Уравнения и неравенства это алгебра или геометрия

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок № 1. Повторение 7-9. Числовые и алгебраические выражения. Линейные уравнения и неравенства

Перечень вопросов, рассматриваемых в теме.

  1. обобщение и систематизация знаний по алгебре 7-9;
  2. повтор арифметики алгебраических выражений;
  3. решение линейных уравнений и неравенств;
  4. решение систем линейных уравнений и неравенств.

1. Колягин Ю. М., Ткачева М. В., Фёдорова Н. Е. и др. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс. Базовый и углублённый уровни.

2. Ткачева М. В., Федорова Н. Е. Алгебра и начала математического анализа. Тематические тесты. 10 класс. Базовый и профильный уровни

1. Шабунин М. И., Ткачева М. В., Фёдорова Н. Е. и др. Алгебра и начала математического анализа. Дидактические материалы. 10 класс. Профильный уровень.

2. Галицкий М. Л., Гольдман А. М., Звавич Л. И. Сборник задач по алгебре для 8-9 классов. Учеб. пособие для учащихся школ и классов с углубленным изучением математики. М.: Просвещение, 2000.

Открытые электронные ресурсы:

1. Федеральный институт педагогических измерений. http://www.fipi.ru

Все выражения можно разбить на два класса на основании наличия переменных: числовые выражения и выражения с переменными.

Логическая задача на классификацию

Основание для классификации: наличие переменных

Выражения с переменными

Для числовых выражений можно находить значение – результат всех выполненных действий. Для выражений с переменными можно также находить значение при некоторых значениях переменных, предварительно упростив его, например, с помощью свойств, правил, формул сокращенного умножения.

Найдите значение выражения при a=0,01 и b=12:

2)

3)

2);

3)

3b-2a-3b=-2a-2a=-0,02

2.Линейное уравнение с одним неизвестным

Линейное уравнение с одним неизвестным – это уравнение вида ax=b, где a и b – заданные числа, x – неизвестное

Решить уравнение – это значит найти все его корни или установить, что корней нет

Основные свойства уравнений

Любой член уравнения можно перенести из одной части в другую, изменив его знак на противоположный.

Решение уравнения ax=b,где a и b – числа, x – переменная

Если a≠0, b – любое число, то .

Если a=0, b≠0, то нет корней.

Обе части уравнения можно умножить или разделить на одно и то же число, не равное нулю.

1) ,

1),

Решим уравнение 2).

По определению модуля числа имеем 5x+7=±2.

Таким образом, либо 5x+7=2, откуда x=-1, либо 5x+7=-2, откуда x=-1,8. Получаем ответ: -1; -1,8.

Решение уравнения ax=b,где a и b – числа, x – переменная

Если a≠0, b – любое число, то .

Если a=0, b≠0, то нет корней.

Если a=0, b=0, то x – любое число.

Линейное уравнение с параметрами

Решите уравнение (5x+7)n=x-m, где m и n – некоторые числа, x – неизвестное

1)Если 5n-1≠0, то есть n≠0,2, то . Используя основное свойство дроби, получаем, что .

2)Если 5n-1=0, то есть n=0,2, то уравнение примет вид 0∙x=-m-1,4;

Тогда при m=-1,4 корнем уравнения будет любое число,

при m≠-1,4 уравнение не имеет корней.

Рассмотрим задачу 1.

От пристани А до пристани В катер плывет по реке 15 минут, а обратно 20 минут. Найти скорость течения реки, если собственная скорость катера 14 км/ч.

Для ее решения необходимо:

1.Провести ориентировку в тексте задачи.

1.1.Проанализировать условие и выявить данные (известные, дополнительные, скрытые).

1.2.Проанализировать вопрос задачи и выявить искомое.

1.3.Определить связи одноуровневые и межуровневые между данными и искомым.

1.4.Построить графическую схему, например, таблицу.

1.5.Установить в ней место искомого.

2.Спланировать способ решения задачи.

2.1.Подобрать метод, например, алгебраический.

2.3.Подобрать действия для решения составленной математической модели.

3.Исполнить намеченный план решения и найти искомое.

4.Провести самоконтроль решения задачи, проверив, что найденное искомое не противоречит условию задачи.

