Уравнения электролиза на растворимых электродах

Электролиз расплавов и растворов

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Электролиз — это окислительно-восстановительная реакция, которая протекает на электродах и основана на пропускании электрического тока через раствор или расплав.

Не менее важными участниками электролиза являются электроды: катод и анод. Если вы вдруг забыли, что такое катод и анод в химии, напомним.

Катод — это отрицательно заряженный электрод, который притягивает положительно заряженные ионы (катионы). А анод — это положительно заряженный электрод, который притягивает к себе отрицательно заряженные ионы (анионы). Таким образом, на катоде всегда происходит процесс восстановления, а на аноде всегда происходит процесс окисления.

Электроды бывают растворимые и инертные. Растворимые изготавливаются из металлов, например, меди и подвергаются химическим превращениям в ходе электролиза. А вот инертные или нерастворимые электроды не подвергаются химическим превращениям и остаются в неизменном виде как до реакции, так и после нее. Как правило, такие электроды изготавливают из графита или платины.

Виды электролиза

Различают два вида электролиза:

Электролиз водного раствора.

Прежде чем мы рассмотрим каждый процесс отдельно, давай познакомимся с общими для двух видов процессами на электродах.

Процесс на катоде K (−)

Катион принимает электроны и восстанавливается:

Me +n + ne − → Me 0 (восстановление).

Процесс на аноде A (+)

Анион отдает электроны и окисляется:

неMe −n − ne − → неMe 0 (окисление).

Процессы, протекающие при электролизе в общем случае:

К − : Ме +n + ne − → Ме 0 ;

А + : неМе −n − ne − → неМе 0 .

Суммарное уравнение электролиза:

Электролиз расплава

Рассмотрим электролиз расплава пищевой соли — хлорида натрия. При сильном нагревании кристаллический твердый хлорид натрия плавится. Полученный расплав содержит подвижные ионы хлора и натрия, освободившиеся из кристаллической решетки, и проводит электрический ток.

К − : 2Na + + 2e − = 2Na 0

А + : 2Cl − − 2e − = Cl2

Суммарное уравнение электролиза:

При опускании в расплав угольных (инертных) электродов, присоединенных к источнику тока, ионы приобретают направленное движение: катионы движутся к отрицательно заряженному электроду (катоду), анионы — к положительно заряженному электроду (аноду) и отдают электроны.

Теперь давайте рассмотрим электролиз расплава гидроксида калия.

На катоде происходит восстановление калия за счет принятия электронов. А на аноде протекает более сложная реакция. Гидроксогруппы отдают свой электрон и становятся нейтральными, но такое состояние для них крайне невыгодно, так как неустойчиво, и они объединяются в группы, чтобы потом разложиться с выделением газообразного кислорода и воды

Итог электролиза расплава — металлический калий на катоде, газообразный кислород и пары воды на аноде.

Электролиз раствора

Основным отличием водного раствора от расплава является присутствие молекул воды и ионов H + и OH — как продуктов диссоциации воды. В связи с этим возле катода и анода скапливаются ионы, которые конкурируют как друг с другом, так и с молекулами воды. Рассмотрим электролиз на примере водного раствора KF:

К − : 4H2O + 4e − = 2H2 0 + 4OH −

Суммарное уравнение электролиза:

Как видно, ни калий, ни фтор не фигурируют в продуктах электролиза. Почему так происходит?

Наиболее активные металлы — сильные восстановители. Калий — как раз такой металл, поэтому обратный процесс восстановления активных металлов из соединений осуществить сложно. При электролизе водных растворов солей активных металлов на катоде протекает восстановление не катионов этих металлов, а воды с образованием водорода.

Разберем порядок восстановления катионов металлов на катоде в зависимости от их активности.

Последовательность разрядки катионов зависит от положения металла в электрохимическом ряду напряжения.

Если у катода накапливаются молекулы воды и катионы металла, который находится в ряду напряжения после водорода, то восстанавливаются ионы металла.

