Уравнения движения в декартовой системе координат

Уравнение движения материальной точки

Движение материальной точки в пространстве – это изменение ее положения относительно других тел с течением времени.

Имеет смысл говорить только о движении в некоторой системе отсчета.

Система отсчета. Системы координат

Точки, располагаемые в пустом пространстве, не различаются. Поэтому о точке рассуждают при условии нахождения в ней материальной точки. Определить ее положение можно при помощи измерений в системе координат, где и проводится нахождение пространственных координат. Если рассматривать в виде примера поверхность Земли, то следует учитывать широту и долготу располагаемой точки.

В теории используется декартова прямоугольная система координат, где определение точки возможно при наличии радиус-вектора r и трех проекций x , y , z – ее координат. Могут быть применены другие:

  • сферическая система с положением точек и ее радиус-вектором, определенных координатами r , υ , φ ;
  • цилиндрическая система с координатами p , z , α ;
  • на полярной плоскости с параметрами r , φ .

В теории зачастую не принимают во внимание реальную систему отсчета, а сохраняют только ту, которая представляет собой ее математическую модель, применяемую во время практических измерений.

Кинематическое уравнение движения материальной точки

Любая система отсчета или координат предполагает определение координат материальной точки в любой момент времени.

При условии положения и определения материальной точки в данной системе отсчета считается, что ее движение задано или описано.

Это возможно при использовании кинематического уравнения движения:

Аналитически положение точки определяется совокупностью трех независимых между собой чисел. Иначе говоря, свободная точка имеет три степени свободы движения.

Ее перемещение по уравнению ( 1 ) определено, если имеется указанное положение в любой момент времени t . Для этого следует задавать декартовы координаты точки в качестве однозначных и непрерывных функций времени:

x ( t ) = x , y ( t ) = y , z ( t ) = z ( 2 ) .

Прямоугольные декартовы координаты x , y , z — это проекции радиус-вектора r ¯ , проведенного из начала координат. Очевидно, что длину и направление r ¯ можно найти из соотношений, где a , β , γ являются образованными радиус-вектором углами с координатными осями.

Равенства ( 2 ) считают кинематическими уравнениями движения материальной точки в декартовых координатах.

Они могут быть записаны в другой системе координат, которая связана с декартовой взаимно однозначным преобразованием. Если движение точки происходит в плоскости О х у , тогда применимы полярные координаты r , φ , относящиеся к декартовым преобразованиям. Данный случай подразумевает использование уравнения движения точки следующего вида:

r = r ( t ) , φ = φ ( t ) ( 3 ) .

Кинематическое уравнение движения точки в криволинейных координатах q 1 , q 2 , q 3 , связанных с декартовыми преобразованиями вида x = x ( q 1 , q 2 , q 3 ) , y = y ( q 1 , q 2 , q 3 ) , z = z ( q 1 , q 2 , q 3 ) ( 4 ) , записывается как

q 1 = q 1 ( t ) , q 2 = q 2 ( t ) , q 3 = q 3 ( t ) ( 5 ) .

Кривая радиус-вектора, описываемая концом вектора r при движении точки, совпадает с ее траекторией. Параметрическое уравнение траектории с t представлено кинематическими уравнениями ( 2 ) , ( 5 ) . Чтобы получить координатное уравнение траектории следует исключить время из кинематических уравнений.

Определение движения точки возможно с помощью задания траектории и мгновенного положения точки на ней. Ее положение на кривой определяется с помощью указания только одной величины: расстояния вдоль кривой от некоторой начальной точки с положительным направлением:

Это и есть уравнение движения точки по траектории. Способ его задания относят к естественному или траекторному.

Понятия координатного и естественного способа задания движения точки физически эквивалентны. С математической стороны это рассматривают как возможность применения разных методов, исходя из случая математической задачи.

Задание такого закона возможно аналитическим, графическим путем или с использованием таблицы, последние два из которых зачастую рассматривают в виде графиков и расписаний движений поездов.

