Уравнения гильберта эйнштейна описывают связь между

Несколько слов о физических теориях как приближениях реального мира

Предисловие

Решил написать небольшую статью, рассматривающую современный уровень развития некоторых физических теорий (в моём уровне понимания) в контексте сравнения с теориями, названными классической нерелятивистской физикой.

В первую очередь хочу указать, что классической нерелятивистской физикой я называю часть теоретической физики, которая была создана в второй половине XVIII — первой половине XIX века Лагранжем, Гамильтоном и позже расширены другими физиками в течении XIX века (я тут не упоминаю имена этих физиков, которые могли способствовать приведению теории и её мат. аппарата к современному виду, включая уроженцев Российской империи).

Классическая нерелятивистская механика и теория гравитации

Основы классической механики были заложены И. Ньютоном, сформулировавшим свои «3 закона» в труде «Математические начала натуральной философии» (год издания — 1687), хотя следует упомянуть принцип относительности, сформулированный Г. Галилеем в 1632 году (тоже использую год издания).

В самом простейшем случае можно сказать, что механика Ньютона (как и Лагранжа, и Гамильтона) может быть сформулирована в виде:

где p — это импульс, в общем случае — так называемый «обобщенный импульс», а F — сила. В отсутствии магнитного поля (а слабое или сильное взаимодействие я здесь тем более не упоминаю) эта сила может быть консервативной. Консервативной называется такая сила, работа которой на любой траектории не зависит от формы траектории и скорости движения (это в том числе отсылка к релятивистской динамике, фактически получается, что в СТО не существует понятия «консервативная сила»).

Для консервативных сил упомянутый выше закон может быть переписан в виде

где xобобщенная координата, а p — соответствующий ей обобщенный импульс.

Подобная формулировка «2 закона Ньютона» является более общей, т. к. она получается при записи уравнения Лагранжа или уравнения Гамильтона. Уравнения Лагранжа и Гамильтона выводятся из принципа наименьшего действия. Действие — интеграл, который имеет размерность Дж *с и берется между 2 конфигурациями системы, то есть наборами координат и импульсов (x,p). В общем случае он выражается разными способами для разных подходов к классической механике.

Если говорить о классической теории гравитации, то она формулируется в виде закона гравитации Ньютона (через силу, а можно и записать через потенциальную энергию)

где сила действует в направлении притягивающего тела (этим сила гравитации отличается от электрической силы, которая создает отталкивание для одинаковых зарядов).

Формулировка закона гравитации через потенциальную энергию может быть выражена простейшей фразой:

Сумма кинетической энергии T(v) и потенциальной энергии U(r) остается постоянной все время движения частицы (системы частиц) вдоль их траектории.
Из этого закона можно получить простейшее уравнение:

В том случае, если мы смогли свести задачу к 1-мерной координате r (расстояние между центрами масс этих 2 тел) — мы можем записать решение задачи через интеграл:

Дальнейший метод решения — взять корень и дальше получаем простейшее дифференциальное уравнение с разделяющимися переменными. Тут возникает 2 проблемы:

  1. В общем случае произвольного потенциала U(r) мы можем вообще не суметь взять этот интеграл.
  2. Вместо привычного решения задачи r = r(t) мы получаем решение t = t(r).

В окончании этого раздела хочу добавить, что до создания А. Эйнштейном своей формы теории относительности во второй половине XIX века Дж. Максвелл обобщил законы для электрического и магнитного поля (которые начали формулировать за 35 лет до этого, но по отдельности). До этого были записаны такие теор. формулы, как формула силы Лоренца.

Сила Лоренца (деленная на электрический заряд частицы) тут интересна тем, что является по сути приближением для понятия «напряженность электрического поля E в системе отсчета частицы, движущейся со скоростью v» для скоростей v, много меньших скорости света.

Специальная теория относительности

Специальная теория относительности (СТО) была создана в 1892-1905 годах трудами Х. Лоренца, А. Пуанкаре и А. Эйнштейна. Описывает инерциальные системы отсчета (ИСО), строго говоря её постулаты нарушаются сразу, как только система отсчета перестает быть инерциальной (характер движения системы перестает быть равномерным и прямолинейным). В квантовой теории поля (по моему скромному пониманию) работает такой «закон», что после нахождения СО в состоянии неинерциального движения первый из упомянутых ниже постулатов перестает выполняться вообще, даже на время будущего равномерного и прямолинейного движения.
Наверное все помнят постулаты СТО, из которых выводятся преобразования Лоренца, но я сформулирую их следующим образом:

  1. Формулировка всех законов физики не зависит от того, находится система в покое или движется равномерно и прямолинейно.
  2. Инвариантность фазы электромагнитной волны относительно перехода в другую ИСО, также известная как сохранение квадрата интервала между двумя событиями.

