Уравнения электрического равновесия синхронной машины

Уравнения Парка-Горева синхронной машины

Уравнение электрического равновесия цепи статора, записанное через изображающие векторы напряжений, токов и потокосцеплений в неподвижной системе координат, имеет вид

где ;

wс – угловая частота напряжения, которая при работе синхронного генератора параллельно с системой неограниченной мощности равна синхронной.

Это же уравнение в системе координат, вращающейся со скоростью ротора wr, получим, используя выражение для перехода изображающего вектора во вращающейся системы координат к неподвижной, которое, например, для тока имеет вид

где — изображающий вектор тока статора в неподвижной системе координат;

— изображающий вектор тока статора во вращающейся системе координат;

— угол между магнитной осью фазы А и осью d ротора.

,

т.к. .

В результате, в системе d, q, 0, вращающейся со скоростью ротора wr, уравнение равновесия цепи статора, записанное через изображающие векторы, имеет вид

.

Уравнения равновесия напряжений ротора

,

,

при этом остаются неизменными, так как входящие в него величины с самого начала определялись именно в системе координат ротора.

Выразим изображающие векторы через их составляющие по осям вращающейся комплексной плоскости, помня, что действительная ось комплексной плоскости направлена вдоль оси d, а мнимая ― вдоль отрицательного направления оси q. В результате получаем :

,

,

,

Подставив эти выражения в выражение для , получим:

.

Приравнивая отдельно действительные и мнимые части, получим

,

,

,

, (4.1)

,

.

Эта система уравнений должна быть дополнена ещё уравнением движения или механического равновесия моментов на валу

,

.

Здесь Мвнешн. – вращающийся момент турбины для генератора Мт или момент механизма Ммех для двигателя;

wr – угловая скорость ротора;

— электромагнитный момент;

J – момент инерции вращающихся масс ротора, выраженный в кг×м 2

Преобразование переменных статора в системе координат А, В, С в новые переменные, связанные с системой координат d, q, 0 являясь формально математическим приёмом, имеет простое физическое объяснение.

При преобразовании переменных трёхфазная обмотка статора заменяется эквивалентной двухфазной, жёстко связанной с осями d и q ротора (вращается с той же скоростью, что и ротор со скоростью wr ротора).

Дифференциальные уравнения равновесия дополним алгебраическими, связывающими потокосцепления и токи соответствующих контуров.

1) в продольной и поперечной осях машины, кроме потоков рассеяния существуют потоки в воздушном зазоре, пронизывающие все контуры, расположенные по соответствующим осям машины;

2) все параметры роторных контуров приведены к статору ( как – уточним позднее)

Тогда выражения для потокосцеплений статорных и роторных контуров, входящих в систему (2), имеют вид

,

,

, (4.2)

,

,

.

Так как преобразованные обмотки статора d и q неподвижны относительно ротора, то индуктивности и взаимные индуктивности этих обмоток, входящие в выражения (2), постоянны, если не учитывать изменения насыщения магнитной цепи. Таким образом, преобразование переменных (переход от системы координат А, В, С к осям d и q) позволяет избавиться от периодических коэффициентов в дифференциальных уравнениях (1) синхронной машины.

Уравнения (1) и (2) выражают основу теории обобщённой электрической машины.

При постоянной частоте вращения ротора (wr = const) с учётом принятых допущений система уравнений (1) и (2) становится системой линейных дифференциальных уравнений, допускающей аналитическое решение, то есть можно получить аналитическое выражение для изменения тока статора во времени при коротком замыкании.

В системе (1) первые слагаемые первых двух уравнений для обмоток d и q статора представляют ЭДС трансформации, поскольку они вызываются изменением величин соответствующих потокосцеплений, а вторые слагаемые – ЭДС вращения. В установившемся режиме ЭДС трансформации отсутствуют.

В рассмотренной выше модели синхронной машины, соответствующей уравнениям Парка-Горева, ЭДС вращения представлены лишь частично, так как при синхронном вращении обмоток и магнитных потоков никаких ЭДС вращения в этих обмотках нет. Только при перемещении обмоток относительно вращающихся магнитных потоков, что в общем случае также имеет место при переходном процессе, в обмотках наводятся дополнительные ЭДС вращения (точнее ЭДС скольжения ― в обмотке d и в обмотке q, где wr ¹ wс), поток при работе СМ параллельно с системой неограниченной мощности всегда вращается с синхронной скоростью.