Дано уравнение движения материальной точки x = 0 , 4 t 2 . Произвести запись формулы зависимости υ x ( t ) , построить график зависимости скорости от времени. На графике отметить площадь, численно равную пути, пройденному точкой за 4 секунды, произвести вычисление.

Дано: x = 0 , 4 t 2 , t = 4 c

Найти: υ x ( t ) , S — ?

Решение

При решении необходимо учитывать зависимость скорости от времени:

υ x = υ 0 x + a x t .

Зависимость координаты от времени и сравнение уравнения с заданным принимает вид:

x = x 0 + υ 0 x t + a x t 2 2 , x = 0 , 4 t 2 .

Очевидно, что x 0 = 0 , υ 0 x = 0 , a x = 0 , 8 м / с 2 .

После подстановки данных в уравнение:

Определим точки, изобразим график:

υ x = 0 , t = 0 , υ x = 4 , t = 5

Путь, по которому двигалось тело, равняется площади фигуры, ограниченной графиком, и находится с помощью формулы:

Динамика: Конспект лекций по курсу «Теоретическая механика» (Уравнения движения материальной точки в декартовой системе координат. Уравнения движения материальной точки в естественной системе координат)

Страницы работы

Содержание работы

для студентов II курса

Предлагаемый конспект лекций содержит только выборочные сведения из динамики. Многие понятия и теоремы не рассматриваются, а те, которые рассматриваются, приводятся без строгого доказательства или даже вообще без доказательства. Желающим познакомится более детально с положениями динамики, необходимо обратится к академическим учебникам. Термины, введенные в статике и кинематике, сохраняют свое значение и в динамике.

В настоящем конспекте материал изложен в том порядке и в том объеме, как он читается на лекциях в Воронежском филиале.

В конспекте принято обозначать определение терминов и основных понятий теоретической механики курсивом, причем сам термин пишется ЗАГЛАВНЫМИ буквами. В конце конспекта приводится отдельно список терминов и основных определений с указанием страницы, на которой приводится определение этого термина.

Когда формулируется какое-либо правило или рекомендация, которая имеет важное значение, они могут быть выделены ЗАГЛАВНЫМИ буквами.

Заголовки основных разделов выделены ЖИРНЫМИ ЗАГЛАВНЫМИ буквами, а заголовки подразделов ОБЫЧНЫМИ ЗАГЛАВНЫМИ или шрифтом с подчеркиванием. Также с подчеркиванием приведены слова «аксиома» и «теорема», когда они предшествуют формулировке. Сама формулировка приводится жирными строчными буквами.

В тексте встречаются ссылки на теоремы и аксиомы, рассмотренные ранее в статике или кинематике. В этом случае в ссылке присутствует заглавная буква, указывающая на раздел теоретической механики, в котором рассматривалась эта теорема или аксиома, а также ее порядковый номер в разделе. Иногда присутствует просто ссылка на раздел с указанием страницы, где был рассмотрен соответствующий вопрос.

Д И Н А М И К А

ДИНАМИКА изучает поведение материальных тел как результат их взаимодействия с другими телами.

Так как мерой взаимодействия является сила, то поведение сил и изменение характеристик движения во времени должны быть взаимосвязаны.

Все задачи динамики можно условно разделить на две категории:

— зная характеристики движения, определить силы, вызвавшие такое движение (ПРЯМАЯ ЗАДАЧА);

— зная силы, определить характеристики движения (ОБРАТНАЯ ЗАДАЧА).

При рассмотрении статики силы считались постоянными величинами, в динамике будем учитывать, что сила – величина переменная.

Аксиома Д1. Сила – это вектор.

Следовательно, с силами можно проделывать те же операции, что и с векторами, т.е. складывать, вычитать, проектировать, умножать на скаляр или другой вектор и т.д.

