шайб в момент удара, составляют одинаковые углы a = 30 о с осью X, а так как массы всех шайб по условию равны, то очевидно, что скорости v2 и v3 равны по модулю, то есть v2 = v3 = v.

Теперь запишем закон сохранения импульса для проекций импульсов взаимодействующих тел на ось X:

Тогда mv0 = mv1 + 2 mv сosa.

Отсюда .

Энергию, перешедшую во внутреннюю энергию тел при частично неупругом ударе, можно найти как разность кинетической энергии налетающей шайбы до удара и суммарной кинетической энергии всех тел после удара:

.

Ответ: DU = 1,07 Дж.

Задача 6 Небольшое тело массой m равномерно втащили на горку, действуя силой, которая в каждой точке направлена по касательной к траектории. Найти работу этой силы, если высота горки h, длина ее основания l, и коэффициент трения m.

Решение

Работу, совершаемую силой , можно найти по общему определению работы:

.

Для этого необходимо предварительно найти силу . Рассмотрим перемещаемое тело в произвольной точке траектории его движения. На тело действуют четыре силы: сила тяжести , сила реакции опоры , сила трения скольжения и внешняя сила . Поскольку по условию задачи тело движется равномерно, то векторная сумма этих сил равна нулю:

Выберем координатные оси х и у таким образом, чтобы ось х была направлена по каса­тельной к траектории (вдоль перемещения ).

Запишем векторное равенство в проекциях на эти координатные оси:

oсь x:

oсь y:

Тогда , а модуль силы

.

Теперь можно найти выражение для элементарной работы, совершаемой силой F при перемещении тела на расстояние dr. При этом учтем, что угол между векторами и равен нулю и косинус этого угла равен единице.

Тогда .

Из рис. видно, что , где dh — элементарное приращение высоты при перемещении тела на расстояние dr, а , то есть элементарному перемещению тела в горизонтальном направлении.

Тогда ,

и полная работа, совершаемая силой F при втаскивании тела на горку:

.

Ответ: .

Задача 7 Круглая платформа радиусом R=1,0 м, момент инерции которой J=130 кг×м 2 , вращается по инерции вокруг вертикальной оси, делая n1=1,0 об/с. На краю платформы стоит человек, масса которого m=70 кг. Сколько оборотов в секунду n2 будет совершать платформа, если человек перейдет в её центр? Момент инерции человека рассчитывать как для материальной точки.

R = 1м J = 130 кг × м 2 n1 = 1c -1 m = 70 кгРешение Согласно условию задачи, платформа с человеком вращается по инерции. Это означает, что результирующий момент всех внешних сил, приложенных к вращающейся системе, равен нулю. Следовательно, для системы “платформа + человек” выполняется закон сохранения момента импульса, который запишем в скалярной форме относительно оси, совпадающей с осью вращения и направленной по угловой скорости:
n2 — ?

где L1 — импульс системы «платформа + человек на краю платформы», L2 — импульс системы «платформа + человек в центре платформы».

где mR 2 — момент инерции человека, J1 = J+mR 2 — момент инерции системы «платформа + человек на краю платформы», J2 — момент инерции системы «платформа + человек в центре платформы», w1 и w2 — соответствующие угловые скорости системы. Решая систему уравнений (1) — (3), получаем

Задача 8 В условно неподвижной системе отсчета К в точках с коорди­натами xA и xB = xA + l, где l = 1 км, одновременно происходят два события A и B. На каком расстоянии l¢АВ друг от друга зафиксирует эти события наблюдатель в системе К¢, движущейся со скоростью v = 0,4×с вдоль оси X? Какой промежуток времени Dt¢ между этими событиями зафиксирует наблюдатель в системе К¢?

Решение

Обозначим через t0 момент времени, когда в системе К происходят события А и В. Тогда событие А в этой системе обладает пространственно – временными координатами xA и t0, а событие В – координатами xB и t0. В системе К¢ событие А обладает пространственно–временными координатами x1¢ и t1¢, а событие В – координатами x2¢ и t2¢. Связь координат каждого из событий можно записать с помощью преобразований Лоренца.