Если у катода накапливаются молекулы воды и катионы металла, который стоит в начале ряда напряжения от лития до алюминия включительно, то восстанавливаются ионы водорода из молекул воды. Катионы металла не восстанавливаются, остаются в растворе.

Если у катода накапливаются молекулы воды и катионы металла, который расположен в ряду напряжения между алюминием и водородом, то восстанавливаются и ионы металла, и частично ионы водорода из молекул воды.

Если в растворе находится смесь катионов разных металлов, то сначала восстанавливаются катионы менее активного металла.

При электролизе раствора кислоты на катоде восстанавливаются катионы водорода до газообразного водорода.

Для удобства мы собрали информацию об электролизе в таблице:

Теперь разберемся, что происходит с анионами в водных растворах при электролизе. Для начала познакомимся с последовательностью восстановления анионов на аноде:

Чем меньше выражена восстановительная активность, тем хуже анионы могут окисляться на аноде. К тому же процесс на аноде зависит от материала анода и от природы аниона.

Если анод инертный или нерастворимый, то на нем протекают следующие реакции:

При электролизе растворов солей бескислородных кислот (кроме фторидов!), на аноде происходит процесс окисления аниона.

При электролизе растворов солей кислородсодержащих кислот и фторидов на аноде выделяется газообразный кислород вследствие окисления молекул воды. Анион при этом не окисляется, оставаясь в растворе.

При электролизе растворов щелочей происходит окисление гидроксид-ионов.

Если анод растворимый, то на нем всегда происходит окисление металла анода — независимо от природы аниона.

Исключением является электролиз солей карбоновых кислот. Таблица выше не описывает происходящее на аноде. Давайте рассмотрим, что же там происходит.

В результате электролиза водных растворов солей щелочных металлов карбоновых кислот происходит образование углеводородов вследствие рекомбинации углеводородных радикалов.

В общем виде электролиз солей карбоновых кислот можно записать так:

На катоде образуется газообразный водород, а на аноде — углекислый газ, углеводород, полученный удвоением радикала. В катодном пространстве накапливается щелочь.

В случае разделения катодного и анодного пространства углекислый газ реагирует со щелочью с образованием гидрокарбоната.

Применение электролиза

А теперь самое главное: зачем вообще нужен электролиз? Рассмотрим применение этого вида ОВР:

С помощью электролиза расплавов природных соединений в металлургической промышленности получают активные металлы (калий, натрий, бериллий, кальций, барий). С помощью электролиза растворов солей — цинк, кадмий, кобальт и другие.

В химической промышленности электролиз используют для получения фтора, хлора, водорода, кислорода, щелочей, бертолетовой соли и других веществ.

Электролиз с растворимым анодом используют для нанесения металлических покрытий (из хрома, золота, никеля, серебра), что предохраняет металлические изделия от коррозии и придает им декоративный вид.

Вопросы для самопроверки

1. Выберите верное продолжение фразы «катод — это. »:

Положительно заряженный электрод, к которому притягиваются положительно заряженные ионы.

Положительно заряженный электрод, к которому притягиваются отрицательно заряженные ионы.

Отрицательно заряженный электрод, к которому притягиваются положительно заряженные ионы.

Отрицательно заряженный электрод, к которому притягиваются отрицательно заряженные ионы.

2. Продолжите фразу «электролиз — это…»:

ОВР с применением тока.

Реакция без изменения степеней окисления с применением тока.

ОВР с применением катализаторов.

3. Как заряжен анион?

Не имеет заряда.

4. Чем отличается электролиз раствора от электролиза расплава?

В расплаве плавится твердое.

Присутствием молекул воды и продуктов ее диссоциации.

5. Если металл стоит в ряду активности металлов между алюминием и водородом, что выделится на катоде?

Металл и водород.

При электролиза водного раствора фторида лития что на аноде выделится?

Электролиз расплавов и растворов

Теория к заданию 22 из ЕГЭ по химии

Электролиз расплавов и растворов (солей, щелочей)

Если в раствор или расплав электролита опустить электроды и пропустить постоянный электрический ток, то ионы будут двигаться направленно: катионы к катоду (отрицательно заряженному электроду), анионы к аноду (положительно заряженному электроду).