Из необходимых для дальнейшего рассмотрения формул упомяну следующую:

Она описывает связь между энергией частицы, импульсом и массой покоя.

Одно из следствий СТО — частица с массой покоя выше 0 не может достигнуть скорости света, хотя ещё энергия может расти выше «классического» предела

Данное утверждение согласуется с тем фактом, что элементарная частица может иметь кинетическую энергию, которая существенно больше этой величины.

И конечно следует упомянуть метрику Лоренца, также известную, как метрика Минковского:

Через эту метрику можно ввести понятие «длина 4-вектора», к 4-векторам относятся:

В этом случае я применил систему обозначений, при которой время измеряется в метрах, а скорость света равна единице. То есть, «хорошая» запись 4-вектора требует, чтобы он состоял из 4 величин одинаковой размерности.

Важное свойство любого 4-вектора — его значение при переходе в другую систему отсчета преобразуется так же, как соответствующие компоненты 4-координаты.

В электродинамике существует такая величина, как 4-мерная плотность тока. Вектор 4-тока может быть записан в виде:

Также следует упомянуть, что существуют ковариантные (как первая запись 4-тока) и контравариантные (как вторая запись) вектора. Переход между этими векторами осуществляется по формуле:

здесь применено соглашение Эйнштейна, которое означает, что в этой записи подразумевается суммирование по паре одинаковых индексов, расположенных в верху и внизу.

И так как статья о приближениях, конечно упомяну, как можно показать приближение СТО к механике Ньютона и как можно использовать. Из формулы (1) можно выразить энергию через импульс:

Кинетическую энергию можно выразить как разницу между полной энергией E и энергией покоя:

И в приближении p * я тут применил в смысле комплексного сопряжения. Конечно по определению не очень хорошо вводить метрику с комплексными элементами тензора, но физика не всегда оперирует действительными величинами, так что оставлю выражение в таком виде. В общем случае можно попробовать подставить в уравнения вообще любой (то есть не действительный) вид метрики, но Вы тогда можете получить комплексный тензор энергии-импульса. Все компоненты метрического тензора могут зависеть от координат, но при этом эти зависимости должны оставаться достаточно гладкими, так как тензор является решением дифференциального уравнения.

Понятие кривизны пространства-времени вводится в ОТО через такие понятия, как символы Кристоффеля и ковариантную производную (в необходимом мне смысле ковариантная производная записана здесь).

Тензор кривизны впервые введен немецким математиком Бернхардом Риманом в работе «Ueber die Hypothesen, welche der Geometrie zu Grunde liegen» ([1]), впервые опубликованной уже после смерти Римана. С помощью упомянутых выше символов этот тензор четвертого ранга можно записать в таком виде:

И достаточным условием того, что все компоненты тензора кривизны будут равны нулю, будет равенство нулю всех символов Кристоффеля:

Тривиальным условием для выполнения этого будет диагональность матрицы g и условие для любой перестановки индексов

Теперь перейду к тому, как получить пространство-время с нулевым тензором кривизны, а точнее — тензором Риччи. Тензором Риччи называют свертку тензора кривизны по первому и последнему индексу:

Забегая вперед скажу, что согласно уравнению Эйнштейна нулевой тензор Риччи может быть только в пустом пространстве (когда все компоненты тензора энергии-импульса равны нулю). В таком пространстве мы не получим гравитации по теории Ньютона. Желающие могут попробовать найти такую метрику, которая отличная от метрики Минковского, но сохраняет нулевой тензор Риччи. Возможно, что Вы откроете гравитационные волны.

Проведя свертку тензора Риччи по оставшимся 2 индексам мы получим скалярную кривизну:

Теперь перейду к самому уравнению Эйнштейна, также известному как уравнение Эйнштейна-Гильберта.

