Уравнения графиками которых являются прямые

Прямые на координатной плоскости

Линейная функция
График линейной функции
Прямые, параллельные оси ординат
Уравнения вида px + qy = r . Параллельные прямые. Перпендикулярные прямые

Линейная функция

Линейной функцией называют функцию, заданную формулой

y = kx + b,(1)

где k и b – произвольные (вещественные) числа.

При любых значениях k и b графиком линейной функции является прямая линия .

Число k называют угловым коэффициентом прямой линии (1), а число b – свободным членом .

График линейной функции

При k > 0 линейная функция (1) возрастает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 1, 2 и 3.

Рис.1
Рис.2
Рис.3

При k = 0 линейная функция (1) принимает одно и тоже значение y = b при всех значениях x , а её график представляет собой прямую линию, параллельную оси абсцисс, и изображен на рис. 4, 5 и 6.

Рис.4
Рис.5
Рис.6

При k линейная функция (1) убывает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 7, 8 и 9.

k y = kx + b1 и y = kx + b2 ,

имеющие одинаковые угловые коэффициенты и разные свободные члены , параллельны .

имеющие разные угловые коэффициенты , пересекаются при любых значениях свободных членов.

y = kx + b1 и

перпендикулярны при любых значениях свободных членов.

Угловой коэффициент прямой линии

y = kx(2)

равен тангенсу угла φ , образованному (рис. 10) при повороте положительной полуоси абсцисс против часовой стрелки вокруг начала координат до прямой (2).

Рис.10
Рис.11
Рис.12

Прямая (1) пересекает ось Oy в точке, ордината которой (рис. 11) равна b .

При прямая (1) пересекает ось Ox в точке, абсцисса которой (рис. 12) вычисляется по формуле

Прямые, параллельные оси ординат

Прямые, параллельные оси Oy , задаются формулой

x = c ,(3)

где c – произвольное число, и изображены на рис. 13, 14, 15.

Рис.13
Рис.14
Рис.15

Замечание 1 . Из рис. 13, 14, 15 вытекает, что зависимость, заданная формулой (3), функцией не является, поскольку значению аргумента x = c соответствует бесконечное множество значений y .;

Уравнение вида px + qy = r . Параллельные прямые. Перпендикулярные прямые

px + qy = r ,(4)

где p, q, r – произвольные числа.

В случае, когда уравнение (4) можно переписать в виде (1), откуда вытекает, что оно задаёт прямую линию .

что и требовалось.

В случае, когда получаем:

откуда вытекает, что уравнение (4) задает прямую линию вида (3).

В случае, когда q = 0, p = 0, уравнение (4) имеет вид

0 = r ,(5)

и при r = 0 его решением являются точки всей плоскости:

В случае, когда уравнение (5) решений вообще не имеет.

Замечание 2 . При любом значении r1 , не совпадающем с r прямая линия, заданная уравнением

px + qy = r1 ,(6)

параллельна прямой, заданной уравнением (4) .

Замечание 3 . При любом значении r2 прямая линия, заданная уравнением

qx + py = r2 ,(7)

перпендикулярна прямой, заданной уравнением (4) .

Пример . Составить уравнение прямой, проходящей через точку с координатами (2; – 3) и

  1. параллельной к прямой
    4x + 5y = 7 ;(8)
  2. перпендикулярной к прямой (8).

В соответствии с формулой (6), будем искать уравнение прямой, параллельной прямой (8), в виде

4x + 5y = r1 ,(9)

где r1 – некоторое число. Поскольку прямая (9) проходит через точку с координатами (2; – 3), то справедливо равенство

Итак, уравнение прямой, параллельной к прямой

В соответствии с формулой (7), будем искать уравнение прямой, перпендикулярной прямой (8), в виде

– 5x + 4y = r2 ,(10)

где r2 – некоторое число. Поскольку прямая (10) проходит через точку с координатами (2; – 3), то справедливо равенство

График линейной функции, его свойства и формулы

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие функции

Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ — наглядно.
  • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Нам дана функция: у = 0,5х — 2. Значит:

  • если х = 0, то у = -2;
  • если х = 2, то у = -1;
  • если х = 4, то у = 0;
  • и т. д.

Для удобства результаты можно оформлять в виде таблицы:

х024
y-2-10

Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».

