Уравнения и неравенства а сводящиеся к линейным

Методика введения решения линейных уравнений и уравнений, сводящихся к линейным

Разделы: Математика

Изучение уравнений в среднем звене начинается с введения решения линейных уравнений и уравнений, сводящихся к линейным.

Равенство двух функций, рассматриваемых в общей области определения, называется уравнением. Переменные, входящие в уравнение, обозначаются латинскими буквами x, y,z, t … Уравнение с одной переменной х в общем, виде записывается так f(x)= g(x).

Всякое значение переменной, при котором выражения f(x) и g(x) принимают равные числовые значения, называется корнем уравнения.

Решить уравнение – это, значит, найти все его корни или доказать, что их нет.

Например, уравнение 3+x=7 имеет единственный корень 4, так как при этом и только при этом значении переменной 3+x=7 верное равенство.

Уравнение (x-1)(x-2)=0 имеет 2 корня 1 и 2.

Уравнение x 2 +1=0 не имеет действительных корней, так как сумма двух положительных чисел не равняется 0.

Для того, чтобы решить любое уравнение с одной переменной, учащийся должен знать: во-первых, правила, формулы или алгоритмы решения уравнений данного вида и, во-вторых, правила выполнения тождественных и равносильных преобразований, с помощью которых данное уравнение можно привести к простейшим.

Таким образом, решение каждого уравнения складывается из двух основных частей:

  1. преобразования данного уравнения к простейшим;
  2. решения простейших уравнений по известным правилам, формулам или алгоритмам.

Если вторая часть является алгоритмической, то первая часть — в значительной степени — эвристической, что и представляет наибольшую трудность для учащихся. В процессе решения уравнения его стараются заменить более простым, поэтому важно знать с помощью каких преобразований это возможно. Здесь необходимо в доступной для ребенка форме дать понятие равносильности.

Уравнения, имеющие одни и теже корни, называются равносильными. Равносильными считаются и уравнения, каждое из которых не имеет корней.

Например, уравнения x+2=5 и x+5=8 равносильны, так как каждое из них имеет единственный корень — число 3.Равносильны и уравнения x 2 +1=0 и 2x 2 +5=0 — ни одно из них не имеет корней.

Уравнения х-5=1 и х 2 =36 не равносильны, так как первое имеет только один корень х=6, тогда как второе имеет два корня 6 и –6.

К равносильным преобразованиям относятся:

1) Если к обеим частям уравнения прибавить одно и тоже число или одно и тоже целое алгебраическое выражение, содержащее неизвестное, то новое уравнение будет равносильно данному.

2) Если обе части уравнения умножить или разделить на одно и тоже отличное от нуля число, то получится уравнение, равносильное данному.

Например, уравнение равносильно уравнению x 2 – 1 = 6x

3) Если в уравнении произвести раскрытие скобок и привести подобные слагаемые, то получится уравнения, равносильно данному.

Обучение решения уравнений начинается с простейших линейных уравнений и уравнений сводящихся к ним. Дается определение линейного уравнения и рассматриваются случаи, когда оно имеет одно решение; не имеет решений и имеет бесконечное множество решений.

Линейным уравнением с одной переменной х называют уравнение вида ах = b, где а и b — действительные числа, а — называют коэффициентом при переменной, b — свободным членом.

Для линейного уравнения ах = b могут представиться при случае:

  1. а 0, в этом случае корень уравнения равен b/a
  2. а = 0; b = 0; в этом случае уравнение принимает вид 0х = b, что верно при любом х, т.е. корнем уравнения служит любое действительное число;
  3. а = 0; b 0; в том случае уравнение принимает вид 0х = b, оно не имеет корней.

Многие уравнения в результате преобразований сводятся к линейным.

Так в 7 классе можно применить следующие уравнения:

1)

Это уравнение сводиться к линейному уравнению.

Умножением обеих частей на 12 (наименьшее общее краткое знаменателей 3, 4, 6, 12), получим:

8 + 3x + 2 – 2x = 5x –12,

8 + 2 + 12 = 5x – 3x + 2x,

2) Покажем, что уравнение 2 (х + 1) – 1 = 3 — (1 — 2х) не имеет корней.

Упростим обе части уравнения:

2х + 2 – 1 = 3 – 1 + 2х,

Это уравнение не имеет корней, т.к. левая часть 0 х равна 0 при любом х, а значит не равна 1.

3) Покажем, что уравнение 3(1 – x) + 2 = 5 – 3x имеет бесконечное множество корней.