Аксиома Д2. Любое материальное тело можно представить как совокупность конечного числа материальных точек.

Аксиома Д3. Если силы, действующие на материальную точку, уравновешены или вовсе отсутствуют, то эта точка сохраняет состояние покоя или движется равномерно и прямолинейно (по инерции).

Движение равномерное и прямолинейное называется ИНЕРЦИОННЫМ ДВИЖЕНИЕМ.

Система координат, в которой выполняется аксиома Д1, называется ИНЕРЦИОННАЯ СИСТЕМА ОТСЧЕТА. Не все системы координат являются инерционными, поэтому чтобы пользоваться теоремами и законами динамики, необходимо побеспокоиться о правильном выборе системы координат. На практике следует учитывать, что безусловно инерционной можно считать только систему координат с центром в центре масс Солнца и осями, направленными на удаленные внегалактические объекты. Систему координат, располагающуюся на поверхности земли, можно считать инерционной весьма условно. При этом погрешность расчетов подавляющего большинства задач о движении тел вблизи поверхности Земли будет достаточно мала.

Аксиома Д4. Если на материальную точку действует сила, то эта точка будет двигаться с ускорением, прямо пропорциональным этой силе. Коэффициент пропорциональности между силой и ускорением называется МАССА материальной точки m.

.

Поскольку в теоретической механике рассматриваются тела, движущиеся со скоростями только гораздо меньше скорости света, то МАССУ можно СЧИТАТЬ ПОСТОЯННОЙ ВЕЛИЧИНОЙ.

Возьмем две материальные точки с различными массами, например m1>m2, и подействуем на каждую из них одной и той же силой . На основании аксиомы Д2 будем иметь

Видим, что чем больше масса точки, тем медленнее она будет двигаться под действием одной и той же силы при прочих равных условиях.

ИНЕРТНОСТЬ – это способность тел сопротивляться попыткам изменить их состояние.

МАССА ЯВЛЯЕТСЯ МЕРОЙ ИНЕРТНОСТИ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ ТЕЛ. Чем больше масса, чет труднее привести тело в движение, но и труднее затем остановить его.

Аксиома Д5. Две материальные точки действуют друг на друга с силами равными по величине, лежащими на одной прямой и направленными в разные стороны (действие равно противодействию).

УРАВНЕНИЯ ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ

В ДЕКАРТОВОЙ СИСТЕМЕ КООРДИНАТ

Рассмотрим движение материальной точки.

Пусть на нее действуют силы . Так как речь идет о материальной точке, то эти силы обязательно будут сходящимися, и на основании теоремы С2 их всегда можно заменить равнодействующей

Дифференциальные уравнения движения материальной точки в теоретической механике

Содержание:

Дифференциальные уравнения движения материальной точки:

Используя основной закон динамики, можно вывести дифференциальные уравнения движения материальной точки в различных системах координат. По аксиоме о связях и силах реакций связей можно получить дифференциальные уравнения движения и несвободной точки так же, как и для свободной, только ко всем приложенным к точке силам надо добавить силы реакций связей.

Силы реакций связей при движении точки могут зависеть в общем случае не только от вида наложенных на точку связей и приложенных к ней сил, но и от характера ее движения, например от ее скорости при движении в воздухе или в какой-либо другой сопротивляющейся среде. В дальнейшем не будем делать различия между свободной и несвободной материальными точками. Обозначая равнодействующую всех заданных сил и сил реакций связей

Из кинематики точки известно, что ускорение выражается через радиус-вектор (рис. 3):

Дифференциальное уравнение движения материальной точки в векторной форме имеет вид

Если спроецировать обе части уравнений (7) или (8) на координатные оси, то можно получить дифференциальные уравнения движения точки в проекциях на эти оси.