ФункцияКоэффициент «k»Коэффициент «b»
y = 2x + 8k = 2b = 8
y = −x + 3k = −1b = 3
y = 1/8x − 1k = 1/8b = −1
y = 0,2xk = 0,2b = 0

Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».

Еще не устали? Изучать математику веселее с опытным преподавателем на курсах по математике в Skysmart!

Свойства линейной функции

  1. Область определения функции — множество всех действительных чисел.
  2. Множеством значений функции является множество всех действительных чисел.
  3. График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.
  4. Функция не имеет ни наибольшего, ни наименьшего значений.
  5. Четность и нечетность линейной функции зависят от значений коэффициентов k и b:
    b ≠ 0, k = 0, значит y = b — четная;
    b = 0, k ≠ 0, значит y = kx — нечетная;
    b ≠ 0, k ≠ 0, значит y = kx + b — функция общего вида;
    b = 0, k = 0, значит y = 0 — как четная, так и нечетная функция.
  6. Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.
  7. График функции пересекает оси координат:
    ось абсцисс ОХ — в точке (-b/k, 0);
    ось ординат OY — в точке (0; b).
  8. x=-b/k — является нулем функции.
  9. Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.
    Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.
  10. Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0: функция принимает отрицательные значения на промежутке (-∞, — b /k) и положительные значения на промежутке (- b /k, +∞)
    При k b /k, +∞) и положительные значения на промежутке (-∞, — b /k).
  11. Коэффициент k характеризует угол, который образует прямая с положительным направлением Ох. Поэтому k называют угловым коэффициентом.
    Если k > 0, то этот угол острый, если k

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

  • если k > 0, то график наклонен вправо;
  • если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;
  • если b 1 /2x + 3, y = x + 3.

Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.

В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).

Теперь рассмотрим графики функций y = -2x + 3, y = — 1 /2x + 3, y = -x + 3.

В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.

Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).

Рассмотрим графики функций y = 2x + 3, y = 2x, y = 2x — 2.

Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.

При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:

  • график функции y = 2x + 3 (b = 3) пересекает ось OY в точке (0; 3);
  • график функции y = 2x (b = 0) пересекает ось OY в точке начала координат (0; 0);
  • график функции y = 2x — 2 (b = -2) пересекает ось OY в точке (0; -2).

Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.

Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.

Если k 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Точки пересечения графика функции y = kx + b с осями координат:

  • С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.
    Координаты точки пересечения с осью OY: (0; b).
  • С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = — b /k.
    Координаты точки пересечения с осью OX: (- b /k; 0)

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.

  • В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.
    Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.
    Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:
    2 = -4(-3) + b
    b = -10
  • Таким образом, нам надо построить график функции y = -4x — 10
    Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).
    Поставим эти точки в координатной плоскости и соединим прямой:

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

  1. Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.
    Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.
  2. Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.
  3. Вычтем из второго уравнения системы первое, и получим k = 3.
    Подставим значение k в первое уравнение системы, и получим b = -2.

4.13. Уравнения прямых на координатной плоскости

Давайте рассмотрим такие функций, графики которых имеют вид прямых. Простоты ради, мы будем иметь дело с безразмерными величинами, а значит, в качестве осей у нас будут выступать простые числовые прямые, и все наши чертежи мы будем делать на обычной координатной плоскости.

Прямая, проходящая через начало координат

Построение графика по заданной функции

Пусть переменная \(y\) пропорциональна переменной \(x\) с коэффициентом пропорциональности \(k\) :

Давайте договоримся, что \(x\) здесь — это независимая переменная, а \(y\) — зависимая. Коэффициент \(k\) играет роль константы (параметра). В таких случаях говорят, что \(y\) является (однородной) линейной функцией от \(x\) . Графиком этой функции, как мы хорошо знаем, является прямая, проходящая через начало координат \((0, 0)\) . Для построения этой прямой нам достаточно определить еще какую-либо одну ее точку \((x_1, y_1)\) . Для этого положим, например, \(x_1 = 1\) . Тогда \(y_1 = k \cdot 1 = k\) . Проводим через эту точку и начало координат прямую линию. Это и есть график функции \(y\) от \(x\) . Так, по крайней мере, обстоит дело в теории, а на практике точку \((x_1, y_1)\) лучше брать настолько далеко от начала координат, насколько позволяет чертеж. В этом стучае прямую удается провести наиболее точно. Ниже приведен пример такого построения для функции \(y=\frac<1> <2>x\) .