При прохождении темы “линейные уравнения с двумя переменными” можно предложить учащимся графический способ решения уравнения. Данный метод основан на пользовании графиков функций, входящих в уравнение. Суть метода: найти абсциссы точек пересечения графиков функций, стоящих в левой и правой частях уравнения. Основывается на выполнение следующих действий:

1) Преобразовать исходное уравнение к виду f(x) = g(x), где f(x) и g(x) функции, графики, которых можно построить.
2) Построить графики функций f(x) и g(x)
3) Определить точки пересечения построенных графиков.
4) Определить абсциссы найденных точек. Они и дадут множество решений исходного уравнения.
5) Записать ответ.

Преимущество данного метода заключается в том, что он позволяет легко определить число корней уравнения. Недостаток в том, что корни в общем случае определяются приближенно.

Следующим этапом в изучении линейных уравнений, являются уравнения с модулями, причем некоторые решения выполняются несколькими способами.

Решение уравнений, содержащих знак модуля и уравнений с параметрами можно назвать деятельностью, близкой к исследовательской. Это обусловлено тем, что выбор метода решения, процесс решения, запись ответа предполагают определенный уровень сформированности умений наблюдать, сравнивать, анализировать, выдвигать и проверять гипотезу, обобщать полученные результаты.

Особой интерес представляют уравнения, содержащие знак модуля.

По определению модуля числа a, имеем:

Число –a может быть отрицательным при a>0; -a положительным при a -1, тогда

,

Видим, что число 0 принадлежит промежутку. Значит, является корнем. Таким образом, уравнение имеет два корня: 0 и -4.

На простых примерах рассмотрим алгоритм решения уравнений с параметрами: область допустимых значений, область определения, общие решения, контрольные значения параметров, типы частных уравнений. Способы их нахождения будут устанавливаться в каждом виде уравнений отдельно.

На базе введенных понятий определим общую схему решения всякого уравнения F(a;x)=0 с параметром а (для случая двух параметров схема аналогична):

  • устанавливаются область допустимых значений параметра и область определения;
  • определяются контрольные значения параметра, разбивающие область допустимых значений параметра на области однотипности частных уравнений;
  • для контрольных значений параметра соответствующие частные уравнения исследуются отдельно;
  • находятся общие решения x=f1 (a),…, fk (a) уравнения F(a;x)=0 на соответствующих множествах Аf1,…, Аfk значений параметра;
  • составляется модель общих решений, контрольных значений параметра;
  • на модели выделяются промежутки значений параметра с одинаковыми общими решениями (области однотипности);
  • для контрольных значений параметра и выделенных областей однотипности записываются характеристики всех типов частных уравнений
  • Особое место в алгебре отводится линейным уравнениям с параметрами.

Рассмотрим несколько примеров.

1.2х – 3 = m+1,

2х – 3 = + 4 m + 1,где m – неизвестный параметр.

Умножим обе части уравнения на 3, получим6х – 9 = m•х + 12m +3,

6х — m•х + 12m + 12,Вынесем общий множитель за скобки, получимх•(6-m) = 12(m+1),

, 6 – m ? 0, m ? 6.так как стоит в знаменателе дроби.Ответ: , при m 6.

Уравнение 2х – 3 + m (х/3 + 4) + 1 имеет множество решений, заданных формулой при всех значениях m, кроме 6.

2. , при m 2, x 1, n 0.

mx – n = 2x – 2 + 2n + 3xn,

mx – 2x – 3xn = — 2 + 2n +n,

mx – 2x – 3xn = 3n – 2,

x (m – 2 – 3n) = 3n – 2, при m 2, x 1, n 0.

Рассмотрим случай, где a = 0, тогда

m = 3n +2, при n 0

n = .

m = 3 • + 2,

x(4 – 2 – 3 ) = 3 • — 2,

x – любое число, кроме x = 1.

б) 3n – 2 0

0 • x = b. В этом случае уравнение не имеет решений.

2) a 0

m – 2 – 3n 0

m 2 + 3n.

x = , при x ? 1,

1,

3n – 2 m – 2 – 3n,

3n + 3n 2 – 2 + m,

6n m (n )

В этом случае уравнение решений не имеет.

Значит, при n = и m = 4, x – любое число, кроме 1; при n = 0, m = 6n

(n ), m = 3n + 2 (n ), m = 2 уравнение решений не имеет. Для всех остальных значения параметров x = .

Ответ: 1. n = , m = 4 – x ? R\.

2. n = 0, m = 6n (n ), m = 3n + 2 (n ), m = 2 – решений нет.

3. n 0, m 6n, m 3n + 2, m 2 – x = .

В дальнейшем предлагается рассмотреть решение задач методом составления линейных уравнений. Это сложный процесс, где надо уметь думать, догадываться, хорошо знать фактически материал.

В процессе решения каждой задачи надо четко размечать четыре этапа:

  1. изучение условия задачи;
  2. поиск плана решения и его составление;
  3. оформление найденного решения;
  4. критический анализ результата решения.