5.Провести самооценку решения задачи.

6.Провести самокоррекцию выполненного решения задачи, если есть в том необходимость.

1 способ: Провести повторное решение задачи от начала до конца.

2 способ: Провести дополнительную деятельность для того, чтобы ответить на вопрос задачи.

3 способ: Решить задачу другим способом.

удовлетворяет условию

3.Системы линейных уравнений с двумя неизвестными

Система двух уравнений первой степени с двумя неизвестными – это система вида

где x и y – неизвестные,

– заданные числа,

причем и .

Решение системы двух уравнений с двумя неизвестными – это пара чисел x и y, которые при подстановке в эту систему обращают каждое ее уравнение в верное числовое равенство.

Решить систему уравнений – это значит найти все ее решения или установить, что их нет.

Способы решения систем уравнений: способ подстановки и способ сложения.

Решите систему способом подстановки

Для этого необходимо:

1.Выразить одну переменную через другую из какого-либо уравнения.

2.Подставить полученное выражение вместо выраженной переменной в другое уравнение.

3.Решить полученное уравнение относительно одной переменной.

4.Найти значение другой переменной, подставив найденный корень в формулу пункта 1.

5.Записать решение системы.

(1;2) – решение системы

Решите систему способом сложения

Для этого необходимо:

1.Домножить какое-либо уравнение системы или оба уравнения на такие числа, чтобы при почленном сложении уравнений получить уравнение относительно одной переменной.

2.Решить уравнение, полученное после почленного сложения.

3.Подставить найденный корень в какое-либо уравнение исходной системы.

4.Решить составленное уравнение.

5.Записать решение системы.

(3;-1) – решение системы

Решение системы двух линейных уравнений с двумя неизвестными

Если , то система имеет единственное решение.

Если то система не имеет решений.

Если , то система имеет бесконечно много решений.

Система линейных уравнений с параметром

Решите систему уравнений с параметром a:

Решим систему способом подстановки. Выразим y из первого уравнения системы: . Подставим выражение вместо y во второе уравнение системы:
(a-3)x+a((a+1)x-a)=-9 .

Решим полученное уравнение относительно x:
.

1. Если , то есть , то система имеет единственное решение. Найдем это решение: После сокращения получаем: . Найдем соответствующее значение y, подставив вместо x в формулу
. Получим . Итак, если , то – решение системы.

2. Если и , то есть a=-3, то система имеет бесконечно много решений. Найдем в этом случае решения системы. Для этого подставим a=-3 в первое уравнение системы. Получим уравнение -2x-y=-3, из которого выразим y: y=3-2x. Значит, (x;3-2x), где x – любое число, — решения системы.

3. Если и , то есть a=1, то система не имеет решений.

Ответ: Если , то – решение системы;

если a=-3, то (x;3-2x), где x – любое число, — решения системы;

если a=1, то система не имеет решений.

4.Решение линейных неравенств с одним неизвестным

Неравенство первой степени с одним неизвестными – это неравенство вида ax b / ax≤b / ax ≥b, где a и b – заданные числа, x – неизвестное.

Решение неравенства с одним неизвестным – это то значение неизвестного, при котором это неравенство обращается в верное числовое неравенство.

Решить неравенство – это значит найти все его решения или установить, что их нет.

Правило решения неравенства первой степени с одним неизвестным

1.Перенести с противоположными знаками члены, содержащие неизвестное, из правой части в левую, а не содержащие неизвестное – из левой части в правую.

2.Привести подобные члены в левой и правой частях неравенства.

3.Если коэффициент при неизвестном отличен от нуля, то разделить на него обе части неравенства.

5.Системы линейных неравенств с одним неизвестным

Решение системы неравенств с одним неизвестным – это значение неизвестного, при котором все неравенства системы обращаются в верные числовые неравенства.

Решить неравенство 2x-8 3.

Решение неравенства ax 0, то

Если a 0, то x – любое число

Если a=0, b≤0, то решений нет

Линейное неравенство с параметром

Решите неравенство с параметром a:

ax 0, то

Если a 0, то ; если a 0, 2x>6, x>3.

