Уравнения эдс и векторная диаграмма

Уравнения эдс и векторная диаграмма

Воропаев Е.Г.
Электротехника

гл.4 Трансформаторы
глава 1| глава 2| глава 3| глава 5| глава 6| глава 7| глава 8| глава 9| глава 10| глава 11|

4.1.ОСНОВНЫЕ ПОНЯТИЯ

Oпределение: Трансформатором называется статический электромагнитный аппарат, предназначенный для преобразования системы переменного тока одних параметров в систему переменного тока с другими параметрами.

Известно, что передача электроэнергии на дальние расстояния осуществляется на высоком напряжении (220, 400, 500 кВ и более), благодаря чему значительно уменьшаются потери энергии в линии (рис. 4.1.1).
Получить такое высокое напряжение непосредственно в генераторе невозможно, поэтому в начале линии электропередачи устанавливают повышающие трансформаторы, а в конце линии устанавливают понижающие трансформаторы.
Таким образом, переменный ток по пути от электростанции до потребителя подвергается трех-, а иногда и четырехкратному трансформированию.
В зависимости от назначения трансформаторы разделяются на силовые и специальные.
Силовые трансформаторы используются в линиях электропередачи и распределения электроэнергии.
К специальным трансформаторам относятся: печные, выпрямительные, сварочные, автотрансформаторы, измерительные, трансформаторы для преобразования частоты и т.д.
Трансформаторы разделяются на однофазные и многофазные , из которых наибольшее применение имеют трехфазные.
Кроме того, трансформаторы могут быть двухобмоточными (если они имеют по две обмотки) или многообмоточными (если они имеют более двух обмоток). В зависимости от способа охлаждения трансформаторы разделяются на масляные и сухие .

4.2. ПРИНЦИП ДЕЙСТВИЯ И КОНСТРУКЦИИ ТРАНСФОРМАТОРОВ

Простейший трансформатор состоит из магнитопровода и двух расположенных на нем обмоток. Обмотки электрически не связаны друг с другом. Одна из обмоток — первичная , подключена к источнику переменного тока. К другой обмотке — вторичной подключают потребитель.

Действие трансформатора основано на явлении электромагнитной индукции. При подключении первичной обмотки к источнику переменного тока в витках этой обмотки протекает переменный ток I1, который создает в магнитопроводе переменный магнито-поток Ф. Замыкаясь в магнитопроводе, этот поток пронизывает обе обмотки, индуктируя в них ЭДС:

Из этих формул следует, что вычисленные ЭДС е1 и е2 могут отличаться друг от друга числами витков в обмотках. Применяя обмотки с различным соотношением витков, можно изготовить трансформатор на любое отношение напряжений.
При подключении ко вторичной обмотке нагрузки zн в цепи потечет ток I2 и на выводах вторичной обмотки установится напряжение U2.
Обмотка трансформатора, подключенная к сети c более высоким напряжением, называется обмоткой высшего напряжения (ВН); обмотка, присоединенная к сети меньшего напряжения, называется обмоткой низшего напряжения (НН).
Трансформаторы — обратимые аппараты, т.е. могут работать как повышающими, так и понижающими.
Основными частями трансформатора являются его магнитопровод и обмотки. Магнитопровод выполняется из тонких листов электротехнической стали. Перед cборкой листы изолируются друг от друга лаком или окалиной. Это дает возможность в значительной мере ослабить в нем вихревые токи и уменьшить потери на перемагничивание.
Трансформаторы бывают стержневыми и броневыми . Наиболее широкое распространение получили стержневые трансформаторы.
Трансформаторы броневого типа имеют разветвленный магнитопровод с одним стержнем и ярмами, частично прикрывающими (бронирующими) обмотки.
В трехфазном трансформаторе применяют трехстержневой магнитопровод, который похож на броневой, но обмотки на нем расположены на всех трех стержнях.

По способу сочленения стержней с ярмами различают шихтованные магнитопроводы и стыковые. В работе удобнее шихтованные магнитопроводы, т.к. воздушный зазор в местах сочленения у них меньше и они прочнее.
Форма поперечного сечения стержней зависит от мощности трансформатора: в небольших — это прямоугольник, а в средних и крупных — ступенчатое сечение.

Обмотки трансформаторов выполняют из медных проводов круглого и прямоугольного сечения, изолированных хлопчатобумажной пряжей или кабельной бумагой.
По взаимному расположению обмоток ВН и НН и по способу их размещения на стержнях различают обмотки концентрические и дисковые.

В масляных трансформаторах магнитопровод с обмотками помещается в бак, заполненный маслом, которое отбирает от них тепло, передавая его стенкам бака. Кроме того, электрическая прочность масла выше, чем у воздуха, что обеспечивает более надежную работу высоковольтных трансформаторов.
Для увеличения охлаждающей поверхности применяются трубчатые баки.
При нагревании масло расширяется. Излишек его попадает из общего бака в бак-расширитель, установленный на крышке трансформатора.
Для предотвращения аварии у трансформаторов напряжением 1000 кВ и выше на расширителе устраивают выхлопную трубу, закрытую мембраной — стеклянной пластиной. При образовании в баке большого количества газов мембрана выдавливается, и газы выходят наружу.

4.3. ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ТРАНСФОРМАТОРЕ.
УРАВНЕНИЕ ЭДС

Как видно из рис. 4.2.1, основной магнитный поток Ф, действующий в магнито-проводе трансформатора, сцепляется с витками обмоток и наводит в них ЭДС:

Предположим, что магнитный поток Ф является синусоидальной функцией, т.е.

Подставим это значение в выражения для ЭДС и, произведя дифференцирование, получим:

где

Из последних формул видно, что ЭДС е1 и е2 отстают по фазе от потока Ф на угол p /2.

Максимальное значение ЭДС:

Переходя к действующим значениям, имеем

Если Фmах выражено в максвеллах, а Е в вольтах, то

Отношение ЭДС обмотки высшего напряжения к ЭДС обмотки низшего напряжения называется коэффициентом трансформации.