Теперь рассмотрим задачи, при решении которых применяются линейные уравнения.

1. Сплав меди и цинка содержит меди на 640 г. Больше, чем цинка. После того, как из сплава выделили 6/7 содержащейся в нем меди и 60% цинка, масса сплава оказалась равной 200 г. Какова была масса сплава первоначально?

Пусть в сплаве было х г. цинка, тогда меди (640 + х) г. после того, как выделили 6/7 меди и 60% цинка, осталось 1/7 меди и 40% цинка, т.е. 0,4 части. Зная, что масса сплава оказалась равной 200 г., составим уравнение.

1/7 (х + 640) + 0,4•х = 200,

х + 640 + 2,8•х =1400,

Значит, цинка было 200 г., а меди 840 г.

(200 + 640 = 840). 1) 200 + 840 = 1040 (г.) – масса сплава. Ответ: первоначальная масса сплава 1040 г.

2. Сколько литров 60% серной кислоты нужно прибавить к 10 л 30% кислоты, чтобы получить 40% раствор?

Пусть число литров 60% кислоты, которое прибавим х л, тогда раствора чистой кислоты будет л. А в 10 л 30% раствора чистой кислоты будет л. Зная, что в полученных (10 + х) смеси будет чистой кислоты л, составим уравнение.

+=,

60х + 300 = 40х + 400,

60х – 40х = 400 – 300,

Значит, нужно прибавить 5 л 60% кислоты.

При изучении темы “Решение линейных уравнений” рекомендуется некоторая историческая справка.

Задачи на решение уравнений первой степени встречаются еще в вавилонских клинописных текстах. В них же есть некоторые задачи, приводящие к квадратным и даже кубическим уравнениям (последние, по-видимому, решались с помощью подбора корней). Древнегреческие математики нашли геометрическую форму решения квадратного уравнения. В геометрической же форме арабский математик Омар Хайям (конец XI – начало XII века н. э.) исследовал кубическое уравнение, хотя и не нашел общей формулы для его решения. Решение кубического уравнения было найдено в начале XVI века в Италии. После того, как Сципиан дель Ферро решил один частный вид таких уравнений в 1535 году, итальянец Тарталья нашел общую формулу. Он доказал, что корни уравнения x 3 + px + q = 0 имеют вид x =.

Это выражение обычно называют формулой Кардано, по имени ученого, узнавшего ее от Тартальи и опубликовавшего в 1545 году в своей книге “Великое искусство алгебраических правил”. Ученик Кардано – молодой математик Феррари решил общее уравнение четвертой степени. После этого на протяжении двух с половиной столетий продолжались поиски формулы для решения уравнений пятой степени. В 1823 году замечательный норвежский математик Нильс Хендрик Абель (1802-1829) доказал, что такой формулы не существует. Точнее говоря, он доказал, что корни общего уравнения пятой степени нельзя выразить через его коэффициенты с помощью арифметических действий и операций извлечения корня. Глубокое исследование вопроса об условиях разрешимости уравнений в радикалах провел французский математик Эварист Галуа (1811-1832), погибший на дуэли в возрасте 21 года. Некоторые проблемы теории Галуа решил советский алгебраист И.Т.Шафаревич.

Наряду с поисками формулы для решения уравнения пятой степени велись и другие исследования в области теории алгебраических уравнений. Виета установил связь между коэффициентами уравнений и его корнями. Он доказал, что если x1,…,xn – корни уравнения x n + a1x n-1 +…+an=0, то имеют место формулы:

Литература:

  1. Журнал “Математика в школе” 6, 1999
  2. Приложение к газете “Первое сентября”- математика 20, 1999.
  3. С.И. Туманов “Алгебра”, пособие для учащихся 6-8 классов.
  4. Н.И. Александров; И. П.Ярандай “Словарь-справочник по математике”.
  5. О.Б. Епишева; В.И. Крупич “Учить школьников учиться математике”.
  6. Е.И.Ямщенко “Изучение функций”.
  7. А.И. Худобин; М.Ф. Шуршалов “Сборник задач по алгебре и элементарным функциям”.
  8. Ш. А. Алимов, В.А. Ильин “Алгебра 6-8 классы”.

Линейные неравенства, примеры, решения

После получения начальных сведений о неравенствах с переменными, переходим к вопросу их решения. Разберем решение линейных неравенств с одной переменной и все методы для их разрешения с алгоритмами и примерами. Будут рассмотрены только линейные уравнения с одной переменной.

Что такое линейное неравенство?

В начале необходимо определить линейное уравнение и выяснить его стандартный вид и чем оно будет отличаться от других. Из школьного курса имеем, что у неравенств нет принципиального различия, поэтому необходимо использовать несколько определений.