Восстановление функции по графику

Решим теперь обратную задачу. Пусть на координатной плоскости с осями \(x\) и \(y\) нам дана прямая, проходящая через начало координат. Спрашивается: графиком какой функции она является? При этом подразумевается, что функция должна быть задана в виде формулы, связывающей переменные \(x\) и \(y\) . Такая формула носит название уравнения графика функции. В данном случае речь идет об уравнении прямой, проходящей через точку \((0,0)\) .

Заранее ясно, что это уравнение имеет вид

От нас фактически только требуется найти значение константы \(k\) . Для этого отметим на прямой произвольную точку, отличную от \((0,0)\) , и определим ее координаты \((x_1, y_1).\) Эти координаты, очевидно, связаны соотношением

При этом следует особо подчеркнуть, что константа \(k\) не зависит от выбора точки \((x_1, y_1).\) Какую бы точку на прямой мы не выбрали в качестве \((x_1, y_1),\) мы придем к одному и тому же значению \(k\) . Таким образом,

Пример нахождения уравнения прямой приведен на следующем рисунке.

Отметим два особых случая. Во-первых, прямая может совпасть с осью \(x\) . Тогда значение \(y\) остается постоянным и равным нулю на всем ее протяжении. Тем не менее наше общее решение остается в силе. При этом оказывается, что \(k = 0\) и переменную \(y\) можно всё еще формально считать функцией от \(x\) :

Во-вторых, прямая может совпасть с осью \(y\) . В этом случае в каждой ее точке \(x = 0\) . Формула для константы \(k\) оказывается неприменимой, потому что число \(x_0\) , стоящее в знаменателе, обращается в нуль. Приходится признать, что мы не можем подобрать такую функцию \(y\) от \(x\) , которая имела бы подобный график. Разве что, мы можем теперь принять \(y\) за независимую переменную и формально рассматривать \(x\) как функцию от \(y<:>\)

Несложно убедиться, что всякая точка, лежащая на оси \(y\) , удовлетворяет этому равенству. Заметим, что если бы мы захотели написать уравнение прямой, проходящей через начало координат, в самом общем виде, то мы могли бы это сделать так:

Это соотношение между \(x\) и \(y\) остается справедливым в обоих рассмотренных частных случаях, однако выбор параметров не является однозначным, так как в качестве пары чисел \((x_1, y_1)\) можно взять координаты любой точки, принадлежащей прямой.

Произвольная прямая

Восстановление функции по графику

Начнем с обратной задачи. Пусть теперь на координатной плоскости дана произвольная прямая, не проходящая через начало координат. Вопрос нас будет интересовать всё тот же: графиком какой функции она является или, короче говоря, каково уравнение этой прямой?

Отметим на прямой две любые несовпадающие точки и обозначим их координаты через \((x_0, y_0)\) и \((x_1,y_1)\) . Поместим в точку \((x_0, y_0)\) начало новой системы координат с осями \(x’\) и \(y’\) , сонаправленными с соответствующими осями \(x\) и \(y\) старой системы.

Тогда координаты другой отмеченной точки в новой системе окажутся равны

\(\begin x_1′ \\ y_1′ \end = \begin x_1 \\ y_1 \end — \begin x_0 \\ y_0 \end = \begin x_1 — x_0 \\ y_1 — y_0\end.\)

Вообще, как мы знаем, новые («штрихованные») координаты любой точки связаны со старыми («нештрихованными») координатами соотношением

Наша прямая проходит через начало координат новой системы, поэтому мы можем сразу же выписать ее уравнение в «штрихованных» переменных:

Переходя к «нештрихованным» переменным, получаем

Что и решает поставленную задачу.

При желании, можно еще выразить функцию \(y\) от \(x\) в явном виде:

\(y = k\,x — k\,x_0 + y_0\)

\(y = k\,x + b,\) где \(b = — k\,x_0 + y_0.\)

Значения констант \(k\) и \(b\) не зависят от выбора точек \((x_0, y_0)\) и \((x_1,y_1)\) . Какие бы точки на заданной прямой мы не взяли, мы всегда придем к одним и тем же значениям \(k\) и \(b\) . Заметим, что из-за дополнительного слагаемого \(b\) переменные \(x\) и \(y\) не пропорциональны друг другу. Поэтому константа \(k\) называется теперь не коэффициентом пропорциональности, как это было раньше, а угловым коэффициентом. Название это происходит от того, что значение \(k\) тесно связано с углом наклона прямой по отношению к оси \(x\) . Чем круче идет прямая, тем больше ее угловой коэффициент.