Уравнения электромагнитного переходного процесса синхронной машины

Общие сведения об электромагнитных переходных процессах

Основными причинами возникновения электромагнитных переходных процессов являются:

· Включение и отключение двигателей и других приемников электрической энергии;

· Короткое замыкание в электрической системе, автоматическое повторное включение линии на сохранившееся короткое замыкание;

· Возникновение местной несимметрии в системе;

· Действие форсировки возбуждения синхронных машин, их развозбуждение;

· Несинхронное включение синхронных машин.

Коротким замыканием называют всякое, не предусмотренное нормальными условиями работы, замыкание между фазами, а в системах с заземленными нейтралями – замыкание одной или нескольких фаз на землю.

В трехфазных системах с заземленной нейтралью различают следующие основные виды коротких замыканий в одной точке:

· Трехфазное короткое замыкание – К (3) ;

· Двухфазное короткое замыкание – К (2) ;

· Однофазное короткое замыкание – К (1) ;

· Двухфазное короткое замыкание на землю – К (1,1) .

Симметричным называют такое короткое замыкание, когда при нем все фазы остаются в одинаковых условиях, иначе короткое замыкание называют несимметричным.

Следствиями действия тока короткого замыкания являются:

· Дополнительный нагрев токоведущих элементов и проводников выше допустимого;

· Возникновение больших механических усилий между проводниками;

· Снижение напряжения, приводящее к ухудшению эффективности работы потребителей, авариям на электростанциях и подстанциях;

· Нарушение работы линий связи и сигнализации, за счет наведения дополнительных магнитных потоков;

· Нарушение устойчивости электрических систем.

Токи короткого замыкания с учетом действия устройств релейной защиты обычно существуют непродолжительное время, но их приходится учитывать и тщательно рассчитывать ввиду вышеуказанных последствий. По режиму короткого замыкания должны проверяться

1) В электроустановках выше 1 кВ:

а) электрические аппараты, токопроводы, кабели и другие проводники, а также опорные конструкции для них;

б) воздушные линии при ударном токе короткого замыкания 50 кА и более для предупреждения схлестывания проводов при динамическом действии токов короткого замыкания.

2) В электроустановках до 1 кВ – распределительные щиты, токопроводы и силовые шкафы.

Аппараты, которые предназначены для отключения токов короткого замыкания, должны обладать способностью производить эти операции при всех возможных токах короткого замыкания.

Уравнения электромагнитного переходного процесса синхронной машины

Переходный процесс в электрической машине любого типа может быть описан системой дифференциальных уравнений в той или иной системе координат. Выбор системы координат определяется конкретными условиями решаемой задачи. Дифференциальные уравнения равновесия ЭДС и падений напряжений в каждой из обмоток статора (А, В, С) и ротора (f):

где RА, RВ, RС, Rf – активные сопротивления контуров фаз А, В, С и обмотки возбуждения; ΨА, ΨВ, ΨС, Ψf — результирующие потокосцепления контуров фаз А, В, С и обмотки возбуждения.

Входящее в эту систему потокосцепление обмотки фазы А выражается уравнением:

где LА – коэффициент самоиндукции обмотки фазы А; MАВ — коэффициент взаимоиндукции обмоток фаз А и В; MАС — коэффициент взаимоиндукции обмоток фаз А и В; MАf — коэффициент взаимоиндукции обмотки фазы А и обмотки возбуждения.

Аналогичными уравнениями выражаются потокосцепления для обмоток других фаз. Закон изменения взаимных индуктивностей между обмоткой возбуждения и каждой фазной обмоткой статора выражается синусоидальной функцией. Систему дифференциальных уравнений с переменными коэффициентами решить очень сложно. Для её решения существуют несколько способов. Известно, что мгновенные значения фазных величин (U, Ψ, i) можно получить как проекции фазных векторов на неподвижную ось времени или как проекции обобщенного вектора на неподвижные магнитные оси фаз. Обобщенный вектор в общем случае может характеризовать фазные величины, изменяющиеся во времени по произвольному закону. Возможность представления трехфазной системы векторов обобщенным вектором существенно упрощает выражение связи между статором и ротором, что позволяет в дифференциальных уравнениях переходного процесса освободится от переменных коэффициентов. Представление фазных величин fА, fВ, fС через обобщенный вектор возможно при условии:

Если сумма фазных переменных не равна нулю, то её целесообразно выразить через новое переменное f0 : fА+fB+fC=3f0. Нулевая составляющая во всех фазах одинакова и тождественна составляющей нулевой последовательности метода симметричных составляющих. Фазные переменные, выраженные через обобщенный вектор:

где α — угол между векторами fА и f.