Подставив вместо ЭДС Е1 и Е2 их значения, получим:

Токи I1 и I2, протекающие по обмоткам трансформатора, помимо основного потока Ф создают магнитные потоки рассеяния ФР1 и ФР2 (рис. 4.2.1). Каждый из этих потоков сцепляется только с витками собственной обмотки и индуктирует в них реактивные ЭДС рассеяния ЕР1 и ЕР2. Величины этих ЭДС прямо пропорциональны возбуждающим их токам:

где x1 и x2 — индуктивные сопротивления рассеяния обмоток.
Кроме этого, в каждой обмотке трансформатора имеет место активное падение напряжения, которое компенсируется своей ЭДС:

Рассмотрим действие изученных выше ЭДС в обмотках трансформатора.
В первичной обмотке Е1 представляет собой ЭДС самоиндукции, а поэтому она направлена против первичного напряжения u1. В связи с этим уравнение ЭДС для первичной обмотки имеет вид:

Величины j I1 x1 и I1 r1 представляют собой падение напряжений в первичной обмотке трансформатора. Обычно j I1 x1 и I1 r1 невелики, а поэтому, с некоторым приближением, можно считать, что подведенное к трансформатору напряжение u1 уравновешивается ЭДС Е1:

Во вторичной обмотке Е2 выполняет роль источника тока, поэтому уравнение ЭДС для вторичной обмотки имеет вид:

где j I2 x2 и I2 r2 — падение напряжения во вторичной обмотке.
При холостом ходе трансформатора первичная обмотка включена на напряжение u1, а вторичная разомкнута (I2 = 0).
При этих условиях в трансформаторе действует только одна намагничивающая сила первичной обмотки I10 w1, созданная током I10, которая наводит в магнитопроводе трансформатора основной магнитный поток:

где Rм — магнитное сопротивление магнитопровода потоку.
При подключении к вторичной обмотке нагрузки ZН в ней возникает ток I2. При этом ток в первичной обмотке увеличивается до значения I1.
Теперь поток Ф создается действием двух намагничивающих сил I1 w1 и I2 w2.

видно, что основной поток Ф0 не зависит от нагрузки трансформатора, при неизменом напряжении u1. Этот вывод дает право приравнять:

Разделим обе части уравнения на w1, получим:

где — вторичный ток, приведенный к числу витков первичной обмотки.
Перепишем уравнение

из которого следует, что ток I1 имеет две составляющие: одна из них (I10) затрачивается на создание основного потока в магнитопроводе, а другая (- I2‘) компенсирует размагничивающее действие вторичного тока.
Любое изменение тока во вторичной цепи трансформатора всегда сопровождается соответствующим изменением первичного тока. В итоге величина потока Ф (а, следовательно, и ЭДС Е1) остаются практически неизменными.
Вследствие перемагничивания стали в магнитопроводе трансформатора возникают потери энергии от гистерезиса и вихревых токов. Мощность этих потерь эквивалентна активной составляющей тока I10. Следовательно, ток I10 наряду с реактивной составляющей Iоp, идущей на создание основного потока Ф, имеет еще и активную составляющую Iоа. В итоге:

На рис. 4.4.1 приведена векторная диаграмма трансформатора в режиме холостого хода.
Обычно ток Iоа не превышает 10% от тока Io, поэтому незначительно влияет на величину I10. Обычно он равен (0,02 0,1) I1, поэтому при нагрузке I10 принимаем равным нулю, и тогда:

т. е. отношение токов обратно пропорционально числам витков обмоток.

Заключая разделы 4.3 и 4.4, перепишем вместе уравнения ЭДС и токов трансформатора:

Эти уравнения получили название основных уравнений, на которых базируется теория трансформатора и общая теория электрических машин переменного тока.

4.5.ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР

В общем случае параметры первичной обмотки трансформатора отличаются от параметров вторичной обмотки. Разница наиболее ощутима при больших коэффициентах трансформации, что затрудняет расчеты и (особенно) построение векторных диаграмм. Векторы электрических величин, относящиеся к первичной обмотке, значительно отличаются по своей длине от одноименных векторов вторичной обмотки. Затруднения можно устранить, если привести все параметры трансформатора к одинаковому числу витков, например, к w1. С этой целью параметры вторичной обмотки пересчитываются на число витков w1.
Таким образом, вместо реального трансформатора с коэффициентом трансформации получают эквивалентный трансформатор с
Такой трансформатор называется приведенным. Приведение параметров трансформатора не должно отразиться на его энергетическою процессе, т.е. все мощности и фазы вторичной обмотки должны остаться такими же, что и в реальном трансформаторе.
Так, например, если полная мощность вторичной обмотки реального трансформатора то она должна быть равна полной мощности вторичной обмотки приведенного трансформатора:

Используя ранее полученное выражение I 2 ‘ = I2 w2/w1, напишем выражение для E2 ‘ :

Приравняем теперь активные мощности вторичной обмотки:

Определим приведенное активное сопротивление:

Уравнения ЭДС и токов для приведенного трансформатора теперь будут иметь вид:

4.6.ЭКВИВАЛЕНТНАЯ СХЕМА ТРАНСФОРМАТОРА

Одним из методических приемов, облегчающих исследование электромагнитных процессов и расчет трансформаторов, является замена реального трансформатора с магнитными связями между обмотками эквивалентной электрической схемой (рис. 4.6.1).

На этом рисунке представлена эквивалентная схема приведенного трансформатора, на которой сопротивления г и х условно вынесены из соответствующих обмоток и включены с ними последовательно. Т.к. k = 1, то E1 = E2. Поэтому точки А и а, а также Х и х на приведенном трансформаторе имеют одинаковые потенциалы, что позволит электрически соединить эти точки, получив Т-образную эквивалентную схему замещения (рис. 4.6.2).

Произведя математическое описание этой схемы методами Кирхгофа, можно сделать вывод о том, что она полностью соответствует уравнениям ЭДС и токов реального трансформатора (см. раздел 4.5). Отсюда появляется возможность электрического моделирования трансформатора на ЭВМ. Проводя исследования относительно нагрузки z2 ‘ (единственного переменного параметра схемы), можно прогнозировать реальные ха-рактеристики трансформатора, начиная от холостого хода (z2 ‘ = ) и кончая коротким замыканием (z2 ‘ = 0).

4.7. ВЕКТОРНАЯ ДИАГРАММА ТРАНСФОРМАТОРОВ

Построение векторной диаграммы удобнее начинать с вектора основного потока Ф. Отложим его по оси абсцисс. Вектор I10 опережает его на угол a . Далее строим векторы ЭДС Е1 и Е2 ‘ , которые отстают от потока Ф на 90°. Для определения угла сдвига фаз между E2 ‘ и I2‘ следует знать характер нагрузки. Предположим, она — активно-индуктивная. Тогда I2‘ отстает от E2’ на угол f 2.
Получилась так называемая заготовка векторной диаграммы (рис. 4.7.1.). Для того чтобы достроить ее, необходимо воспользоваться тремя основными уравнениями приведенного трансформатора.