На катоде катионы принимают электроны и восстанавливаются, на аноде анионы отдают электроны и окисляются. Этот процесс называют электролизом.

Электролиз — это окислительно-восстановительный процесс, протекающий на электродах при прохождении электрического тока через расплав или раствор электролита.

Электролиз расплавленных солей

Рассмотрим процесс электролиза расплава хлорида натрия. В расплаве идет процесс термической диссоциации:

Под действием электрического тока катионы $Na^<+>$ движутся к катоду и принимают от него электроны:

Анионы $Cl^<->$ движутся к аноду и отдают электроны:

Суммарное уравнение процессов:

На катоде образуется металлический натрий, на аноде — газообразный хлор.

Главное, что вы должны помнить: в процессе электролиза за счет электрической энергии осуществляется химическая реакция, которая самопроизвольно идти не может.

Электролиз водных растворов электролитов

Более сложный случай — электролиз растворов электролитов.

В растворе соли, кроме ионов металла и кислотного остатка, присутствуют молекулы воды. Поэтому при рассмотрении процессов на электродах необходимо учитывать их участие в электролизе.

Для определения продуктов электролиза водных растворов электролитов существуют следующие правила:

1. Процесс на катоде зависит не от материала, из которого сделан катод, а от положения металла (катиона электролита) в электрохимическом ряду напряжений, при этом если:

1.1. Катион электролита расположен в ряду напряжений в начале ряда по $Al$ включительно, то на катоде идет процесс восстановления воды (выделяется водород $Н_2↑$). Катионы металла не восстанавливаются, они остаются в растворе.

1.2. Катион электролита находится в ряду напряжений между алюминием и водородом, то на катоде восстанавливаются одновременно и ионы металла, и молекулы воды.

1.3. Катион электролита находится в ряду напряжений после водорода, то на катоде восстанавливаются катионы металла.

1.4. В растворе содержатся катионы разных металлов, то сначала восстанавливается катион металла, стоящий в ряду напряжений правее.

$Li K Ca Na Mg Al$
$Li^ <+>K^ <+>Ca^ <2+>Na^ <+>Mg^ <2+>Al^<3+>$
$Mn Zn Fe Ni Sn Pb$
$Mn^ <2+>Zn^ <2+>Fe^ <2+>Ni^ <2+>Sn^ <2+>Pb^<2+>$
$H_2$
$2H^<+>$
$Cu Hg Ag Pt Au$
$Cu^ <2+>Hg_2^ <2+>Ag^ <+>Pt^ <2+>Au^<3+>$
Восстанавливается вода:
$2H_2O+2ē=H_2↑+2OH^<−>;$
$M^$ не восстанавливается
Восстанавливаются катионы металла и вода: $M^+nē=M^0$
$2H_2O+2ē=H_2↑+2OH^<−>$
Восстанавливаются катионы металла: $M^+nē=M^0$
$nē→$
Усиление окислительных свойств катионов (способности принимать электроны)

2. Процесс на аноде зависит от материала анода и от природы аниона.

Кислотный остаток $Ас^$Анод
РастворимыйНерастворимый
БескислородныйОкисление металла анода
$M^<−>−nē=M^$
анод раствор
Окисление аниона (кроме $F^<–>$)
$Ac^−mē=Ac^0$
КислородсодержащийВ кислотной и нейтральной средах:
$2H_2O−4ē=O_2↑+4H^<+>$
В щелочной среде:
$4OH^<−>−4ē=O_2↑+4H^<+>$

2.1. Если анод растворяется (железо, цинк, медь, серебро и все металлы, которые окисляются в процессе электролиза), то окисляется металл анода, несмотря на природу аниона.

2.2. Если анод не растворяется (его называют инертным — графит, золото, платина), то:

а) при электролизе растворов солей бескислородных кислот (кроме фторидов) на аноде идет процесс окисления аниона;

б) при электролизе растворов солей кислородсодержащих кислот и фторидов на аноде идет процесс окисления воды (выделяется $О_2↑$). Анионы не окисляются, они остаются в растворе;

в) анионы по их способности окисляться располагаются в следующем порядке:

Попробуем применить эти правила в конкретных ситуациях.