Цитата из Википедии:

Летом 1915 года Эйнштейн приехал в Гёттингенский университет, где прочитал ведущим математикам того времени, в числе которых был и Гильберт, лекции о важности построения физической теории гравитации и имевшихся к тому времени у него наиболее перспективных подходах к решению проблемы и её трудностях. Между Эйнштейном и Гильбертом завязалась переписка с обсуждением данной темы, которая значительно ускорила завершение работы по выводу окончательных уравнений поля. До недавнего времени считалось, что Гильберт получил эти уравнения на 5 дней раньше, но опубликовал позже: Эйнштейн представил в Берлинскую академию свою работу, содержащую правильный вариант уравнений, 25 ноября, а заметка Гильберта «Основания физики» была озвучена 20 ноября 1915 года на докладе в Гёттингенском математическом обществе и передана Королевскому научному обществу в Гёттингене, за 5 дней до Эйнштейна (опубликована в 1916 году). Однако в 1997 году была обнаружена корректура статьи Гильберта от 6 декабря, из которой видно, что Гильберт выписал уравнения поля в классическом виде не на 5 дней раньше, а на 4 месяца позже Эйнштейна. В ходе завершающей правки Гильберт вставил в свою статью ссылки на параллельную декабрьскую работу Эйнштейна, добавил замечание о том, что уравнения поля можно представить и в ином виде (далее он выписал классическую формулу Эйнштейна, но без доказательства).

При выводе уравнения гравитационного поля ученые применили 2 принципа:

  • принцип общей ковариантности
  • предположение о том, что в приближении слабого гравитационного потенциала уравнения механики должны сводиться к механике СТО с ньютоновской гравитацией

С учетом этого было получено, что действие гравитационного поля может быть функцией только 2 величин — скалярной кривизны R (в отсутствии гравитирующих масс и прочих энергий кривизна должна быть равна нулю) и определителя метрического тензора g (для метрики Минковского g = -1).

Эти утверждения я считаю доказанными учеными. Другие ученые могли вводить модификацию действия Эйнштейна, наиболее известный пример — теория Бранса-Дикке. Достаточных доказательств этих теорий в наблюдениях пока не получено. Желающие изучить саму теорию могут почитать например здесь.
С учетом введенных выше обозначений уравнение Эйнштейна можно записать в следующем виде:

где G — гравитационная постоянная. Краткий смысл уравнения можно сформулировать так:

  • Источником искривления пространства-времени является тензор энергии-импульса всей материи и энергии в этом пространстве.

В данном случае я не упоминаю темную энергию (космологическую постоянную), хотя и считаю её наличие в глобальных масштабах следующим из астрономических наблюдений.

Квантовая механика

Квантовая механика была создана физиками для описания микроскопических систем. Одним из первых достижений квантовой теории, подтверждавшейся в наблюдаемых данных, была полуклассическая модель атома Н. Бора, созданная в 1913 году. Я применю для записи уравнений квантовой механики такую вольность — обозначу приведенную постоянную Планка буквой h (вместо символа «h с чертой»). Постулат теории Бора, имеющий минимальное отношение к настоящей квантовой механике, это постулат о квантовании момента импульса электрона массы m на «орбитах» в атоме:

где n — натуральное число (в настоящей квантовой механике момент импульсам может быть 0, но это число n, называемое «главное квантовое число», является натуральным).

Дальнейшим этапом развития квантовой механики было формулирование Э. Шрёдингером уравнения, названного позднее его именем. Это уравнение записывается через особый оператор, называемый «гамильтониан». Оператор получатся из функции Гамильтона путем замены классического импульса на оператор импульса:

где x — обобщенная координата, соответствующая классическому обобщенному импульсу px.

В общем случае уравнение Шрёдингера записывается для волновой функции (обозначается греческой буквой «пси») как нестационарное:

здесь применен частный случай, когда в функции Гамильтона классической системы обобщенный импульс имеет вид обычного классического импульса. А для случая консервативных систем уравнение Шрёдингера может быть записано в стационарной форме, которая может рассматриваться как уравнение для нахождения собственных функций и собственных значений оператора Гамильтона:

где E — соответствующее собственное значение оператора.

Для рассмотрения перехода от квантовой механики к классической рассмотрим замену волновой функции в уравнении Шрёдингера на следующую переменную:

Уравнение Шрёдингера можно решать путем разложения функции S (имеющей размерность действия) по степеням постоянной Планка:

После подстановки функции S в уравнение получает следующий вид:

где константа A была сокращена.

Для получения уравнения классической механики (известного как уравнение Гамильтона-Якоби) нам следует указать, что величина действия S на любой классической траектории имеет величину много больше, чем постоянная Планка. После этого последний член уравнения может быть откинут.