Воспользуемся вторым основным уравнением:

и произведем сложение векторов.
Для этого к концу вектора E2 ‘ пристроим вектор — j I2‘ x2 ‘ , а к его концу — вектор — I2 ‘ r2 ‘ . Результирующим вектором U2 ‘ будет вектор, соединяющий начало координат с концом последнего вектора.
Теперь используем третье основное уравнение

из которого видно, что вектор тока I1 состоит из геометрической суммы векторов I10 и — I2‘. Произведем это суммирование и достроим векторную диаграмму.
Теперь вернемся к первому основному уравнению:

Чтобы построить вектор — Е1 , нужно взять вектор +Е1 и направить его в противоположную сторону.
Теперь можно складывать с ним и другие векторы: + j I1 x1 и I1 r1 . Первый будет идти перпендикулярно току, а второй — параллельно ему. В результате получим суммарный вектор u1.
Построенная векторная диаграмма имеет общий характер. По этой же методике можно осуществить ее построение как для различных режимов, так и для разных характеров нагрузки.

4.8.ПОТЕРИ И КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ

В работающем трансформаторе всегда имеются как магнитные, так и электрические потери. Магнитные потери слагаются из потерь на вихревые токи и гистерезис.

Величина этих потерь зависит от напряжения u1 и магнитной индукции В. Можно считать, что при U1 = const, рон= В 2 . Они не зависят от нагрузки, т.е. являются постоянными. Электрические потери в обмотках, наоборот, переменные, т.е.:

где ркн — соответствует потерям при коротком замыкании трансформатора.
Если известны потери короткого замыкания при номинальной нагрузке, то электрические потери можно определить по формуле:

где — коэффициент загрузки трансформатора.
Общие потери в трансформаторе:

КПД представляет собой отношение активной мощности Р2, отбираемой от трансформатора, к активной модности Р1, подводимой к трансформатору:

Мощность Р2 подсчитывается по формуле:

где — номинальная мощность, кВт.

Мощность

тогда КПД трансформатора

Как видно из последней формулы, величина К.П.Д. зависит от загрузки трансформатора. Кроме того, К.П.Д. тем больше, чем выше cos f 2. Максимальный КПД соответствует такой загрузке, при которой магнитные потери равны электрическим потерям:

Отсюда значение коэффициента загрузки, соответствующее максимальному К.П.Д., равно:

Обычно К.П.Д. имеет максимальное значение при b = 0,5 — 0,6. Тогда
h = 0,98 — 0,99.

4.9.ТРЕХФАЗНЫЕ ТРАНСФОРМАТОРЫ

4.9.1. Общие положения

Для трансформирования энергии в трехфазных системах используют либо группу из трех однофазных трансформаторов, у которых первичные и вторичные обмотки соединяются звездой или треугольником, либо один трехфазный трансформатор с общим магнитопроводом.
Трехфазные трансформаторы могут иметь различные схемы соединения первичных и вторичных обмоток. Все начала первичных обмоток трансформатора обозначают большими буквами: А, В, С; начала вторичных обмоток — малыми буквами: а, Ь, с.
Концы обмоток обозначаются соответственно: X, У, Z и х, у, z.
Зажим выведенной нулевой точки при соединении звездой обозначают буквой О.
Наибольшее распространение имеют соединения обмоток по схеме «звезда» (Y) и «треугольник» ( D ), причем первичные и вторичные обмотки могут иметь как одинаковые, так и различные схемы. Если при соединении обмоток «звездой» нулевая точка выводится, то такое соединение называют «звезда c нулем» (Yо).
На рис. 4.9.1 приведен трехфазный трансформатор при включении обмоток Y/Y.

4.10.ГРУППЫ СОЕДИНЕНИЯ ОБМОТОК

До сих пор мы считали, что при построении векторной диаграммы ЭДС Е1 и Е2 совпадают по фазе. Но это соответствует действительности лишь при условии намотки первичной и вторичной обмоток в одном направлении, или одноименной маркировки их выводов (рис. 4.10.1, а).

Если же в трансформаторе изменить направление намотки обмоток иди же переставить обозначение их выводов, то вектор ЭДС Е2 окажется сдвинутым относительно вектора Е1 на 180° (рис. 4.10.1, б).
Сдвиг фаз между ЭДС Е1 и Е2 принято выражать группой соединений. Так как этот сдвиг фаз может изменяться от 0 до 360°, а кратность сдвига обычно составляет 30°, то для обозначения групп соединения выбирается ряд чисел от 1 до 12, в котором каждая единица соответствует углу сдвига 30°.
В основу этого положено сравнение относительного положения векторов Е1 и Е2 с положением минутной и часовой стрелок часов. Вектор обмотки В.Н. считается минутной стрелкой, установленной на цифре 12, а вектор Н.Н. — часовой стрелкой. По положению часовой стрелки относительно минутной определяют положение вектора ЭДС обмотки Н.Н. относительно обмотки В.Н. Так, на рис. 4.10.1, а соединение имеет группу 12, а на рис. 4.10.1, б — группу 6.
Таким образом, в однофазном трансформаторе имеется только две группы -12 и 6. В 3-х фазном трансформаторе группу соединения определяют по углу сдвига фаз между линейными векторами ЭДС Е1 и Е2 .
ГОСТ ограничивает применение только двух групп: Y / Y — 12 и Y / — 11. В качестве примера рассмотрим схему Y / Y — 12 (рис. 4.10.2).

Векторная диаграмма показывает, что сдвиг между E1 и Е2 равен нулю или 360°, т.е. (360° / 30° — 12 группа).
Если же поменять начала и концы обмоток Н.Н., то будем иметь группу 6 (рис. 4.10.3).

4.11. ПАРАЛЛЕЛЬНАЯ РАБОТА ТРАНСФОРМАТОРОВ

При выборе трансформаторов для электроснабжения производственного предприятия часто возникает дилемма: либо установить один мощный трансформатор, либо применить их несколько, в сумме обеспечивающих требуемую мощность.
Второй вариант будет всегда предпочтительней, т.к. режим работы предприятия в течение суток неравномерный и потребляемая мощность будет различной. Например, в ночное время нагрузка будет минимальной, т.к. потребляемая мощность складывается лишь из охранного освещения и нескольких дежурных объектов. Днем, когда работают основные потребители электроэнергии, потребляемая мощность будет максимальной. Какой-то промежуточный режим будет в вечернее время суток. Короче говоря, в работе могут находиться один, два или сразу три трансформатора.
Параллельная работа нескольких трансформаторов связана с тем, что их вторичные обмотки питают общую нагрузку.
Однако не все трансформаторы способны работать параллельно.
Определим условия, при которых возможно включение трансформаторов на параллельную работу. Во-первых, это одинаковые первичные и вторичные напряжения на обмотках. Во-вторых, должны быть одинаковые схемы и группы соединения. Помимо этого, регламентируются напряжения короткого замыкания, указанные в паспорте трансформатора. И, конечно, порядок чередования фаз у параллельно работающих трансформаторов должен быть одинаковым. В качестве примера приведем схему параллельно включенных пяти сварочных трансформаторов, обеспечивающих работу 14 сварочных постов (рис. 4.11.1).