Рассмотрим электролиз раствора хлорида натрия в случае, если анод нерастворимый и если анод растворимый.

1) Анод нерастворимый (например, графитовый).

В растворе идет процесс электролитической диссоциации:

Учитывая присутствие ионов $Na^<+>$ в растворе, составляем молекулярное уравнение:

2) Анод растворимый (например, медный):

Если анод растворимый, то металл анода будет окисляться:

Катионы $Cu^<2+>$ в ряду напряжений стоят после ($Н^<+>$), по этому они и будут восстанавливаться на катоде.

Концентрация $NaCl$ в растворе не меняется.

Рассмотрим электролиз раствора сульфата меди (II) на нерастворимом аноде:

Суммарное ионное уравнение:

Суммарное молекулярное уравнение с учетом присутствия анионов $SO_4^<2->$ в растворе:

Рассмотрим электролиз раствора гидроксида калия на нерастворимом аноде:

Суммарное ионное уравнение:

Суммарное молекулярное уравнение:

В данном случае, оказывается, идет только электролиз воды. Аналогичный результат получим и в случае электролиза растворов $H_2SO_4, NaNO_3, K_2SO_4$ и др.

Электролиз расплавов и растворов веществ широко используется в промышленности:

  1. Для получения металлов (алюминий, магний, натрий, кадмий получают только электролизом).
  2. Для получения водорода, галогенов, щелочей.
  3. Для очистки металлов — рафинирования (очистку меди, никеля, свинца проводят электрохимическим методом).
  4. Для защиты металлов от коррозии (хрома, никеля, меди, серебра, золота) — гальваностегия.
  5. Для получения металлических копий, пластинок — гальванопластика.

Электролиз

Электролиз

Химические реакции, сопровождающиеся переносом электронов (окислительно-восстановительные реакции) делятся на два типа: реакции, протекающие самопроизвольно и реакции, протекающие при прохождении тока через раствор или расплав электролита.

Раствор или расплав электролита помещают в специальную емкость — электролитическую ванну .

Электрический ток — это упорядоченное движение заряженных частиц — ионов, электронов и др. под действием внешнего электрического поля. Электрическое поле в растворе или расплаве электролита создают электроды .

Электроды — это, как правило, стержни из материала, проводящего электрический ток. Их помещают в раствор или расплав электролита, и подключают к электрической цепи с источником питания.

При этом отрицательно заряженный электрод катод — притягивает положительно заряженные ионы — катионы . Положительно заряженный электрод ( анод ) притягивает отрицательно заряженные частицы ( анионы ). Катод выступает в качестве восстановителя, а анод — в качестве окислителя.

Различают электролиз с активными и инертными электродами. Активные (растворимые) электроды подвергаются химическим превращениям в процессе электролиза. Обычно их изготавливают из меди, никеля и других металлов. Инертные (нерастворимые) электроды химическим превращениям не подвергаются. Их изготавливают из неактивных металлов, например, платины , или графита .

Электролиз растворов

Различают электролиз раствора или расплава химического вещества. В растворе присутствует дополнительное химическое вещество — вода, которая может принимать участие в окислительно-восстановительных реакциях.

Катодные процессы

В растворе солей катод притягивает катионы металлов. Катионы металлов могут выступать в качестве окислителей. Окислительные способности ионов металлов различаются. Для оценки окислительно-восстановительных способностей металлов применяют электро-химический ряд напряжений :

Каждый металл характеризуется значением электрохимического потен-циала. Чем меньше потенциал , тем больше восстановительные свойства металла и тем меньше окислительные свойства соответствующего иона этого металла. Разным ионам соответствуют разные значения этого потенциала. Электрохимический потенциал — относительная величина. Электрохимический потенциал водорода принят равным нулю.

Также около катода находятся молекулы воды Н2О. В составе воды есть окислитель — ион H + .