Обобщенный вектор можно выразить и в двухосной системе координат. В качестве последней удобно выбрать декартовые ортогональные координаты. Преобразование координат соответствует замене переменных. Проекции вектора f (рис.3.5.) на оси х и у:

где θ — угол между магнитной осью фазы А и осью Х.

Применение новой системы координат сокращает переменные коэффициенты. Значительные упрощения можно достичь, используя декартову систему координат, жестко связанную с ротором синхронной машины. Эту систему координат сокращенно обозначают и называют d, q и 0 (рис.3.6). Поскольку фазные обмотки синхронной машины, расположенные в осях d, q, неподвижны относительно ротора, все индуктивности такой машины постоянны. Фазные переменные в системе координат d, q и 0:

где γ=ωсt+γ0 – угол, характеризующий положение ротора в пространстве; ωс — синхронная угловая скорость, γ0— начальный уг

Фазные переменные напряжения, тока в системе координат d, q и 0:

Подставляя фазные переменные в дифференциальное уравнение равновесия обмотки фазы А получим уравнения Парка-Горева:

где ∂Ψd/∂, ∂Ψq/∂t, ∂Ψ0/∂ – ЭДС трансформации, которые вызываются изменением величин потокосцеплений; Ψq∙∂γ/∂ и Ψd∙∂γ/∂t – ЭДС вращения (скольжения).

71. Переходные э. д. с. и реактивности синхронной ма­шины.

Обратимся к синхронной явнополюсной машине без демпферных (успокоительных) обмоток. При КЗ в статорной цепи возникает переходный процесс, приводящий к изменению токов и напряжений предшествующего режима. Выясним, какими ЭДС и реактивностями можно характеризовать синхронную машину в начальный момент переходного процесса с целью расчета периодической составляющей тока КЗ для .

Постановка задачи обусловлена тем, что синхронная ЭДС ( ), характеризующая машину в установившемся режиме, в момент КЗ скачкообразно изменяется. В силу этого она неизвестна и неприемлема для расчета переходного режима, равным образом как и и , связанные с .

Для решения поставленной задачи обратимся к балансу магнитных потоков в продольной оси ( ) синхронной машины для нормального нагрузочного режима (рис. 4.4, а). В указанной оси взаимодействуют две магнитосвязанные обмотки: обмотка возбуждения и обмотка статора.

В режиме холостого хода ток обмотки возбуждения создает магнитный поток , состоящий из потока рассеяния ротора и полезного потока :

(4.5)

где: – реактивность рассеяния обмотки возбуждения;

– индуктивное сопротивление реакции статора по оси ;

– полная индуктивность обмотки возбуждения.

Полезный поток при вращении ротора обуславливает в статоре синхронную ЭДС, которые в системе относительных единиц одинаковы:

В ненасыщенной машине поток составляет некоторую постоянную долю потока , которая характеризуется коэффициентом рассеяния обмотки возбуждения

(4.6)

В нагрузочном режиме продольная составляющая тока статора создает поток реакции статора , который пронизывает обмотку возбуждения. В соответствии с этим полное потокосцепление обмотки возбуждения в нагрузочном режиме определяется выражением:

(4.7)

Согласно принципа Ленца при внезапном изменении режима магнитосвязанных контуров результирующее потокосцепление обмотки возбуждения остается неизменным. Физически это означает, что в начальный момент КЗ потоки и можно представить как их значения в нормальном режиме ( ) плюс соответствующие им приращения и . Однако приращения потоков компенсируют друг друга, т.е.

оставляя неизменным значение , согласно выражения (4.7).

Для решения ранее сформулированной задачи используем неизменность . Зная коэффициент рассеяния , выделим ту часть , которая связана со статором

(4.8)

Именно это потокосцепление и обусловленная им ЭДС в обмотке статора сохраняют в начальный момент переходного процесса свое предшествующее значение.