4.12. ТРАНСФОРМАТОРЫ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ

4.12.1. ТРЕХОБМОТОЧНЫЙ ТРАНСФОРМАТОР

В трех обмоточном трансформаторе имеются три электрически несвязанные друг с другом обмотки, из которых одна является первичной, а две другие — вторичными (рис. 4.12.1).

Первичная обмотка трансформатора является намагничивающей и создает в магнитопроводе магнитный поток, который пронизывает две вторичные обмотки и наводит в них ЭДС Е2 и Е3.
Пренебрегая током холостого хода, можно записать уравнение токов трех обмоточного трансформатора

т.е. первичный ток равен геометрической сумме приведенных вторичных токов. Целесообразность применения трехобмоточных трансформаторов объясняется еще и тем, что один трехобмоточный трансформатор фактически заменяет два двухобмоточных.
За номинальную мощность принимается мощность первичной обмотки. По такому же принципу устроены многообмоточные трансформаторы малой мощности, применяемые в радиоустройствах, связи и в автоматике.

4.12.2. АВТОТРАНСФОРМАТОР

В автотрансформаторе (рис. 4.12.2) часть витков в обмотке В.Н. используется в качестве обмотки Н.Н., т.е. в автотрансформаторе имеется всего лишь одна обмотка, часть которой (а Х) принадлежит одновременно сторонам В.Н. и Н.Н.

На участке аХ протекает ток i12 = i2 — i1, или переходя к действующим значениям, учитывая, что I1 и I2 находятся в противофазе, можно записат

Таким образом, величина тока в общей части обмоток равна разности токов I1 и I2.
Если коэффициент трансформации близок к единице, то I1 и I2 мало отличаются друг от друга, разность между ними будет также небольшой. Это позволит выполнять часть обмотки аХ проводом меньшего поперечного сечения.
Мощность, передаваемая первичной обмоткой во вторичную цепь автотрансформатора, будет равна:

Учитывая, что , ее можно записать в виде:

Здесь U2 I1 = SЭ , есть мощность, поступающая во вторичную цепь электрическим путем, U2 I12 = Sм — мощность, поступающая во вторичную цепь посредством магнитного потока.
Следовательно, в автотрансформаторе посредством магнитного потока передается только часть мощности, что дает возможность уменьшить поперечное сечение магнитопровода. Магнитные потери при этом также уменьшаются.
При меньшем поперечном сечении магнитопровода уменьшается средняя длина витка обмотки, следовательно, вновь уменьшается расход обмоточной меди и снижаются электрические потери.
Таким образом, автотрансформатор имеет преимущества перед трансформаторами, заключающиеся в меньшем весе, меньших размерах более высоком К.П.Д., меньшей стоимости и. т.д.
Однако эти достоинства имеют значение лишь при коэффициенте трансформации k d , можно плавно менять сварочный ток. Максимальное значение тока будет при d мах. Для безопасного обслуживания вторичная обмотка сварочного трансформатора заземляется.

4.12.4. ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ ТОКА И НАПРЯЖЕНИЯ

Эти трансформаторы применяются совместно с измерительными приборами для расширения их пределов измерения (рис. 4.12.4.1).
Измерительный трансформатор напряжения представляет собой понижающий трансформатор с таким отношением витков w1/w2, чтобы при U1 = Uсети; U2 = 100 В.
Во вторичную цепь включаются вольтметры, частотомеры, обмотки напряжения ваттметров, счетчиков и фазометров. Так как электрическое сопротивление этих приборов велико (порядка 1000 0м), то трансформаторы напряжения работают в режиме, близком к холостому ходу. Такой режим связан с большими магнитными потерями, а это, в свою очередь, приводит к увеличению размеров магнитопровода и устройству специального масляного охлаждения.

Измерительные трансформаторы тока (рис. 4.12.4.1) применяются для включения в сеть амперметров, обмоток тока ваттметров, счетчиков и фазометров.
Первичная обмотка трансформатора тока выполняется из провода большого поперечного сечения и включается в цепь последовательно.
Вторичная обмотка выполняется всегда на ток I2 = 5А. Рабочий режим трансформатора тока близок к короткому замыканию, поэтому размеры магнитопровода у него значительно меньше, чем у трансформатора напряжения.
Для определения напряжения или тока в цепи необходимо показания приборов умножить на коэффициент трансформации измерительных трансформаторов.
В целях безопасности нельзя оставлять вторичную обмотку трансформатора тока разомкнутой, если первичная включена в сеть. В этом режиме напряжение U2 возрастает до нескольких тысяч вольт.
Разновидностью измерительного трансформатора тока являются токоизмерительные клещи с разъемным магнитопроводом, где роль первичной обмотки выполняет сам провод, по которому течет измеряемый ток.

4.12.5. ТРАНСФОРМАТОР ДЛЯ ПРЕОБРАЗОВАНИЯ ЧИСЛА ФАЗ

Для питания различных выпрямителей или для электропечей возникает необходимость в увеличении числа фазных обмоток трансформатора. Так, трехфазная система сети с помощью специального трансформатора может быть преобразована в шестифазную или двенадцатифазную. На рис. 4.12.5.1, а приведена схема шестифазного преобразователя.

Первичная обмотка такого преобразователя соединена «звездой», а вторичная — «двойной звездой». Векторная диаграмма вторичной обмотки преобразователя представляет собой шестизвездную звезду (рис. 4.12.5.1, б).

4.12.6. СТАБИЛИЗАТОР НАПРЯЖЕНИЯ

Для стабилизации напряжения в устройствах небольшой мощности (до 5 кВт) применяются электромагнитные стабилизаторы:
1) ферромагнитные насыщенного типа (без емкости), в которых используются явления, основанные на насыщении ферромагнитного сердечника;
2) феррорезонансные (с емкостью), работа которых основана на резонансе токов и напряжений.
Рассмотрим работу феррорезонансного стабилизатора. Он состоит из реактивной катушки 1, сердечник которой при заданном диапазоне напряжений U1 работает в состоянии магнитного насыщения, конденсатора С и автотрансформатора 2 магнитопровод которого не насыщен (рис. 4. 12.6.1).
Обмотка автотрансформатора включена таким образом, чтобы напряжение на выходе стабилизатора U2 было равно разности

где U2 » — напряжение на выходе автотрансформатора;
U2 ‘ — напряжение на выходах реактивной катушки.

Напряжение U2 ‘ благодаря явлению феррорезонанса имеет резко нелинейную зависимость от тока I1 (кривая 1). Напряжение на выходе автотрансформатора U2 » в виду насыщенного состояния его магнитопровода пропорционально току I1 (кривая 2).
Если параметры автотрансформатора и реактивной катушки подобраны таким образом, что наклон кривой 1 к оси абсцисс в области магнитного насыщения равен наклону кривой 2, то разность U2 ‘ — U2 » = const.
В этом случае напряжение на выходе не зависит от тока I1 (кривая 3) и, следовательно, от напряжения U1.