Найдя разность этих выражений, получим расстояние между точками, в которых происходят события А и В в системе К¢.

Видно, что расстояние АВ, разделяющее события А и В в любой системе, движущейся относительно К, больше, чем это же расстояние, измеренное в системе К, в которой оба события одновременны. Рассчитаем расстояние АВ.

Моменты времени, в которые в системе К¢ наблюдатель зафиксирует события А и В, также могут быть найдены из преобразований Лоренца:

Видно, что события А и В в системе отсчета К¢ не являются одновремен­ными. Если xB > xA и система К¢ движется в положительном направлении оси X, как и задано в условии, то t2¢ — t1¢

Уравнение движения материальной точки

Движение материальной точки в пространстве – это изменение ее положения относительно других тел с течением времени.

Имеет смысл говорить только о движении в некоторой системе отсчета.

Система отсчета. Системы координат

Точки, располагаемые в пустом пространстве, не различаются. Поэтому о точке рассуждают при условии нахождения в ней материальной точки. Определить ее положение можно при помощи измерений в системе координат, где и проводится нахождение пространственных координат. Если рассматривать в виде примера поверхность Земли, то следует учитывать широту и долготу располагаемой точки.

В теории используется декартова прямоугольная система координат, где определение точки возможно при наличии радиус-вектора r и трех проекций x , y , z – ее координат. Могут быть применены другие:

  • сферическая система с положением точек и ее радиус-вектором, определенных координатами r , υ , φ ;
  • цилиндрическая система с координатами p , z , α ;
  • на полярной плоскости с параметрами r , φ .

В теории зачастую не принимают во внимание реальную систему отсчета, а сохраняют только ту, которая представляет собой ее математическую модель, применяемую во время практических измерений.

Кинематическое уравнение движения материальной точки

Любая система отсчета или координат предполагает определение координат материальной точки в любой момент времени.

При условии положения и определения материальной точки в данной системе отсчета считается, что ее движение задано или описано.

Это возможно при использовании кинематического уравнения движения:

Аналитически положение точки определяется совокупностью трех независимых между собой чисел. Иначе говоря, свободная точка имеет три степени свободы движения.

Ее перемещение по уравнению ( 1 ) определено, если имеется указанное положение в любой момент времени t . Для этого следует задавать декартовы координаты точки в качестве однозначных и непрерывных функций времени:

x ( t ) = x , y ( t ) = y , z ( t ) = z ( 2 ) .

Прямоугольные декартовы координаты x , y , z — это проекции радиус-вектора r ¯ , проведенного из начала координат. Очевидно, что длину и направление r ¯ можно найти из соотношений, где a , β , γ являются образованными радиус-вектором углами с координатными осями.

Равенства ( 2 ) считают кинематическими уравнениями движения материальной точки в декартовых координатах.

Они могут быть записаны в другой системе координат, которая связана с декартовой взаимно однозначным преобразованием. Если движение точки происходит в плоскости О х у , тогда применимы полярные координаты r , φ , относящиеся к декартовым преобразованиям. Данный случай подразумевает использование уравнения движения точки следующего вида:

r = r ( t ) , φ = φ ( t ) ( 3 ) .

Кинематическое уравнение движения точки в криволинейных координатах q 1 , q 2 , q 3 , связанных с декартовыми преобразованиями вида x = x ( q 1 , q 2 , q 3 ) , y = y ( q 1 , q 2 , q 3 ) , z = z ( q 1 , q 2 , q 3 ) ( 4 ) , записывается как

q 1 = q 1 ( t ) , q 2 = q 2 ( t ) , q 3 = q 3 ( t ) ( 5 ) .