Придадим выражению (4.8) более наглядный вид:

В окончательной форме поперечная переходная ЭДС запишется так:

(4.9)
(4.10)

продольная переходная реактивность; приводиться в паспортных данных машины;

– реактивность рассеяния статорной обмотки.

Начальное значение определяется выражением (4.9) по параметрам и , с которыми работала машина до нарушения режима.

Уравнение равновесия напряжений фазы обмотки якоря неявнополюсного СГ.

Уравнение равновесия напряжений фазы обмотки якоря явнополюсного СГ.

Уравнение равновесия напряжений СГ выглядит:

Здесь Е0 – ЭДС в фазе статора наводимая потоком обмотки возбуждения

Ead – ЭДС индуцируемая в обмотке якоря потоком продольной реакции якоря Фad

Eaq — ЭДС индуцируемая в обмотке якоря потоком поперечной реакции якоря Фaq

Eas — ЭДС рассеяния индуцируемая в фазе обмотке якоря потоком рассеяния обмотки якоря Фas

ra – активное сопротивление фазы обмотки якоря

Уравнение равновесия напряжений фазы обмотки якоря неявнополюсного СГ.

Уравнение равновесия напряжений СГ выглядит:

Здесь Е0 – ЭДС в фазе статора наводимая потоком обмотки возбуждения

— индуктивное сопротивление рассеяния фазы обмотки статора

— индуктивное сопротивление продольной реакции якоря в следствии равномерности воздушного зазора

ra – активное сопротивление фазы обмотки якоря

6. Векторные диаграммы синхронного генератора.

7. Характеристика холостого хода синхронного генератора.

8. Внешняя характеристика синхронного генератора.

9. Регулировочная характеристика синхронного генератора.

10. Характеристика 3-х фазного короткого замыкания синхронного генератора.

Характеристика трехфазного короткого замыкания представляет собой зависимость тока якоря при коротком замыкании от тока возбуждения IK= f(IB) при n=const (1!!)

11. Параллельная работа синхронных генераторов.

В том случае, когда мощность потребителя становится больше номинальной мощности работающего генератора, параллельно ему включают другой генератор.

Для включения синхронного генератора на параллельную работу с электрической сетью или другим, уже работающим синхронным генератором необходимо выполнить следующие условия:

напряжение подключаемой машины должно быть равно напряжению сети или работающей машины;

частота подключаемого генератора должна быть равна частоте сети;

напряжения всех фаз подключаемой машины должны быть противоположны (по фазе) напряжениям соответствующих фаз сети или работающей машины;

для подключения на параллельную работу трехфазного синхронного генератора необходимо также обеспечить одинаковое чередование фаз подключаемой машины и сети.

12. Угловая характеристика синхронного двигателя.

При холостом ходе двигателя оси ротора и статора совпадают,q= 0, соответственно M= 0,P= 0. С увеличением момента сопротивления нагрузки на валу ротор отстает от магнитного поля, а электрическая мощность P и электромагнитный момент M возрастают. Причем, в отличие от генераторного режима, M является полезным моментом, вращающим вал ротора, а активная мощность теперь потребляется двигателем от сети. При изменении угла q от 0 до +90°двигатель работает устойчиво. Если еще увеличить момент сопротивления нагрузки, то уголqпревысит значение +90°, а M,P начнут уменьшаться. При этом ротор начнет вращаться несинхронно с магнитным полем. Тогда двигатель перестанет работать параллельно с сетью —выпадет из синхронизма, что может вызвать нежелательные явления и рассматриваться как аварийный режим.

13. Механическая характеристика синхронного двигателя.

14. Способы синхронного генератора с сетью. Есть 2 способа.

1 При включении синхронного генератора на параллель­ную работу с сетью по способу точной синхронизации стре­мятся к тому, чтобы при включении не возникало больших бросков тока. Большие толчки тока вызывают большие мо­менты, действующие как на ротор, так и на статор, и силы, которые могут привести к разрушению обмотки статора.

2 При самосинхронизации неизбежно возникновение значительного толчка тока, так как включение невозбужденного генератора в сеть с напряжением UС, эквивалентно внезапному короткому замыканию этого генератора при работе на холостом ходу с Е0=UС.Однако толчок тока при самосинхронизации будет все же меньше, так как, кроме сопротивления генератора, в цепи будут действовать также сопротивления элементов сети (повышающие трансформаторы, линия и т. д.).