Линейное неравенство с одной переменной x – это неравенство вида a · x + b > 0 , когда вместо > используется любой знак неравенства , ≤ , ≥ , а и b являются действительными числами, где a ≠ 0 .

Неравенства a · x c или a · x > c , с x являющимся переменной, а a и c некоторыми числами, называют линейными неравенствами с одной переменной.

Так как ничего не сказано за то, может ли коэффициент быть равным 0 , тогда строгое неравенство вида 0 · x > c и 0 · x c может быть записано в виде нестрогого, а именно, a · x ≤ c , a · x ≥ c . Такое уравнение считается линейным.

Их различия заключаются в:

  • форме записи a · x + b > 0 в первом, и a · x > c – во втором;
  • допустимости равенства нулю коэффициента a , a ≠ 0 — в первом, и a = 0 — во втором.

Считается, что неравенства a · x + b > 0 и a · x > c равносильные, потому как получены переносом слагаемого из одной части в другую. Решение неравенства 0 · x + 5 > 0 приведет к тому, что его необходимо будет решить, причем случай а = 0 не подойдет.

Считается, что линейными неравенствами в одной переменной x считаются неравенства вида a · x + b 0 , a · x + b > 0 , a · x + b ≤ 0 и a · x + b ≥ 0 , где a и b являются действительными числами. Вместо x может быть обычное число.

Исходя из правила, имеем, что 4 · x − 1 > 0 , 0 · z + 2 , 3 ≤ 0 , — 2 3 · x — 2 0 являются примерами линейных неравенств. А неравенства такого плана, как 5 · x > 7 , − 0 , 5 · y ≤ − 1 , 2 называют сводящимися к линейному.

Как решить линейное неравенство

Основным способом решения таких неравенств сводится к равносильным преобразованиям для того, чтобы найти элементарные неравенства x p ( ≤ , > , ≥ ) , p являющееся некоторым числом, при a ≠ 0 , а вида a p ( ≤ , > , ≥ ) при а = 0 .

Для решения неравенства с одной переменной, можно применять метода интервалов или изображать графически. Любой из них можно применять обособленно.

Используя равносильные преобразования

Чтобы решить линейное неравенство вида a · x + b 0 ( ≤ , > , ≥ ) , необходимо применить равносильные преобразования неравенства. Коэффициент может быть равен или не равен нулю. Рассмотрим оба случая. Для выяснения необходимо придерживаться схемы, состоящей из 3 пунктов: суть процесса, алгоритм, само решение.

Алгоритм решение линейного неравенства a · x + b 0 ( ≤ , > , ≥ ) при a ≠ 0

  • число b будет перенесено в правую часть неравенства с противоположным знаком, что позволит прийти к равносильному a · x − b ( ≤ , > , ≥ ) ;
  • будет производиться деление обеих частей неравенства на число не равное 0 . Причем , когда a является положительным, то знак остается, когда a – отрицательное, меняется на противоположный.

Рассмотрим применение данного алгоритма на решении примеров.

Решить неравенство вида 3 · x + 12 ≤ 0 .

Данное линейное неравенство имеет a = 3 и b = 12 . Значит, коэффициент a при x не равен нулю. Применим выше сказанные алгоритмы, решим.

Необходимо перенести слагаемое 12 в другую часть неравенства с изменением знака перед ним. Тогда получаем неравенство вида 3 · x ≤ − 12 . Необходимо произвести деление обеих частей на 3 . Знак не поменяется, так как 3 является положительным числом. Получаем, что ( 3 · x ) : 3 ≤ ( − 12 ) : 3 , что даст результат x ≤ − 4 .

Неравенство вида x ≤ − 4 является равносильным. То есть решение для 3 · x + 12 ≤ 0 – это любое действительное число, которое меньше или равно 4 . Ответ записывается в виде неравенства x ≤ − 4 , или числового промежутка вида ( − ∞ , − 4 ] .

Весь выше прописанный алгоритм записывается так:

3 · x + 12 ≤ 0 ; 3 · x ≤ − 12 ; x ≤ − 4 .

Ответ: x ≤ − 4 или ( − ∞ , − 4 ] .

Указать все имеющиеся решения неравенства − 2 , 7 · z > 0 .

Из условия видим, что коэффициент a при z равняется — 2 , 7 , а b в явном виде отсутствует или равняется нулю. Первый шаг алгоритма можно не использовать, а сразу переходить ко второму.

Производим деление обеих частей уравнения на число — 2 , 7 . Так как число отрицательное, необходимо поменять знак неравенства на противоположный. То есть получаем, что ( − 2 , 7 · z ) : ( − 2 , 7 ) 0 : ( − 2 , 7 ) , и дальше z 0 .