Кривая радиус-вектора, описываемая концом вектора r при движении точки, совпадает с ее траекторией. Параметрическое уравнение траектории с t представлено кинематическими уравнениями ( 2 ) , ( 5 ) . Чтобы получить координатное уравнение траектории следует исключить время из кинематических уравнений.

Определение движения точки возможно с помощью задания траектории и мгновенного положения точки на ней. Ее положение на кривой определяется с помощью указания только одной величины: расстояния вдоль кривой от некоторой начальной точки с положительным направлением:

Это и есть уравнение движения точки по траектории. Способ его задания относят к естественному или траекторному.

Понятия координатного и естественного способа задания движения точки физически эквивалентны. С математической стороны это рассматривают как возможность применения разных методов, исходя из случая математической задачи.

Задание такого закона возможно аналитическим, графическим путем или с использованием таблицы, последние два из которых зачастую рассматривают в виде графиков и расписаний движений поездов.

Дано уравнение движения материальной точки x = 0 , 4 t 2 . Произвести запись формулы зависимости υ x ( t ) , построить график зависимости скорости от времени. На графике отметить площадь, численно равную пути, пройденному точкой за 4 секунды, произвести вычисление.

Дано: x = 0 , 4 t 2 , t = 4 c

Найти: υ x ( t ) , S — ?

Решение

При решении необходимо учитывать зависимость скорости от времени:

υ x = υ 0 x + a x t .

Зависимость координаты от времени и сравнение уравнения с заданным принимает вид:

x = x 0 + υ 0 x t + a x t 2 2 , x = 0 , 4 t 2 .

Очевидно, что x 0 = 0 , υ 0 x = 0 , a x = 0 , 8 м / с 2 .

После подстановки данных в уравнение:

Определим точки, изобразим график:

υ x = 0 , t = 0 , υ x = 4 , t = 5

Путь, по которому двигалось тело, равняется площади фигуры, ограниченной графиком, и находится с помощью формулы:

Примеры решения задач. Задача 1 Уравнение движения точки по прямой имеет вид: x = A+Bt+Ct3, где А = 4 м, В = 2 м/c, С = 0,2 м/с3

Читайте также:
  1. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  2. I. Решение логических задач средствами алгебры логики
  3. I. Розв’язати задачі
  4. I. Ситуационные задачи и тестовые задания.
  5. II Съезд Советов, его основные решения. Первые шаги новой государственной власти в России (октябрь 1917 — первая половина 1918 гг.)
  6. II. Основные задачи и функции
  7. II. Решение логических задач табличным способом
  8. II. ЦЕЛИ, ЗАДАЧИ И ПРИНЦИПЫ ДЕЯТЕЛЬНОСТИ ВОИ
  9. II. Цель и задачи государственной политики в области развития инновационной системы
  10. III. Решение логических задач с помощью рассуждений
  11. III. Цели и задачи социально-экономического развития Республики Карелия на среднесрочную перспективу (2012-2017 годы)
  12. IV. Определите, какую задачу взаимодействия с практическим психологом поставил перед собой клиент.

Задача 1 Уравнение движения точки по прямой имеет вид: x = A+Bt+Ct 3 , где А = 4 м, В = 2 м/c, С = 0,2 м/с 3 . Найти: 1) положение точки в моменты времени t = 2 c и t = 5 с; 2) среднюю скорость за время, протекшее между этими моментами; 3) мгновенные скорости в указан­ные моменты времени; 4) среднее ускорение за указанный промежуток вре­мени; 5) мгно­венные ускорения в указанные моменты времени.

x = A + Bt + Ct 3 A = 4 м B = 2 м/c C = 0,2 м/c 3 t1 = 2 c; t2 = 5 cРешение 1. Чтобы найти координаты точки, надо в уравнение дви­же­­­ния подставить значения t1 и t2: x1 = (4+2×2+0,2×2 3 ) м = 9,6 м, x2 = (4+2×5+0,2×5 3 ) м = 39 м.
x1, x2, — ? u1, u2 — ? , a1, a2 — ?2. Средняя скорость ,

м/с = 9,8 м/с.