15. U – образная характеристика синхронного генератора.

Предположим, что генератор после подключения на сеть работает без нагрузки и его ЭДС уравновешивает напряжение сети . Е этом увеличить ток в обмотке возбуждения, т. е. пере­возбудитьмашину, то ЭДС увеличится до значения и в цепи генератора появится избыточная ЭДС (рис. 21.10, а),вектор которой совпадает по направлению с вектором ЭДС . Ток , вызванный ЭДС , будет отставать от нее по фазе на 90° (поскольку ). По отношению к ЭДС этот ток также будет отстающим (индуктивным). С увеличением перевоз­буждения значение реактивного (индуктивного) тока увеличится.

Если же после того, как генератор подключен к сети, умень­шить ток возбуждения, т. е. недовозбудить машину, то ЭДС уменьшится до значения и в цепи генератора опять будет действовать избыточная ЭДС . Теперь вектор этой ЭДС будет совпадать по направлению с вектором напряжения сети (рис. 21.10, б), и поэтому ток , вызванный этой ЭДС и отстающим от нее по фазе на 90°, будет опере­жающим (емкостным) по отношению к ЭДС генератора .

Это сопровождается появлением в обмотке статора реактивного тока , которым по отношению к ЭДС является отстающим (индуктивным). Вы званная этим током продольно-размагничивающая реакция якоря компенсирует избыточную МДС возбуждения так, что ЭДС гене­ратора остается неизменной. Такой же процесс происходит и при недовозбуждении генератора с той лишь разницей, что в обмотке появляется опережающий (емкостный) ток , а вызванная этим током продольно-намагничивающая реакция якоря компен­сирует недостающую МДС возбуждения.

16. Пуск синхронных двигателей.

Одним из главных недостатков синхронных двигателей является сложность их пуска в ход. Пуск синхронных двигателей может быть осуществлен при помощи вспомогательного пускового двигателя. Пуск синхронного двигателя при помощи вспомогательного двигателя. Если ротор синхронного двигателя с возбужденными полюсами раскрутить другим, вспомогательным двигателем до скорости вращения поля статора, то магнитные полюсы статора, взаимодействуя с полюсами ротора, заставят ротор вращаться далее самостоятельно без посторонней помощи, в такт с полем статора, т. е. синхронно (откуда эти двигатели и получили свое название).

17. Сравнение синхронных и асинхронных двигателей.

Чтобы остановить выбор на синхронном или асинхронном двигателе для приведения во вращение того или иного производственного механизма, необходимо иметь в виду следующее.

Обмотки статора обоих двигателей получают питание от сети трехфазного переменного тока. Для питания обмотки возбуждения синхронного двигателя требуется, кроме того, источник электрической энергии постоянного тока, правда, относительно небольшой мощности.

Асинхронный пуск синхронных двигателей несколько сложнее пуска асинхронных двигателей с короткозамкнутым ротором. В отношении пусковых свойств асинхронные двигатели с фазным ротором имеют весьма существенные преимущества перед синхронными двигателями.

Частота вращения синхронных двигателей остается постоянной при изменении нагрузки, тогда как у асинхронных двигателей даже при их работе на естественной характеристике она несколько изменяется.

Асинхронные двигатели дают возможность регулировать частоту вращения различными способами,. Использование некоторых из этих способов для регулирования частоты вращения синхронных двигателей в принципе невозможно, а некоторых связано с большими конструктивными и эксплуатационными трудностями. Учитывая это, следует иметь в виду, что синхронные двигатели относятся к двигателям с нерегулируемой частотой вращения.

Воздействуя на ток возбуждения синхронного двигателя, можно в широких пределах изменять его коэффициент мощности. Можно, в частности, заставить синхронный двигатель работать с cos φ = 1, а также с опережающим током. Последнее может быть использовано для улучшения коэффициента мощности других потребителей, питающихся от той же сети. В отличие от этого асинхронный двигатель представлет собой активно-индуктивную нагрузку и имеет всегда cos φ


источники:

http://lektsii.org/14-26433.html

http://poisk-ru.ru/s15318t7.html