4.12.7. МАГНИТНЫЙ УСИЛИТЕЛЬ

Магнитный усилитель — это статический аппарат, применяемый в схемах автоматического регулирования.
Работа магнитного усилителя основана на нелинейности характеристики намагничивания магнитопровода (рис. 4.12.7.1).

На крайних стержнях магнитного усилителя находится рабочая обмотка, которая состоит из двух катушек соединенных последовательно. На среднем стержне размещается обмотка управления из большого количества витков. Если ток в нее не подается, а к рабочей обмотке подведено напряжение U1, то из за малого количества витков W

магнитопровод не насыщается и почти все напряжение сети падает на сопротивление рабочих обмоток ZН. На потребителе в этом случае выделяется малая мощность.
Если теперь пропустим по обмотке управления ток IУ, то даже при небольшом его значении (из-за большого W=), возникает насыщение магнитопровода. В результате сопротивление рабочей обмотки резко уменьшается, а величина тока в цепи — увеличивается.
Таким образом, посредством малых сигналов в обмотке управления можно управлять значительной величиной мощности в рабочей цепи магнитного усилителя.

4.12.8. ТРАНСФОРМАТОР ДЛЯ ПРЕОБРАЗОВАНИЯ ЧАСТОТЫ

В школьной практике часто возникает необходимость создания источника переменного тока повышенной частоты.
С помощью трансформаторов легко построить удвоитель или утроитель частоты.
Утроитель частоты состоит из трех однофазных трансформаторов, работающих при сильно насыщенном сердечнике (рис. 4.12.8.1).
Первичные обмотки соединены «звездой», а вторичные — последовательно. Как известно, намагничивающий ток имеет сложную форму кривой и помимо основной гармонической составляющей имеет третью, изменяющуюся с частотой f3 = 3f1.
При соединении первичной обмотки «звездой» токи основной гармоники уравно-вешиваются, и под действием третьей гармоники магнитный поток наводит во вторичной обмотке напряжение, изменяющееся с тройной частотой.

Синусоидальные Э.Д.С. и ток

Содержание:

Синусоидальные э.д.с. и ток:

Получение, передача и использование электрической энергии осуществляются в основном с помощью устройств и сооружений переменного тока. Для этого применяют генераторы, трансформаторы, линии передачи и распределительные сети переменного тока. Наиболее широко применяют приемники электрической энергии, работающие на переменном токе.
Переменным электрическим током называется электрический ток, изменяющийся с течением времени (см. рис. 2.1, кривые 2, 3).

Периодический электрический ток, являющийся синусоидальной функцией времени, называется синусоидальным электрическим током.

Такой ток в практике обычно имеют в виду, когда говорят о переменном токе. В некоторых случаях ток изменяется по периодическому несинусоидальному закону.

В линейных электрических цепях переменный синусоидальный ток возникает под действием э. д. с. такой же формы. Поэтому для изучения электрических устройств и цепей переменного тока необходимо прежде рассмотреть способы получения синусоидальной э. д. с. и основные понятия, относящиеся к величинам, которые изменяются по синусоидальному закону.

Получение синусоидальной э.д.с.

Для получения э. д. с. синусоидальной формы генератор переменного тока промышленного типа имеет определенные конструктивные особенности. Однако принципиально синусоидальную зависимость э. д. с. от времени можно получить, вращая с постоянной частотой в равномерном магнитном поле проводник в виде прямоугольной рамки (рис. 12.1).

Рис. 12.1. Прямоугольная рамка в магнитном поле

Вращение витка в равномерном магнитном поле

Согласно формуле (10.5), э. д. с. в рамке, имеющей два активных проводника длиной l,

При равномерном вращении рамки линейная скорость проводника не изменяется:

а угол между направлением скорости и направлением магнитного поля изменяется пропорционально времени:

Угол β определяет положение вращающейся рамки относительно плоскости, перпендикулярной направлению магнитной индукции. (Положение рамки в момент начала отсчета времени t = 0 характеризуется углом β = 0.) Поэтому э. д. с. в рамке является синусоидальной функцией времени

Наибольшей величины э. д. с. достигает при угле


В рассмотренном случае синусоидальное изменение э. д. с. достигается за счет непрерывного изменения угла, под которым проводники пересекают линии магнитной индукции. Однако такой способ получения э. д. с. в практике не применяется, так как трудно создать равномерное поле в достаточно большом объеме.

Генератор переменного тока

В электромашинных генераторах переменного тока промышленного типа синусоидальная э. д. с. получается при постоянном угле, но в неравномерном магнитном поле.

Магнитное поле генератора (радиальное) в воздушном зазоре между статором и ротором направлено по радиусам окружности ротора (рис. 12.2, а). Магнитная индукция вдоль воздушного зазора распределена по закону, близкому к синусоидальному. Такое распределение достигается соответствующей формой полюсных наконечников. Синусоидальный закон распределения магнитной индукции вдоль воздушного зазора показан на рис. 12.2, б в развернутом виде.

Рис. 12.2. Схема генератора переменного тока. Распределение магнитной индукции вдоль воздушного зазора

Рис. 12.3. Схема генератора переменного тока с двумя парами полюсов на роторе

Рис. 12.4. Схема генератора с тремя витками (обмотками)

В любой точке воздушного зазора, положение которой определяется углом β, отсчитанным от нейтральной плоскости (нейтрали) против движения часовой стрелки, магнитная индукция выражается уравнением

Нейтральная плоскость перпендикулярна оси полюсов и делит магнитную систему на симметричные части, из которых одна относится к северному полюсу, а другая — к южному.

Наибольшую величину магнитная индукция имеет под серединой полюсов, т. е. при углах и
На нейтрали (при β = 0 и β = 180°) магнитная индукция равна нулю (В = 0).
На рис. 12.3 показана конструктивная схема генератора переменного тока с двумя парами полюсов, расположенных на роторе, а проводники обмотки, где наводится э. д. с., помещены в пазах сердечника статора.

Отметим еще одну разновидность генераторов переменного тока — генератор с тремя обмотками (трехфазный генератор), которые на схеме рис. 12.4 представлены тремя витками на роторе (у турбогенераторов и гидрогенераторов эти обмотки находятся на статоре). Плоскости витков находятся под углом 120° друг к другу.

Э.Д.С. в обмотке генератора

При равномерном вращении ротора в его обмотке (на рис. 12.2, а — в витке) наводится э. д. с., определяемая формулой (10.4),

Подставляя выражение магнитной индукции (12.3), получим


При β = 90°, т. е. в положении проводника под серединой полюса, наводится наибольшая э. д. с.