3. Мгновенные скорости найдем, продифференцировав по времени уравнение движения:

u1 = (2+3×0,2×2 2 ) м/с = 4,4 м/c;

u2 = (2+3×0,2×5 2 ) м/с = 17 м/с.

4. Среднее ускорение ,

м/c 2 = 4,2 м/с 2 .

5. Мгновенное ускорение получим, если продифференцируем по времени выражение для скорости: a = 2×3×Ct = 6Ct.

a1 = 6×0,2×2 м/c 2 = 2,4 м/с 2 ;

a2 = 6×0,2×5 м/с 2 = 6 м/с 2 .

Ответ: x1 = 9,6 м; x2 = 39 м; áuñ = 9,8 м/с; u1 = 4,4 м/c; u2 = 17 м/с; áаñ = 4,2 м/с 2 ; a1 = 2,4 м/с 2 ; a2 = 6 м/с 2 .

Задача 2 Маховик вращается равноускоренно. Найти угол a, ко­то­рый составляет вектор полного ускорения любой точки маховика с радиусом в тот момент, когда маховик совершит первые N=2 оборота.

w0 = 0 N = 2 e = constРешение Разложив вектор точки М на тангенци­аль­ное и нормальное уско­ре­ния, видим, что иско­мый угол определяется соотно­шением tga=at/an.
a — ?

Поскольку в условии дано лишь число оборотов, перейдем к угловым величинам. Применив формулы: at = eR, an = w 2 R, где R – радиус маховика, получим

tga =

так как маховик вращается равноускоренно, найдем связь между величинами e и w;

Поскольку w0 = 0; j = 2pN, то w 2 = 2e×2pN = 4pNe.

Подставим это значение в формулу, получим:

a » 2,3°.

Задача 3 Две гири с массами m1 = 2 кг и m2 = 1 кг соединены нитью, пе­ре­ки­ну­той через невесомый блок. Найти ускорение a, с которым движутся гири, и силу натяжения нити . Трением в блоке пренебречь.

m1 = 2 кг m2 = 1 кгРешение Воспользуемся для решения задачи основным законом динамики где – равнодействующая всех сил, действующих на тело.
a, FН — ?

На тело 1 и тело 2 действуют только две силы – сила тяжести и сила

натяжения нити. Для первого тела имеем

(1)

для второго тела

. (2)

Так как сила трения в блоке отсутствует,

.

Ускорения тел а1 и а2 направлены в противоположные стороны и равны по модулю:

.

Получаем из выражений (1) и (2) систему уравнений

Выберем ось Х, как показано на рисунке и запишем полученную систему уравнений

в проекции на ось Х

Решая эту систему относительно а и FН, получаем:

= 3,3 м/с 2 ; = 13 Н.

Ответ: a= 3,3 м/c 2 ; FH = 13 Н.

Задача 4 К ободу однородного диска радиусом R=0,2 м прило­жена каса­тель­ная сила F=98,1 Н. При вращении на диск действует момент сил трения

МТР=4,9 Н×м. Найти массу m диска, если известно, что диск вращается с угловым ускорением e=100 рад/с 2 .

R = 0,2 м F = 98,1 Н MТР = 4,9 Н×м e = 100 рад / c 2Решение Воспользуемся основным законом динамики вращательного движения, записанным для оси вращения, направление которой совпадает с направлением угловой скорости: , где — момент сил, приложенных к телу,
m — ?

относительно выбранной оси ( MF — момент силы F, Mтр – момент сил трения);

— момент инерции диска.

Учитывая, что MF=F×R, получаем .

Отсюда ; m = 7,4 кг.

Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.)


источники:

http://zaochnik.com/spravochnik/fizika/osnovy-dinamiki/uravnenie-dvizhenija-materialnoj-tochki/

http://studall.org/all-63351.html