Весь алгоритм запишем в краткой форме:

− 2 , 7 · z > 0 ; z 0 .

Ответ: z 0 или ( − ∞ , 0 ) .

Решить неравенство — 5 · x — 15 22 ≤ 0 .

По условию видим, что необходимо решить неравенство с коэффициентом a при переменной x , которое равняется — 5 , с коэффициентом b , которому соответствует дробь — 15 22 . Решать неравенство необходимо, следуя алгоритму, то есть: перенести — 15 22 в другую часть с противоположным знаком, разделить обе части на — 5 , изменить знак неравенства:

— 5 · x ≤ 15 22 ; — 5 · x : — 5 ≥ 15 22 : — 5 x ≥ — 3 22

При последнем переходе для правой части используется правило деления числе с разными знаками 15 22 : — 5 = — 15 22 : 5 , после чего выполняем деление обыкновенной дроби на натурально число — 15 22 : 5 = — 15 22 · 1 5 = — 15 · 1 22 · 5 = — 3 22 .

Ответ: x ≥ — 3 22 и [ — 3 22 + ∞ ) .

Рассмотрим случай, когда а = 0 . Линейное выражение вида a · x + b 0 является неравенством 0 · x + b 0 , где на рассмотрение берется неравенство вида b 0 , после чего выясняется, оно верное или нет.

Все основывается на определении решения неравенства. При любом значении x получаем числовое неравенство вида b 0 , потому что при подстановке любого t вместо переменной x , тогда получаем 0 · t + b 0 , где b 0 . В случае, если оно верно, то для его решения подходит любое значение. Когда b 0 неверно, тогда линейное уравнение не имеет решений, потому как не имеется ни одного значения переменной, которое привело бы верному числовому равенству.

Все суждения рассмотрим в виде алгоритма решения линейных неравенств 0 · x + b 0 ( ≤ , > , ≥ ) :

Числовое неравенство вида b 0 ( ≤ , > , ≥ ) верно, тогда исходное неравенство имеет решение при любом значении, а неверно тогда, когда исходное неравенство не имеет решений.

Решить неравенство 0 · x + 7 > 0 .

Данное линейное неравенство 0 · x + 7 > 0 может принимать любое значение x . Тогда получим неравенство вида 7 > 0 . Последнее неравенство считается верным, значит любое число может быть его решением.

Найти решение неравенства 0 · x − 12 , 7 ≥ 0 .

При подстановке переменной x любого числа получим, что неравенство получит вид − 12 , 7 ≥ 0 . Оно является неверным. То есть 0 · x − 12 , 7 ≥ 0 не имеет решений.

Ответ: решений нет.

Рассмотрим решение линейных неравенств , где оба коэффициента равняется нулю.

Определить не имеющее решение неравенство из 0 · x + 0 > 0 и 0 · x + 0 ≥ 0 .

При подстановке любого числа вместо x получим два неравенства вида 0 > 0 и 0 ≥ 0 . Первое является неверным. Значит, 0 · x + 0 > 0 не имеет решений, а 0 · x + 0 ≥ 0 имеет бесконечное количество решений, то есть любое число.

Ответ: неравенство 0 · x + 0 > 0 не имеет решений, а 0 · x + 0 ≥ 0 имеет решения.

Методом интервалов

Данный метод рассматривается в школьном курсе математики. Метод интервалов способен разрешать различные виды неравенств, также и линейные.

Метод интервалов применяется для линейных неравенств при значении коэффициента x не равному 0 . Иначе придется вычислять при помощи другого метода.

Метод интервалов – это:

  • введение функции y = a · x + b ;
  • поиск нулей для разбивания области определения на промежутки;
  • определение знаков для понятия их на промежутках.

Соберем алгоритм для решения линейных уравнений a · x + b 0 ( ≤ , > , ≥ ) при a ≠ 0 с помощью метода интервалов:

  • нахождение нулей функции y = a · x + b , чтобы решить уравнение вида a · x + b = 0 . Если a ≠ 0 , тогда решением будет единственный корень, который примет обозначение х 0 ;
  • построение координатной прямой с изображением точки с координатой х 0 , при строгом неравенстве точка обозначается выколотой, при нестрогом – закрашенной;
  • определение знаков функции y = a · x + b на промежутках, для этого необходимо находить значения функции в точках на промежутке;
  • решение неравенства со знаками > или ≥ на координатной прямой добавляется штриховка над положительным промежутком, или ≤ над отрицательным промежутком.

Рассмотрим несколько примеров решения линейного неравенства при помощи метода интервалов.

Решить неравенство − 3 · x + 12 > 0 .