Уравнение э. д. с. можно записать так:

Учитывая формулу (12.1), получим такую же зависимость э.д.с. от времени, как при вращении рамки (см. рис. 12.1), считая начальным положение витка (t = 0), когда его плоскость совпадает с нейтралью:

Таким образом, и в данном случае э. д. с. является синусоидальной функцией времени (рис. 12.5). Такой же результат получается, если вращать полюса, а проводники оставить неподвижными.

Рис. 12.5. График синусоидальной э. д. с.

В прямоугольной системе координат э. д. с. можно изобразить в функции угла или в функции времени t. Зависимость и можно изобразить одной кривой, но при разных масштабах по оси абсцисс, отличающихся в ω раз.
Если обмотку генератора замкнуть через сопротивление, то в образовавшейся цепи возникает синусоидальный ток, повторяющий по форме кривую э. д. с.
Полагая сопротивление цепи линейным, равным R, получим для тока такое выражение:

где — наибольшая величина тока.
Напряжение и ток синусоидальной формы можно получить при помощи генераторов, не имеющих вращающихся частей и магнитных полюсов, например ламповых генераторов.

Задача 12.1.

Э. д. с. электромашинного генератора выражается уравнением .
Определить число пар полюсов этого генератора, если известна частота вращения ротора n = 75 об/мин.
На какой угол в пространстве поворачивается ротор генератора за 1/4 периода?
Решение. Период э. д. с., наводимой в обмотке генератора (см. рис. 12.2), имеющего одну пару полюсов, равен времени полного оборота ротора. Угловую скорость вращения ротора можно определить отношением полного угла, соответствующего одному обороту ротора, к периоду:

Однако генератор может иметь не одну, а p пар полюсов (на рис. 12.3 p = 2). Полный цикл изменения э. д. с. в этом случае совершается при движении проводника мимо одной пары полюсов (как за полный оборот ротора в генераторе с p = 1), поэтому при одинаковой частоте вращения ротора период э.д. с. будет в p раз короче, а частота в р раз больше.
Уменьшение периода и соответствующее увеличение частоты при данном числе пар полюсов можно получить, увеличивая частоту вращения ротора.
Частота синусоидальной э. д.с. при р = 1 равна числу оборотов ротора в секунду, а при р > 1

где n — частота вращения ротора, об/мин.
Из уравнения э. д. с. известна угловая частота ω = 314 рад/с; при этом

При частоте вращения ротора n = 75 об/мин


При р = 1 за 1/4 периода ротор повернется на 1/4 окружности, т. е. в угловой мере на 90º. При р = 40 угол поворота ротора за 1/4 периода будет в р раз меньше:

Уравнения и графики синусоидальных величин

Анализ электрических цепей переменного тока невозможно проводить без выражения э. д. с. токов, напряжений их уравнениями. Для наглядности применяются графики этих величин в прямоугольной системе координат. Поэтому рассмотрим уравнения и графики синусоидальных величин более подробно.

Уравнения и графики

Уравнение (12.4) записано для случая, когда начало отсчета времени (t = 0) совпадает с моментом прохождения витка через нейтраль (на рис. 12.2, а положение 1, в котором плоскость витка совпадает с нейтралью).

На рис. 12.4 положение витков тоже соответствует началу отсчета времени (t = 0) и определяется для каждого из них углом, отсчитанным от нейтрали до плоскости витка: для первого витка этот угол для второго — и третьего —
При вращении ротора э. д. с. будет наводиться во всех витках, но уравнения э.д.с. не будут одинаковыми. Действительно, при = 0 э. д. с. в витках:



Эта зависимость э. д. с. от начального положения витка учитывается введением в уравнение начального угла.
С учетом начального угла э. д. с. витка С выражается уравнением

Таким образом, в общем виде, уравнение э. д. с. должно быть записано так:

Из этого уравнения можно определить величину э. д. с. в любой момент при произвольном начальном положении витка.
На рис. 12.6 в соответствии с уравнением (12.6) построены графики э.д.с.трех витков, отличающихся в момент начала отсчета времени расположением относительно нейтральной плоскости (eA при eC при eB при ).

Рис. 12.6. Графики э. д. с., сдвинутых по фазе

Характеристики синусоидальных величин

Уравнением и графиком задаются все характеристики синусоидально изменяющейся величины: амплитуда, угловая частота, начальная фаза, период, частота и для любого момента времени мгновенная величина.

Далее приведены определения этих характеристик, и они показаны на рис. 12.7 применительно к синусоидальной э. д. с. Определения распространяются на все величины, изменяющиеся по синусоидальному закону (ток, напряжение и др.).

Рис. 12.7. К вопросу о характеристиках периодической э. д. с.

Мгновенная величина (или мгновенное значение) э. д. с. е — величина э. д. с. в рассматриваемый момент времени. Мгновенная э. д. с. определяется уравнением (12.6) при подстановке в него времени t, прошедшего от начала отсчета до данного момента.

Период Т — наименьший интервал времени, по истечении которого мгновенные величины периодической э. д. с.. повторяются. Если аргумент синусоидальной функции выражается в углах, то период выражается постоянной величиной 2π.
Частота f — величина, обратная периоду:

т. е. частота равна числу периодов переменной э. д. с. в секунду. Частота выражается в герцах (Гц): 1 Гц = 1/с.
Амплитуда Еm — наибольшая величина, которую принимает э. д. с. в течение периода. Амплитуда является одной из мгновенных величин, которая соответствует аргументу равному , где k — любое целое число или нуль.
Фаза (фазовый угол ) — аргумент синусоидальной э.д.с., отсчитываемый от ближайшей предшествующей точки перехода э. д. с. через нуль к положительному значению. Фаза в любой момент времени определяет стадию гармонического изменения синусоидальной э. д. с.
Начальная фаза ψ — фаза синусоидальной э.д.с. в начальный момент времени.
Две синусоидальные величины, имеющие разные начальные фазы, называются сдвинутыми по фазе.
Угловая частота ω — скорость изменения фазы. За время одного периода Т фазовый угол равномерно изменяется на 2π, поэтому

Задача 12.4.

Переменный электрический ток задан уравнением


Определить период, частоту этого тока и мгновенные величины его при t = 0; t1 = 0,152 с. Построить график тока.
Решение. Уравнение синусоидального тока в общем случае имеет вид

Сопоставляя это уравнение с заданным частным уравнением тока, устанавливаем, что амплитуда Im = 100 А, угловая частота ω = 628 рад/с, начальная фаза ψ = —60°. Период

Частота

Рис. 12.8. К задаче 12.4

Мгновенные величины тока найдем, подставив в уравнение тока заданные значения времени:

при t = 0

при t1 = 0,152 с

Синусоидальная величина через 360° повторяется, поэтому мгновенный ток при угле будет таким же, как и при угле :

Для построения графика нужно определить ряд мгновенных токов, соответствующих различным моментам времени (рис. 12.8).