В декартовой системе координат в общем случае

Проекции ускорения на координатные оси можно выразить через вторые производные по времени от координат движущейся точки:

Рис. 3

Дифференциальные уравнения движения материальной точки в прямоугольной декартовой системе координат имеют вид

Частные случаи дифференциального уравнения движения материальной точки

Если известно, что материальная точка движется в одной и той же плоскости, то, принимая ее за координатную плоскость , имеем

Так как , то, следовательно, . В случае движения точки по прямой линии, направив по ней координатную ось , получим одно дифференциальное уравнение прямолинейного движения точки

Так как при движении , то, следовательно, . Для естественных подвижных осей координат (рис. 4), проецируя обе части (7) на эти оси, получаем:

где и — соответственно проекции ускорения и равнодействующей силы на касательную, главную нормаль и бинормаль к траектории в рассматриваемом положении движущейся точки. Учитывая, что

где — радиус кривизны траектории, дифференциальные уравнения движения точки в проекциях на естественные оси имеют вид

Второе уравнение из (12) можно преобразовать:

где — угловая скорость вращения касательной к траектории движущейся точки и, следовательно, — угол смежности между касательными в двух бесконечно близких точках.

Дифференциальные уравнения (12) можно представить в виде

Рис. 4

Эта форма дифференциальных уравнений движения точки удобна при исследовании некоторых случаев полета снарядов и ракет, особенно по траектории, лежащей в плоскости. Тогда будет углом между касательной к траектории и любой осью, лежащей в плоскости траектории.

Дифференциальные уравнения движения точки можно представить в любой другой системе координат. Для этого надо знать выражения проекций ускорения на эти оси координат.

Дифференциальные уравнения относительного движения точки

Кориолисовыми силами инерции называют две векторные величины, имеющие размерность силы и добавляемые к силам, приложенным к материальной частице, для определения ее относительного ускорения

Все дифференциальные уравнения движения, с которыми мы ознакомились в этой главе, относятся к абсолютному движению, т. е. к движению по отношению к инерциальной системе отсчета. Для написания дифференциальных уравнений движения точки (или частицы) относительно подвижных осей подставим в основное уравнение динамики (123) вместо абсолютного ускорения точки его выражение (110):

(153)

имеющую размерность силы, равную произведению массы материальной частицы на ее переносное ускорение и направленную противоположно этому ускорению, называют переносной силой инерции Кориолиса.

(154)

равную произведению массы материальной частицы на ее кориолисово ускорение и направленную противоположно этому ускорению, называют поворотной силой инерции Кориолиса.

(155 / )

или в проекциях на оси координат:

(155)

Таким образом, относительное движение материальной точки можно описать такими же (по форме) дифференциальными уравнениями, как и абсолютное, но к действующим на точку силам нужно прибавить две кориолисовы силы инерции: переносную и поворотную.

Эти величины следует отличать от даламберовых сил инерции (см. гл. XX), введение которых позволяет решать задачи динамики методом статики.

Пример решения задачи №1

Определить амплитуду вынужденных колебаний в относительном движении вибрографа для записи вертикальных колебаний фундамента (рис. 171), совершающего вместе с фундаментом колебания по закону χ = a sin pt, если вес груза равен G и жесткость пружины с.


Рис. 171

Решение. Рама жестко соединена с фундаментом и участвует в его колебаниях, как и вращающийся барабан В, на котором груз G, перемещаясь вверх и вниз, записывает колебания фундамента. Вертикальные перемещения х’ груза G по отношению к раме являются относительными и по отношению к барабану, если пренебречь его вращением. Уравнение этих относительных перемещений можно составить как уравнение абсолютного движения, если к заданным силам добавить переносную кориолисову силу, равную и противоположную произведению вектора переносного ускорения на массу груза. Переносная сила инерции груза равна

Напишем дифференциальное уравнение относительных колебаний груза, сократив на m:

x’ + k 2 χ’ = ар 2 sin pt.