Из алгоритма следует, что для начала нужно найти корень уравнения − 3 · x + 12 = 0 . Получаем, что − 3 · x = − 12 , x = 4 . Необходимо изобразить координатную прямую, где отмечаем точку 4 . Она будет выколотой, так как неравенство является строгим. Рассмотрим чертеж, приведенный ниже.

Нужно определить знаки на промежутках. Чтобы определить его на промежутке ( − ∞ , 4 ) , необходимо произвести вычисление функции y = − 3 · x + 12 при х = 3 . Отсюда получим, что − 3 · 3 + 12 = 3 > 0 . Знак на промежутке является положительным.

Определяем знак из промежутка ( 4 , + ∞ ) , тогда подставляем значение х = 5 . Имеем, что − 3 · 5 + 12 = − 3 0 . Знак на промежутке является отрицательным. Изобразим на числовой прямой, приведенной ниже.

Мы выполняем решение неравенства со знаком > , причем штриховка выполняется над положительным промежутком. Рассмотрим чертеж, приведенный ниже.

Из чертежа видно, что искомое решение имеет вид ( − ∞ , 4 ) или x 4 .

Ответ: ( − ∞ , 4 ) или x 4 .

Графическим способом

Чтобы понять, как изображать графически, необходимо рассмотреть на примере 4 линейных неравенства: 0 , 5 · x − 1 0 , 0 , 5 · x − 1 ≤ 0 , 0 , 5 · x − 1 > 0 и 0 , 5 · x − 1 ≥ 0 . Их решениями будут значения x 2 , x ≤ 2 , x > 2 и x ≥ 2 . Для этого изобразим график линейной функции y = 0 , 5 · x − 1 , приведенный ниже.

  • решением неравенства 0 , 5 · x − 1 0 считается промежуток, где график функции y = 0 , 5 · x − 1 располагается ниже О х ;
  • решением 0 , 5 · x − 1 ≤ 0 считается промежуток, где функция y = 0 , 5 · x − 1 ниже О х или совпадает;
  • решением 0 , 5 · x − 1 > 0 считается промежуток, гре функция располагается выше О х ;
  • решением 0 , 5 · x − 1 ≥ 0 считается промежуток, где график выше О х или совпадает.

Смысл графического решения неравенств заключается в нахождении промежутков, которое необходимо изображать на графике. В данном случае получаем, что левая часть имеет y = a · x + b , а правая – y = 0 , причем совпадает с О х .

Алгоритм решения линейных неравенств графическим способом.

Построение графика функции y = a · x + b производится:

  • во время решения неравенства a · x + b 0 определяется промежуток, где график изображен ниже О х ;
  • во время решения неравенства a · x + b ≤ 0 определяется промежуток, где график изображается ниже оси О х или совпадает;
  • во время решения неравенства a · x + b > 0 производится определение промежутка, где график изображается выше О х ;
  • во время решения неравенства a · x + b ≥ 0 производится определение промежутка, где график находится выше О х или совпадает.

Решить неравенство — 5 · x — 3 > 0 при помощи графика.

Необходимо построить график линейной функции — 5 · x — 3 > 0 . Данная прямая является убывающей, потому как коэффициент при x является отрицательным. Для определения координат точки его пересечения с О х — 5 · x — 3 > 0 получим значение — 3 5 . Изобразим графически.

Решение неравенства со знаком > , тогда необходимо обратить внимание на промежуток выше О х . Выделим красным цветом необходимую часть плоскости и получим, что

Необходимый промежуток является частью О х красного цвета. Значит, открытый числовой луч — ∞ , — 3 5 будет решением неравенства. Если бы по условию имели нестрогое неравенство, тогда значение точки — 3 5 также являлось бы решением неравенства. И совпадало бы с О х .

Ответ: — ∞ , — 3 5 или x — 3 5 .

Графический способ решения используется, когда левая часть будет отвечать функции y = 0 · x + b , то есть y = b . Тогда прямая будет параллельна О х или совпадающей при b = 0 . Эти случаю показывают, что неравенство может не иметь решений, либо решением может быть любое число.

Определить из неравенств 0 · x + 7 = 0 , 0 · x + 0 ≥ 0 то, которое имеет хотя бы одно решение.

Представление y = 0 · x + 7 является y = 7 , тогда будет задана координатная плоскость с прямой, параллельной О х и находящейся выше О х . Значит, 0 · x + 7 = 0 решений не имеет, потому как нет промежутков.

График функции y = 0 · x + 0 , считается y = 0 , то есть прямая совпадает с О х . Значит, неравенство 0 · x + 0 ≥ 0 имеет множество решений.

Ответ: второе неравенство имеет решение при любом значении x .