При необходимости более точного решения уравнения применяется упомянутое выше разложение действия по степеням h. Функция S1 находится как решение уравнения Гамильтона-Якоби, после чего подставляется в систему уравнений, полученную путем разложения уравнения по степеням h (то есть что левая и правая часть должна совпасть или при переносе в одну сторону коэффициенты условного полинома должны стать равны нулю).

Идеология приближенного решения уравнения Шрёдингера (точнее — нахождения поправок к уровням энергии) может быть сформулирована так:
Используя волновые функции невозмущенного гамильтониана H0 и величину возмущения H1 (равную HH0) путем нескольких итераций можно найти новые уровни энергии E.

Гамильтониан физической системы представляется в виде:

где… подразумевают, что в разных случаях нам требуется учесть разное число поправок, которые, как правило, имеют разный порядок малости. Эти поправки к гамильтониану называются возмущениями, а волновые функции гамильтониана H1 должны быть точно известны. Соответствующая теория решения уравнения называется «теория возмущений«.
Если нам известны волновые функции гамильтониана H1, то они образуют базис линейного пространства (ЕМНИП). Это означает, что вообще любая волновая функция может быть представлена в виде линейной комбинации волновых функций невозмущенного гамильтониана. С учетом этого можно показать, что первый порядок теории возмущений приводит к изменению энергии уровня под номером n на величину

$» data-tex=»display»/>

Данное выражение называется матричным элементом оператора H2 по волновым функциям, соответствующим состояниям с номерами n и n.

Самое первое (по времени открытия) и (ЕМНИП) самое большое по величине отклонение уровней энергии атома водорода от предсказания нерелятивистской квантовой механики может быть получено при условии подстановки в виде возмущения гамильтониана системы оператора кинетической энергии в форме формулы (2):

$» data-tex=»display»/>

Вы могли увидеть, что эта величина отрицательна. Тут есть 2 замечания. Во первых, оператор импульса здесь соответствует релятивистскому импульсу, который может превысить mc — значит в релятивистском случае растет и первый член в разложении кинетической энергии. Во вторых, к тому моменту, как формула 2 начинает падать с ростом импульса, Вы точно знаете, что должны были учесть:

  • следующий член разложения;
  • следующий порядок теории возмущений;
  • множество поправок к физической модели (размер и форму ядра, магнитный момент электрона и ядра, приведенную массу электрона).

По моим весьма условным прикидкам такой метод усложнения модели может работать для расчета энергии уровня энергии 1s на ряде химических элементов от водорода до лантана (включительно), а для более высоких уровней энергии — и дальше (с учетом поправки на то, что в расчете например второго порядка теории возмущений используется значение этого самого уровня, то есть уже идет погрешность). Для этих атомов уже требуется учитывать уравнение Дирака, а для наиболее точного (на современном уровне развития) отображения реального мира необходимо учитывать квантовую теорию (электромагнитного) поля.

Вместо послесловия

На этом я заканчиваю свой обзор, так как он приблизился к границам моей области знаний. Но наука не стоит на месте. За 100 лет после формулировки ОТО были открыты гравитационные волны, а за 100 лет после формулировки постулатов Бора был открыт целый набор элементарных частиц и, фактически, 3 новых фундаментальных взаимодействия. СТО и квантовая механика уже нашли применение в практических устройствах (речь идет не только про экспериментальные научные установки, но и про множество оптических устройств).

Список упомянутых источников:
1. Ueber die Hypothesen, welche der Geometrie zu Grunde liegen // Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, vol. 13, 1867

Please wait.

We are checking your browser. medium.com

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6e273fca9f9b7b47 • Your IP : 85.95.188.35 • Performance & security by Cloudflare

На пути к теории всего

Что такое действие и почему физики все время о нем говорят

Как современные физики-теоретики разрабатывают новые теории, описывающие мир? Что такого они добавляют к квантовой механике и общей теории относительности, чтобы построить «теорию всего»? О каких ограничениях идет речь в статьях, говорящих про отсутствие «новой физики»? На все эти вопросы можно ответить, если разобраться, что такое действие — объект, лежащий в основе всех существующих физических теорий. В этой статье я расскажу, что физики понимают под действием, а также покажу, как с его помощью можно построить настоящую физическую теорию, используя всего несколько простых предположений о свойствах рассматриваемой системы.