Константу \(b\) иногда называют свободным членом. Как легко видеть, переменная \(y\) равна \(b\) при \(x = 0\) . Иными словами, \(b\) — это точка на оси \(y\) , в которой эта ось пересекается с нашей прямой. Если \(b = 0\) , то прямая проходит через начало координат, и мы возвращаемся к частному случаю, рассмотренному ранее.

Из наших рассуждений следует, что любая прямая на координатной плоскости может быть описана уравнением вида

при подходящем выборе констант \(k\) и \(b\) . Единственным исключением является особый случай, когда в выражении для углового коэффициента \(k = \frac\) знаменатель обращается в ноль. Это происходит, если \(x_1 = x_0\) . Это значит, что прямая перпендикулярна оси \(x\) (и соответственно параллельна оси \(y\) ). При таких обстоятельствах \(x\) неизбежно утрачивает роль независимой переменной, но может формально рассматриваться как функция от \(y\) :

\(x = 0 \cdot (y — y_0) + x_0.\)

В совершенно общем виде уравнение прямой можно написать следующим образом:

\((x_1-x_0) (y-y_0) = (y_1-y_0) (x-x_0).\)

При этом, однако, выбор двух пар параметров \((x_0, y_0)\) и \((x_1, y_1)\) (которые, по смыслу, являются координатами двух произвольных точек, лежащих на прямой) неоднозначен.

Построение графика по заданной функции

Теперь давайте выясним, как построить график неоднородной линейной функции \(y\) от \(x\) , которая определяется как

где \(k\) и \(b\) — любые действительные числа. Как мы только что выяснили, к такому виду сводится уравнение произвольной прямой (при условии, что она не параллельна оси \(y\) ). Строго говоря, это не исключает, что при некоторых значения параметров \(k\) и \(b\) график этой функции может отличаться от прямой линии. Давайте убедимся, что этого никогда не происходит. Перепишем данное нам уравнение следующим образом:

Если перейти в новую, штрихованную, систему координат с началом в точке \((0, b)\) и с осями \(x’\) и \(y’\) , сонаправленными с соответствующими осями старой системы, то в новых координатах уравнение примет вид:

Мы получим тогда не что иное, как уравнение пропорциональной зависимости, которое гарантировано задает прямую линию. Значит, и график неоднородной линейной функции

представляет собой прямую линию при любых значениях параметров \(k\) и \(b\) . Но для того, чтобы построить прямую, достаточно знать две ее произвольные точки \((x_0, y_0)\) и \((x_1, y_1)\) . В качестве \(x_0\) и \(x_1\) можно взять, например, соответственно ноль и единицу. Тогда

\(y_0 = b\) (при \(x_0 = 0\) ),
\(y_1 = k+b\,\) (при \(x_1 = 1\) ).

Проводим прямую через точки \((x_0, y_0)\) и \((x_1, y_1)\) — и задача решена. На практике, впрочем, лучше брать такие точки, которые расположены друг от друга по возможности дальше, насколько позволяет чертеж. Пример графика неоднородной линейной функции со значением параметров \(k = \frac<1><3>\) и \(b = 1\) представлен на следующем рисунке.

Конспект

\(1\) . Линейная функция \(y = k\,x + b\) называется однородной при \(b = 0\) и неоднородной при \(b \ne 0.\) Ее график на координатной плоскости представляет собой прямую линию, которая строится по двум произвольным точкам.

\(2\) . Уравнение прямой, проходящей через начало координат: \(y = \frac x,\) где \((x_1, y_1)\) — координаты произвольной точки, принадлежащей этой прямой \((x_1 \ne 0).\) Исключение: прямая совпадает с осью \(y\) . Тогда уравнение прямой: \(x = 0.\)

\(3\) . Уравнение произвольной прямой: \(y-y_0 = \frac (x-x_0),\) где \((x_0, y_0)\) и \((x_1, y_1)\) — координаты двух различных произвольных точек, принадлежащих этой прямой. Исключение: прямая проходит через точку \((x_0, y_0)\) параллельно оси \(y\) . Тогда уравнение прямой: \(x = x_0\) .


источники:

http://skysmart.ru/articles/mathematic/grafik-linejnoj-funkcii

http://www.nekin.info/math/m0413.htm