Неравенства, сводящиеся к линейным

Решение неравенств можно свести к решению линейного уравнения, которые называют неравенствами, сводящимися к линейным.

Данные неравенства были рассмотрены в школьном курсе, так как они являлись частным случаем решения неравенств, что приводило к раскрытию скобок и приведению подобных слагаемых. Для примера рассмотрим, что 5 − 2 · x > 0 , 7 · ( x − 1 ) + 3 ≤ 4 · x − 2 + x , x — 3 5 — 2 · x + 1 > 2 7 · x .

Неравенства, приведенные выше, всегда приводятся к виду линейного уравнения. После чего раскрываются скобки и приводятся подобные слагаемые, переносятся из разных частей, меняя знак на противоположный.

При сведении неравенства 5 − 2 · x > 0 к линейному, представляем его таким образом, чтобы оно имело вид − 2 · x + 5 > 0 , а для приведения второго получаем, что 7 · ( x − 1 ) + 3 ≤ 4 · x − 2 + x . Необходимо раскрыть скобки, привести подобные слагаемые, перенести все слагаемые в левую часть и привести подобные слагаемые. Это выглядит таким образом:

7 · x − 7 + 3 ≤ 4 · x − 2 + x 7 · x − 4 ≤ 5 · x − 2 7 · x − 4 − 5 · x + 2 ≤ 0 2 · x − 2 ≤ 0

Это приводит решение к линейному неравенству.

Эти неравенства рассматриваются как линейные, так как имеют такой же принцип решения, после чего возможно приведение их к элементарным неравенствам.

Для решения такого вида неравенства такого вида необходимо свести его к линейному. Это следует делать таким образом:

  • раскрыть скобки;
  • слева собрать переменные, а справа числа;
  • привести подобные слагаемые;
  • разделить обе части на коэффициент при x .

Решить неравенство 5 · ( x + 3 ) + x ≤ 6 · ( x − 3 ) + 1 .

Производим раскрытие скобок, тогда получим неравенство вида 5 · x + 15 + x ≤ 6 · x − 18 + 1 . После приведения подобных слагаемых имеем, что 6 · x + 15 ≤ 6 · x − 17 . После перенесения слагаемых с левой в правую, получим, что 6 · x + 15 − 6 · x + 17 ≤ 0 . Отсюда имеет неравенство вида 32 ≤ 0 из полученного при вычислении 0 · x + 32 ≤ 0 . Видно, что неравенство неверное, значит, неравенство, данное по условию, не имеет решений.

Ответ: нет решений.

Стоит отметить, что имеется множество неравенств другого вида, которые могут сводится к линейному или неравенству вида, показанного выше. Например, 5 2 · x − 1 ≥ 1 является показательным уравнением, которое сводится к решению линейного вида 2 · x − 1 ≥ 0 . Эти случаи будут рассмотрены при решении неравенств данного вида.

Решение линейных неравенств

О чем эта статья:

Основные понятия

Алгебра не всем дается легко с первого раза. Чтобы не запутаться во всех темах и правилах, важно изучать темы последовательно и по чуть-чуть. Сегодня узнаем, как решать линейные неравенства.

Неравенство — это алгебраическое выражение, в котором используются знаки ≠, , ≤, ≥.

Линейные неравенства — это неравенства вида:

где a и b — любые числа, a ≠ 0, x — неизвестная переменная. Как решаются неравенства рассмотрим далее в статье.

Решение — значение переменной, при котором неравенство становится верным.

Решить неравенство значит найти все значения переменной, при которой неравенство верное.

Типы неравенств

  1. Строгие — используют только больше (>) или меньше ( b — это значит, что a больше, чем b.
  2. a > b и b > и

Линейные неравенства: свойства и правила

Вспомним свойства числовых неравенств:

  1. Если а > b , то b а.
  2. Если а > b и b > c, то а > c. И также если а b, то а + c > b+ c (и а – c > b – c).

Если же а b и c > d, то а + c > b + d.

Если а 8 почленно вычесть 3 > 2, получим верный ответ 9 > 6. Если из 12 > 8 почленно вычесть 7 > 2, то полученное будет неверным.

Если а d, то а – c b, m — положительное число, то mа > mb и

Обе части можно умножить или разделить на одно положительное число (знак при этом остаётся тем же).

Если же а > b, n — отрицательное число, то nа

Обе части можно умножить или разделить на одно отрицательное число, при этом знак неравенства поменять на противоположный.

  1. Если а > b и c > d, где а, b, c, d > 0, то аc > bd.