Сразу предупреждаю: в статье будут формулы и даже несложные вычисления. Впрочем, их вполне можно пропускать без большого вреда для понимания. Вообще говоря, я привожу здесь формулы только для тех заинтересованных читателей, которые непременно хотят разобраться во всем самостоятельно.

Уравнения

Физика описывает наш мир с помощью уравнений, связывающих вместе различные физические величины — скорость, силу, напряженность магнитного поля и так далее. Практически все такие уравнения являются дифференциальными, то есть содержат не только функции, зависящие от величин, но и их производные. Например, одно из самых простых уравнений, описывающее движение точечного тела, содержит вторую производную от его координаты:

Однако как же физики находят эти дифференциальные уравнения? В течение долгого времени единственным источником новых теорий был эксперимент. Другими словами, первым делом ученый проводил измерения нескольких физических величин, и только потом пытался определить, как они связаны. Например, именно таким образом Кеплер открыл три знаменитых закона небесной механики, которые впоследствии привели Ньютона к его классической теории тяготения. Получалось, что эксперимент как будто «бежит впереди теории».

В современной же физике дела устроены немного по-другому. Конечно, эксперимент до сих пор играет в физике очень важную роль. Без экспериментального подтверждения любая теория является всего лишь математической моделью — игрушкой для ума, не имеющей отношения к реальному миру. Однако сейчас физики получают уравнения, описывающие наш мир, не эмпирическим обобщением экспериментальных фактов, а выводят их «из первых принципов», то есть на основании простых предположений о свойствах описываемой системы (например, пространства-времени или электромагнитного поля). В конечном счете, из эксперимента определяются только параметры теории — произвольные коэффициенты, которые входят в выведенное теоретиком уравнение. При этом ключевую роль в теоретической физике играет принцип наименьшего действия, впервые сформулированный Пьером Мопертюи в середине XVIII века и окончательно обобщенный Уильямом Гамильтоном в начале XIX века.

Действие

Что же такое действие? В самой общей формулировке действие — это функционал, который ставит в соответствие траектории движения системы (то есть функции от координат и времени) некоторое число. А принцип наименьшего действия утверждает, что на истинной траектории действие будет минимально. Чтобы разобраться в значении этих умных слов, рассмотрим следующий наглядный пример, взятый из Фейнмановских лекций по физике.

Допустим, мы хотим узнать, по какой траектории будет двигаться тело, помещенное в поле тяжести. Для простоты будем считать, что движение полностью описывается высотой x(t), то есть тело движется вдоль вертикальной прямой. Предположим, что мы знаем о движении только то, что тело стартует в точке x1 в момент времени t1 и приходит в точку x2 в момент t2, а полное время в пути составляет T = t2t1. Рассмотрим функцию L, равную разности кинетической энергии К и потенциальной энергии П: L = КП. Будем считать, что потенциальная энергия зависит только от координаты частицы x(t), а кинетическая — только от ее скорости (t). Также определим действие — функционал S, равный среднему значению L за все время движения: S = ∫ L(x, , t) dt.

Очевидно, что значение S будет существенно зависеть от формы траектории x(t) — собственно, поэтому мы называем его функционалом, а не функцией. Если тело слишком высоко поднимется (траектория 2), вырастет средняя потенциальная энергия, а если оно станет слишком часто петлять (траектория 3), увеличится кинетическая — мы ведь предположили, что полное время движения в точности равно T, а значит, телу нужно увеличить скорость, чтобы успеть пройти все повороты. В действительности функционал S достигает минимума на некоторой оптимальной траектории, которая является участком параболы, проходящей через точки x1 и x2 (траектория 1). По счастливому стечению обстоятельств, эта траектория совпадает с траекторией, предсказанной вторым закон Ньютона.

Примеры траекторий, соединяющих точки x1 и x2. Серым отмечена траектория, полученная вариацией истинной траектории. Вертикальное направление отвечает оси x, горизонтальное — оси t


источники:

http://medium.com/nuances-of-programming/%D1%8D%D0%B9%D0%BD%D1%88%D1%82%D0%B5%D0%B9%D0%BD-%D0%B8-%D1%81%D0%B0%D0%BC%D0%B0%D1%8F-%D0%BA%D1%80%D0%B0%D1%81%D0%B8%D0%B2%D0%B0%D1%8F-%D0%B8%D0%B7-%D0%B2%D1%81%D0%B5%D1%85-%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D0%B9-198ee156c073

http://nplus1.ru/material/2018/02/02/just-looking-for-some-action