Векторные диаграммы

До сих пор величины, изменяющиеся по синусоидальному закону, задавали уравнениями и изображали графиками в прямоугольной системе координат. При расчете электрических цепей переменного тока пользуются весьма простым и наглядным способом графического изображения синусоидальных величин при помощи вращающихся векторов.

Обоснование векторной диаграммы

Предположим, что ток задан уравнением

Проведем две взаимно перпендикулярные оси и из точки пересечения осей проведем вектор Im, длина которого в определённом масштабе Mi выражает амплитуду тока Im:

Рис. 12.10. К вопросу о векторной диаграмме

Направление вектора выберем так, чтобы с положительным направлением горизонтальной оси вектор составлял угол, равный начальной фазе ψ (рис. 12.10).

Проекция этого вектора на вертикальную ось определяет мгновенный ток в начальный момент времени:
Представим себе, что вектор Im вращается против движения часовой стрелки с угловой скоростью, равной угловой частоте ω. Его положение в любой момент времени определяется углом
Тогда мгновенный ток для произвольного момента времени t можно определить проекцией вектора Im на вертикальную ось в этот момент времени.
Например, для t = t1

в общем случае

Получили такое же уравнение, каким был задан переменный ток, что свидетельствует о возможности изображения тока вращающимся вектором при нанесении его на чертеж: в начальном положении.

Построение векторной диаграммы

Вращая вектор Im‘ против движения часовой стрелки, в прямоугольной системе координат построим график изменения проекции его на вертикальную ось в пределах одного оборота (одного периода). Получим известный уже график синусоидальной функции, соответствующий заданному уравнению.

При построении векторов положительные углы отсчитывают от положительного направления горизонтальной оси против вращения часовой стрелки, а отрицательные — по ее движению.

В процессе расчета электрической цепи определяется ряд синусоидальных величин. Все их можно изобразить на одном чертеже при помощи вращающихся векторов, привязав к одной паре взаимно перпендикулярных осей.

Совокупность векторов, изображающих на одном чертеже несколько синусоидальных величин одинаковой частоты в начальный момент времени, называется векторной диаграммой. Например, напряжение и ток в электрической цепи выражаются уравнениями


Векторная диаграмма такой цепи изображена на рис. 12.11. Если выбрать масштабы напряжения и тока

то

Рис. 12.11. Векторная диаграмма тока и напряжения

Векторная диаграмма содержит векторы синусоидальных величин одинаковой частоты, поэтому они вращаются с одинаковой частотой и их взаимное расположение не меняется.

Начало отсчета времени выбирают произвольно, поэтому один из векторов диаграммы можно направить произвольно; остальные же нужно располагать с учетом сдвига фаз по отношению к первому или предыдущему вектору.

Сложение и вычитание векторов

Простота и наглядность векторных диаграмм — не единственное и не главное достоинство способа изображения синусоидальных величин. Требуется сложить, например, два тока, заданных уравнениями

Выражение суммы

оказывается громоздким, из него не видны амплитуда и начальная фаза результирующего тока.

Можно графически сложить два заданных тока, построив их в одной системе координат и для ряда аргументов, найдя сумму двух ординат. Через полученные точки проведем кривую суммы, увидим, что эта кривая тоже синусоида с таким же периодом, как и слагаемые. По кривой общего тока можно найти амплитуду и начальную фазу. Громоздкость и неудобство такого сложения очевидны.

Очень просто сложение и вычитание синусоидальных величин осуществляется по правилам сложения и вычитания векторов.

Рис. 12.12. Сложение векторов

Сложим два заданных тока i1 и i1 по известному правилу сложения векторов (рис. 12.12, а). Для этого изобразим токи в виде векторов из общего начала 0. Результирующий вектор найдем как диагональ параллелограмма, построенного на слагаемых векторах:

Сложение векторов, особенно трех и более, удобнее вести в таком порядке: один вектор остается на месте, другие переносятся параллельно самим себе так, чтобы начало последующего вектора совпало с концом предыдущего.
Вектор Im, проведенный из начала первого вектора в конец последнего, представляет собой сумму всех векторов (рис. 12.12, б).

Вычитание одного вектора из другого выполняют сложением прямого вектора — уменьшаемого и обратного — вычитаемого (рис. 12.13):

Рис. 12.13. Вычитание векторов

Рис. 12.14. Частные случаи сложения векторов

При сложении синусоидальных величин в отдельных случаях можно применить аналитическое решение: применительно к рис. 12.12, а — по теореме косинусов; к рис. 12.14, а — сложение модулей векторов; б — вычитание модулей векторов, в — по теореме Пифагора.

Задача 12.7. Два тока заданы уравнениями



Найти уравнения токов:

Решение. Решение задачи проще всего выполнять графически в векторной форме. Для этого изобразим векторы заданных токов. Масштаб тока выбираем так, чтобы наибольший вектор поместился на имеющемся листе бумаги, одновременно учитывая возможность отчетливого изображения наименьшего вектора.
При разборе решения рекомендуется провести построения по рис. 12.15 на листе миллиметровой бумаги в масштабе В этом масштабе длина векторов

Длину вектора суммы определяют графически (рис. 12.15, а):

Рис. 12.15. К задаче 12.7

Начальная фаза этого вектора по чертежу
Уравнение суммы токов

В таком же порядке найдены векторы разностей токов (рис. 12.15, б, в). Вычитаемые векторы взяты в противофазе с заданными.
После измерения длин векторов и начальных фаз напишем уравнения разностей токов:

Действующая и средняя величины переменного тока

О переменном токе все известно, если задано его уравнение или график. Однако в практике пользоваться уравнениями или графиками токов затруднительно.
Переменный ток обычно характеризуется его действующей величиной I. При изучении выпрямительных устройств и электрических машин пользуются средними величинами э. д. с., тока, напряжения.

Действующая величина переменного тока

При определении действующей величины переменного тока можно исходить из какого-либо его действия в электрической цепи (теплового, механического взаимодействия проводов с токами).

На рис. 12.18 изображены графики двух токов: постоянного 1 и переменного 2, причем величина постоянного тока равна амплитуде переменного.
Постоянный ток, равный амплитуде переменного, выделит больше тепла в одном и том же элементе цепи за однj и то же время, так как переменный ток в течение полупериода меньше постоянного, и лишь одно мгновение эти токи равны.

Действующая величина переменного тока I численно равна величине постоянного тока, который в одном и том же элементе цепи за время периода Т выделяет столько же тепла, сколько при тех же условиях выделяет переменный ток.

Действующая величина переменного тока I меньше амплитуды (прямая 3 на рис. 12.18).