При электролизе растворов солей на катоде наблюдаются следующие закономерности:

1. Если металл в соли — активный ( до Al 3+ включительно в ряду напряжений ), то вместо металла на катоде восстанавливается (разряжается) водород , т.к. потенциал водорода намного больше. Протекает процесс восстановления молекулярного водорода из воды, при этом образуются ионы OH — , среда возле катода — щелочная:

2H2O +2ē → H2 + 2OH —

Например , при электролизе раствора хлорида натрия на катоде будет вос-станавливаться только водород из воды.

2. Если металл в соли – средней активности (между Al 3+ и Н + ) , то на катоде восстанавливается (разряжается) и металл , и водород , так как потенциал таких металлов сравним с потенциалом водорода:

Me n+ + nē → Me 0

2 H + 2O +2ē → H2 0 + 2OH —

Например , при электролизе раствора сульфата железа (II) на катоде будет восстанавливаться (разряжаться) и железо, и водород:

Fe 2+ + 2ē → Fe 0

2 H + 2O +2ē → H2 0 + 2OH —

3. Если металл в соли — неактивный (после водорода в ряду стандартных электрохимических металлов) , то ион такого металла является более сильным окислителем, чем ион водорода, и на катоде восстанавливается только металл:

Me n+ + nē → Me 0

Например, при электролизе раствора сульфата меди (II) на катоде будет восстанавливаться медь:

Cu 2+ + 2ē → Cu 0

4. Если на катод попадают катионы водорода H + , то они и восстанавливаются до молекулярного водорода:

2H + + 2ē → H2 0

Анодные процессы

Положительно заряженный анод притягивает анионы и молекулы воды. Анод – окислитель. В качестве восстановителей выступаю либо анионы кислотных остаток, либо молекулы воды (за счет кислорода в степени окисления -2: H 2 O -2 ).

При электролизе растворов солей на аноде наблюдаются следующие закономерности:

1. Если на анод попадает бескислородный кислотный остаток , то он окисляется до свободного состояния (до степени окисления 0):

неМе n- – nē = неМе 0

Например : при электролизе раствора хлорида натрия на аноде окисляют-ся хлорид-ионы:

2Cl — – 2ē = Cl2 0

Действительно, если вспомнить Периодический закон: при увеличении электроотрицательности неметалла его восстановительные свойства уменьшаются. А кислород – второй по величине электроотрицательности элемент. Таким образом, проще окислить практически любой неметалл, а не кислород. Правда, есть одно исключение . Наверное, вы уже догадались. Конечно же, это фтор. Ведь электроотрицательность фтора больше, чем у кислорода. Таким образом, при электролизе растворов фторидов окисляться будут именно молекулы воды, а не фторид-ионы :

2H2 O -2 – 4ē → O2 0 + 4H +

2. Если на анод попадает кислородсодержащий кислотный остаток, либо фторид-ион , то окислению подвергается вода с выделением молекулярно-го кислорода:

2H2 O -2 – 4ē → O2 0 + 4H +

3. Если на анод попадает гидроксид-ион, то он окисляется и происходит выделение молекулярного кислорода:

4 O -2 H – – 4ē → O2 0 + 2H2O

4. При электролизе растворов солей карбоновых кислот окислению под-вергается атом углерода карбоксильной группы, выделяется углекислый газ и соответствующий алкан.

Например , при электролизе растворов ацетатов выделяется углекислый газ и этан:

2 CH3 C +3 OO – –2ē → 2 C +4 O2+ CH3-CH3

Суммарные процессы электролиза

Рассмотрим электролиз растворов различных солей.

Например , электролиз раствора сульфата меди. На катоде восстанавливаются ионы меди:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются молекулы воды:

Анод (+): 2H2 O -2 – 4ē → O2 + 4H +

Сульфат-ионы в процессе не участвуют. Мы их запишем в итоговом уравнении с ионами водорода в виде серной кислоты:

2 Cu 2+ SO4 + 2H2 O -2 → 2 Cu 0 + 2H2SO4 + O2 0

Электролиз раствора хлорида натрия выглядит так:

На катоде восстанавливается водород:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются хлорид-ионы:

Анод (+): 2 Cl – – 2ē → Cl2 0

Ионы натрия в процессе электролиза не участвуют. Мы записываем их с гидроксид-анионами в суммарном уравнении электролиза раствора хлорида натрия :

2 H + 2O +2Na Cl – → H2 0 + 2NaOH + Cl2 0

Следующий пример : электролиз водного раствора карбоната калия.