Если а 0, то аc b, где а, b > 0, то а2 > b2, и если а b, где а, b > 0, то
b» height=»45″ src=»https://lh5.googleusercontent.com/MuRDPQeqxIZvVG_mHVaktFp6nlIEEbz8zdRs1ZW8CZbZacJrS4aKzrDyhKxXpJvc35TSAgiRpqr-63sGzL9_sPU80vFhR0ZDAmSmRFZtwEldDkWRttfSGuaJJIb7xWxZDugU3xTt»>

Решением неравенства с одной переменной называется значение переменной, которое трансформирует его в верное числовое неравенство.

Чтобы упростить процесс нахождения корней неравенства, нужно провести равносильные преобразования — то заменить данное неравенство более простым. При этом все решения должны быть сохранены без возникновения посторонних корней.

Свойства выше помогут нам использовать следующие правила.

Правила линейных неравенств

  1. Любой член можно перенести из одной части в другую с противоположным знаком. Знак неравенства при этом не меняется.
  • 2x − 3 > 6 ⇒ 2x > 6 + 3 ⇒ 2x > 9.
  1. Обе части можно умножить или разделить на одно положительное число. Знак неравенства при этом не меняется.
  • Умножим обе части на пять 2x > 9 ⇒ 10x > 45.
  1. Обе части можно умножить или разделить на одно отрицательное число. Знак неравенства при этом меняется на противоположный.
  • Разделим обе части на минус два 2x > 9 ⇒ 2x : (–2) > 9 : (–2) ⇒ x

    Решение линейных неравенств

    Линейные неравенства с одной переменной x выглядят так:

    где a и b — действительные числа. А на месте x может быть обычное число.

    Равносильные преобразования

    Для решения ax + b , ≥) нужно применить равносильные преобразования неравенства. Рассмотрим два случая: когда коэффициент равен и не равен нулю.

    Алгоритм решения ax + b , ≥) является верным, когда исходное имеет решение при любом значении. Неверно тогда, когда исходное не имеет решений.

    Рассмотрим пример: 0 * x + 5 > 0.

    Как решаем:

    • Данное неравенство 0 * x + 5 > 0 может принимать любое значение x.
    • Получается верное числовое неравенство 5 > 0. Значит его решением может быть любое число.

    Метод интервалов

    Метод интервалов можно применять для линейных неравенств, когда значение коэффициента x не равно нулю.

    Метод интервалов заключается в следующем:

    • вводим функцию y = ax + b;
    • ищем нули для разбиения области определения на промежутки;
    • отмечаем полученные корни на координатной прямой;
    • определяем знаки и отмечаем их на интервалах.

    Алгоритм решения ax + b , ≥) при a ≠ 0 с использованием метода интервалов:

    • найдем нули функции y = ax + b для решения уравнения ax + b = 0.

    Если a ≠ 0, тогда решением будет единственный корень — х₀;

    • начертим координатную прямую с изображением точки с координатой х₀, при строгом неравенстве точку рисуем выколотой, при нестрогом — закрашенной;
    • определим знаки функции y = ax + b на промежутках.

    Для этого найдем значения функции в точках на промежутке;

      если решение неравенства со знаками > или ≥ — добавляем штриховку над положительным промежутком на координатной прямой, если 0.

    Как решаем:

    В соответствии с алгоритмом, сначала найдем корень уравнения − 6x + 12 = 0,

    Изобразим координатную прямую с отмеченной выколотой точкой, так как неравенство является строгим.

    Определим знаки на промежутках.

    Чтобы определить на промежутке (−∞, 2), необходимо вычислить функцию y = −6x + 12 при х = 1. Получается, что −6 * 1 + 12 = 6, 6 > 0. Знак на промежутке является положительным.

    Определяем знак на промежутке (2, + ∞) , тогда подставляем значение х = 3. Получится, что −6 * 3 + 12 = − 6, − 6

    Графический способ

    Смысл графического решения неравенств заключается в том, чтобы найти промежутки, которые необходимо изобразить на графике.

    Алгоритм решения y = ax + b графическим способом

    • во время решения ax + b 0 определить промежуток, где график изображается выше Ох;
    • во время решения ax + b ≥ 0 определить промежуток, где график находится выше оси Ох или совпадает.

    Рассмотрим пример: −5 * x − √3 > 0.

    Как решаем

    • Так как коэффициент при x отрицательный, данная прямая является убывающей.
    • Координаты точки пересечения с Ох равны (−√3 : 5; 0).
    • Неравенство имеет знак >, значит нужно обратить внимание на промежуток выше оси Ох.
    • Поэтому открытый числовой луч (−∞, −√3 : 5) будет решением.

    Ответ: (−∞, −√3 : 5) или x


    источники:

    http://zaochnik.com/spravochnik/matematika/systems/linejnye-neravenstva-primery-reshenija/

    http://skysmart.ru/articles/mathematic/linejnye-neravenstva