Рис. 12.18. К определению действующей величины переменного тока

Определим количество тепла, выделяемого за период Т постоянным током, равным I, и переменным током (см. рис. 12.18) в элементе цепи с сопротивлением R:

Приравнивая найдем

Действующая величина периодического тока является его средней квадратичной за период.

Ее можно найти из уравнения (12.9), но для наглядности воспользуемся графическим решением поставленной задачи.

Среднеквадратичную величину переменного тока за период можно представить в виде квадратного корня из суммы очень большого числа ординат кривой i 2 (t), разделенной на число ординат n:

где в числителе подкоренного выражения представлена сумма квадратов ряда мгновенных токов в течение периода, n — число этих значений, стремящееся к ∞.
На рис. 12.19 показаны ряд положений вращающегося с угловой скоростью ω вектора тока Im и соответствующие им мгновенные токи i. Эти положения отмечены точками 0, 1, 2 и т. д. на окружности, которую описывает конец вектора Im.

Рассмотрим два положения вектора Im (отмечены точками 2 и 8), отстоящие по окружности на 90°, т. е. находящиеся соответственно в первой и второй четвертях окружности. Прямоугольные треугольники 6′-2-2′ и 6′-8-8′ равны, так как равны их стороны: 2-2′ = 6′-8′ и 2′-6′ = 8-8′. Из этих треугольников следует:

Рис. 12.19. К определению действующей и средней величины синусоидального тока

Каждому положению вектора Im в первой четверти соответствует другое его положение во второй, для которых можно написать аналогичное выражение. Такие рассуждения можно провести для другой полуокружности, т. е. распространить их на второй полупериод тока, причем квадраты отрицательных мгновенных токов будут положительны, поэтому

Подставляя это выражение в (12.10), получим

Таким образом, действующая величина синусоидального тока меньше его амплитуды в раза.

Понятие о действующей величине можно распространить на все синусоидальные функции и, следовательно, говорить о действующей величине напряжения, э. д. с.

Действующие величины тока, напряжения измеряются электроизмерительными приборами. Номинальные токи и напряжения электротехнических устройств выражаются действующими величинами. Введя понятие о действующей величине, в дальнейшем векторные диаграммы будем строить для действующих величин напряжений и токов.

Отношение амплитуды к действующей величине называется коэффициентом амплитуды Ка. Для синусоидальной функции этот коэффициент равен ; если кривая тока или напряжения имеет более острую форму, чем синусоида, то Ка > , в противном случае Ка

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Векторная диаграмма для трехфазной цепи

Цепь трехфазного тока может содержать в себе различные компоненты. Для ее стабильной работы, необходимо правильно рассчитать все напряжения, нагрузки и иные параметры. Статья даст подробное описание, что такое векторная диаграмма для трехфазной цепи, опишет ее разновидности, способы расчета.

Определение

Векторной диаграммой называют метод графического изображения расчета всех параметров цепи переменного тока в виде векторов. Данный метод предполагает изображение всех составных напряжений, токов и процессов в виде отложенных векторов на плоскости.

Назначение

Векторная диаграмма используется для расчетов напряжений, токов в трехфазной цепи и других цепях переменного тока. Метод помогает определить значение всех процессов, происходящих в схеме, их влияние на каждый проводник, нейтраль, а также провести расчет возникающих нагрузок.

Разновидности

Векторные диаграммы трехфазных сетей могут быть симметричными или несимметричными. Построение гистограммы прямо зависит от ее схемы. Разновидности цепей и их гистограмм описаны далее в статье.

Симметричные

Симметричные цепи переменного тока предполагают соединение 3 фаз от источника (генератора) с тремя приемниками.

При этом создаются совершенно независимые трехфазные схемы. При этом используется соединение трех фаз генератора звездой. Для симметричных схем должны соблюдаться требования:

  1. Амплитуда должна быть для всех фаз одинаковой.
  2. ЭДС должна иметь угол сдвига 120 градусов.
  3. Угловые частоты должны быть равными.

Также учитывается принцип чередования ЭДС во времени. Если ротор генератора вращается по часовой стрелке (правое вращение), то происходит чередование прямого типа (A, B, C). Такая система считается симметричной.

Если ротор вращается против часовой стрелки (левое вращение), чередование считается обратным (A, C, B), но общая система ЭДС остается все так же симметричной.

Для симметричных схем применяется расчет по векторной гистограмме, приведенной ниже.

Несимметричные

Несимметричные цепи предполагают разницу сопротивлений на каждой фазе. Подобная разница может возникнуть при возникновении обрыва одного проводника или нейтрали, его плохого контакта, короткого замыкания. Например, при обрыве нейтрального провода возникает:

  1. Увеличение сопротивления нейтрали.
  2. Полное отсутствие проводимости.
  3. Увеличение напряжения.
  4. Максимальное искажение фазных напряжений.

При расчете несимметричной цепи также берется расчет соединения источника с приемниками по схеме звезда. Разница состоит в дополнительном расчете смещений, сдвигов фаз и величин сопротивления каждого проводника.

Ниже приведена векторная диаграмма несимметричной цепи.

Построение диаграммы

Векторная диаграмма предполагает в своей основе следующие значения:

  1. Точку начала отсчета N для всех трех отдельных фаз.
  2. Векторное направление ABC как отдельных проводников источника напряжения (генератора). Каждый вектор имеет заданную длину, равную своему напряжению.
  3. Окончание векторов AВ, BС, CА, как приемников напряжения.

Данные значения дополняются единицей времени, за которое ток, под определенным напряжением и силой достигает приемников. Исходя из построения получаем результат: UAB=UBC=UCA.

А это значит то, что если фазная система напряжений симметрична, то линейная система также симметрична и равна, а кроме того имеет сдвиг на 120 градусов. Это простое определение вектора трехфазной цепи.

Переменный ток представляет собой синусоиду, которая может быть графически наложена на ось координат. При этом вектор имеет угловую скорость вращения, которая равна угловым частотам тока. При построении необходимо также учесть то, что вектор является графическим изображением амплитуды колебания, в котором угол колебания равен начальной точке отсчета.

Например, за ось координаты выбрано значение 0. Также известно значение угла смещения. Далее стоит провести вектор «Im», который определяет направление движения тока. При построении вектора с использованием этих значений станут видны параметры опережения, отставания или сдвига фазы. Таким образом можно визуально увидеть разницу величин на каждом проводнике схемы.

Заключение

Если вы работаете с трехфазными цепями, то векторная диаграмма используется для получения визуального отображения всех действующих процессов в таких цепях переменного трехфазного тока. Такая диаграмма полезна при определении несоответствий схемы между углами сдвига фаз, напряжениями и токами.

Видео по теме


источники:

http://www.evkova.org/sinusoidalnyie-eds-i-tok

http://profazu.ru/knowledge/electrical/vektornaya-diagramma-trehfaznoj-tsepi.html