где Пренебрегая свободными колебаниями груза, напишем уравнение (149′) установившегося вынужденного колебания груза:

Амплитуда этих колебаний тем менее отличается от амплитуды колебаний фундамента, чем меньше собственная частота k прибора сравнительно с частотой р, т. е. чем меньше жесткость пружины и чем больше масса груза.

Ответ.

Пример решения задачи №2

Ползун G (рис. 172) может скользить по хорде AB равномерно вращающегося горизонтального диска, к точкам А и В которой он прикреплен двумя одинаковыми пружинами жесткостью каждая. Принимая ползун за точку массы т и пренебрегая трением, определить зависимость периода τ его колебаний в относительном движении по хорде от угловой скорости ω диска.


Рис. 172

Решение. Построим оси подвижной системы координат с началом в точке О (в положении относительного равновесия ползуна), направив Ox’ но хорде.

Определим силы, действующие на ползун. Если ползун отклонится от равновесного положения О на величину х’, то одна из пружин сожмется, а другая растянется. Согласно закону Гука сила каждой из пружин пропорциональна деформации х’ и направлена к точке О. Следовательно, на ползун действует активная сила

Кроме активной силы, надо учесть действие кориолисовых сил: Φe—переносной и Φc-поворотной.
Переносная сила инерции равна произведению массы т ползуна на его переносное ускорение: и направлена против переносного ускорения, т. е. от центра C диска. Чтобы определить проекцию этой силы на Ox’, надо ее модуль умножить на направляющий косинус, который при OG = х’ равен .

Поворотная сила Кориолиса равна произведению массы ползуна иа кориолисово ускорение 2ωx’ и направлена против этого ускорения. Таким образом, чтобы определить направление поворотной силы Кориолиса, надо вектор относительной скорости повернуть на 90° против переносного вращения. Находим, что поворотная сила инерции действует перпендикулярно AB и проекция ее на Ox’ равна нулю.

При найденных значениях активных сил и кориолисовых сил дифференциальное уравнение относительного движения ползуна по хорде имеет вид:

mх’ = — cx’ + mω 2 x’= — (с—mω 2 )x’.

Это уравнение выражает гармоническое колебание с периодом

Ответ. и не зависит от положения хорды.

Пример решения задачи №3

Составить дифференциальное уравнение относительного движения ползуна, описанного в предыдущей задаче, считая, что при его движении вдоль хорды AB возникает трение, пропорциональное нормальному давлению на хорду.

Решение. Нормальное давление обусловлено поворотной силой инерции и нормальной составляющей переносной силы инерции.

Поворотная сила ползуна Φс=2mωx’ переменна по величине и направлению. Она направлена перпендикулярно к хорде AB, но в сторону положительных значений у’, если точка G движется в сторону отрицательных значений х’, т. е, если х’ 2 h. Эта составляющая в рассматриваемом механизме всегда направлена в сторону положительных у’, а потому в суммарном давлении обе кориолисовы силы складываются при х’ 0, и дифференциальное уравнение относительного движения точки имеет вид

mх’ =— (с—mω 2 ) x’ — fm (2ωx’ ± ω2h),

причем знак второго слагаемого в скобках надо брать положительным при х’ 0. Решение такого уравнения при движении точки G влево и вправо получается, конечно, различным. Если Л — 0 и хорда является диаметром, то вместо кулонова трения получается вязкое демпфирование, зависящее от скорости.

Рекомендую подробно изучить предмет:
  • Теоретическая механика
Ещё лекции с примерами решения и объяснением:
  • Две основные задачи динамики точки
  • Прямолинейное движение точки
  • Криволинейное движение материальной точки
  • Движение несвободной материальной точки
  • Сложное движение точки
  • Сложение движение твердого тела
  • Кинематика сплошной среды
  • Аксиомы классической механики

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://vunivere.ru/work98100

http://www.evkova.org/differentsialnyie-uravneniya-dvizheniya-materialnoj-tochki-v-teoreticheskoj-mehanike