На катоде восстанавливается водород из воды:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются молекулы воды до молекулярного кислорода:

Анод (+): 2H2 O -2 – 4ē → O2 0 + 4H +

Таким образом, при электролизе раствора карбоната калия ионы калия и карбонат-ионы в процессе не участвуют. Происходит электролиз воды:

2 H2 + O -2 → 2 H2 0 + O2 0

Еще один пример : электролиз водного раствора хлорида меди (II).

На катоде восстанавливается медь:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются хлорид-ионы до молекулярного хлора:

Анод (+): 2 Cl – – 2ē → Cl2 0

Таким образом, при электролизе раствора карбоната калия происходит электролиз воды:

Cu 2+ Cl2 – → Cu 0 + Cl2 0

Еще несколько примеров: электролиз раствора гидроксида натрия.

На катоде восстанавливается водород из воды:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются гидроксид-ионы до молекулярного кислорода:

Анод (+): 4 O -2 H – – 4ē → O2 0 + 2H2O

Таким образом, при электролизе раствора гидроксида натрия происходит разложение воды, катионы натрия в процессе не участвуют:

2 H2 + O -2 → 2 H2 0 + O2 0

Электролиз расплавов

При электролизе расплава на аноде окисляются анионы кислотных остатков, а на катоде восстанавливаются катионы металлов. Молекул воды в системе нет.

Например: электролиз расплава хлорида натрия. На катоде восстанавли-ваются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются анионы хлора:

Анод (+): 2 Cl – – 2ē → Cl2 0

Суммарное уравнение электролиза расплава хлорида натрия:

2 Na + Cl → 2 Na 0 + Cl2 0

Еще один пример: электролиз расплава гидроксида натрия. На катоде восстанавливаются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются гидроксид-ионы:

Анод (+): 4 OH – – 4ē → O2 0 + 2H2O

Суммарное уравнение электролиза расплава гидроксида натрия:

4 Na + OH → 4 Na 0 + O2 0 + 2H2O

Многие металлы получают в промышленности электролизом расплавов.

Например , алюминий получают электролизом раствора оксида алюминия в расплаве криолита. Криолит – Na3[AlF6] плавится при более низкой температуре (1100 о С), чем оксид алюминия (2050 о С). А оксид алюминия отлично растворяется в расплавленном криолите.

В растворе криолите оксид алюминия диссоциирует на ионы:

На катоде восстанавливаются катионы алюминия:

Катод (–): Al 3+ + 3ē → Al 0

На аноде окисляются алюминат-ионы:

Анод (+): 4Al O 3 3 – – 12ē → 2Al2O3 + 3 O2 0

Общее уравнение электролиза раствора оксида алюминия в расплаве криолита:

2 Al 2 О 3 = 4 Al 0 + 3 О 2 0

В промышленности при электролизе оксида алюминия в качестве электродов используют графитовые стержни. При этом электроды частично окисляются (сгорают) в выделяющемся кислороде:

C 0 + О2 0 = C +4 O2 -2

Электролиз с растворимыми электродами

Если материал электродов выполнен из того же металла, который присут-ствует в растворе в виде соли, или из более активного металла, то на аноде разряжаются не молекулы воды или анионы, а окисляются частицы самого металла в составе электрода.

Например , рассмотрим электролиз раствора сульфата меди (II) с медными электродами.

На катоде разряжаются ионы меди из раствора:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются частицы меди из электрода :

Анод (+): Cu 0 – 2ē → Cu 2+


источники:

http://examer.ru/ege_po_himii/teoriya/elektroliz_rasplavov_i_rastvorov

http://chemege.ru/electrolysis/