Решим второе неравенство системы:

4x-20 b / ax≤b / ax ≥b, где a и b – заданные числа, x – неизвестное.

Система двух уравнений первой степени с двумя неизвестными – это система вида

где x и y – неизвестные,

– заданные числа,

причем и .

Алгебра. Урок 8. Неравенства, системы неравенств.

Смотрите бесплатные видео-уроки по теме “Неравенства” на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Неравенства
  • Линейные неравенства

Неравенства

Что такое неравенство? Если взять любое уравнение и знак = поменять на любой из знаков неравенства:

≥ больше или равно,

≤ меньше или равно,

то получится неравенство.

Линейные неравенства

Линейные неравенства – это неравенства вида:

a x b a x ≤ b a x > b a x ≥ b

где a и b – любые числа, причем a ≠ 0, x – переменная.

Примеры линейных неравенств:

3 x 5 x − 2 ≥ 0 7 − 5 x 1 x ≤ 0

Решить линейное неравенство – получить выражение вида:

x c x ≤ c x > c x ≥ c

где c – некоторое число.

Последний шаг в решении неравенства – запись ответа. Давайте разбираться, как правильно записывать ответ.

  • Если знак неравенства строгий > , , точка на оси будет выколотой (не закрашенной), а скобка, обнимающая точку – круглой .

Смысл выколотой точки в том, что сама точка в ответ не входит.

  • Если знак неравенства нестрогий ≥ , ≤ , точка на оси будет жирной (закрашенной), а скобка, обнимающая точку – квадратной .

Смысл жирной точки в том, что сама точка входит в ответ.

  • Скобка, которая обнимает знак бесконечности всегда круглая – не можем мы объять необъятное, как бы нам этого ни хотелось.

Таблица числовых промежутков

НеравенствоГрафическое решениеФорма записи ответа
x cx ∈ ( − ∞ ; c )
x ≤ cx ∈ ( − ∞ ; c ]
x > cx ∈ ( c ; + ∞ )
x ≥ c

Алгоритм решения линейного неравенства

  1. Раскрыть скобки (если они есть), перенести иксы в левую часть, числа в правую и привести подобные слагаемые. Должно получиться неравенство одного из следующих видов:

a x b a x ≤ b a x > b a x ≥ b

  1. Пусть получилось неравенство вида a x ≤ b. Для того, чтобы его решить, необходимо поделить левую и правую часть неравенства на коэффициент a.
  • Если a > 0 то неравенство приобретает вид x ≤ b a .
  • Если a 0 , то знак неравенства меняется на противоположный , неравенство приобретает вид x ≥ b a .
  1. Записываем ответ в соответствии с правилами, указанными в таблице числовых промежутков.

Примеры решения линейных неравенств:

№1. Решить неравенство 3 ( 2 − x ) > 18.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

− 3 x > 18 − 6 − 3 x > 12 | ÷ ( − 3 )

Делим обе части неравенства на ( -3 ) – коэффициент, который стоит перед x . Так как − 3 0 , знак неравенства поменяется на противоположный . x 12 − 3 ⇒ x − 4 Остается записать ответ (см. таблицу числовых промежутков).

Ответ: x ∈ ( − ∞ ; − 4 )

№2. Решить неравество 6 x + 4 ≥ 3 ( x + 1 ) − 14.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 x + 4 ≥ 3 x + 3 − 14

6 x − 3 x ≥ 3 − 14 − 4

3 x ≥ − 15 | ÷ 3 Делим обе части неравенства на ( 3 ) – коэффициент, который стоит перед x . Так как 3 > 0, знак неравенства после деления меняться не будет.

x ≥ − 15 3 ⇒ x ≥ − 5 Остается записать ответ (см. таблицу числовых промежутков).

Особые случаи (в 14 задании ОГЭ 2019 они не встречались, но знать их полезно).

№1. Решить неравенство 6 x − 1 ≤ 2 ( 3 x − 0,5 ).

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 x − 6 x ≤ − 1 + 1

Получили верное неравенство, которое не зависит от переменной x . Возникает вопрос, какие значения может принимать переменная x , чтобы неравенство выполнялось? Любые! Какое бы значение мы ни взяли, оно все равно сократится и результат неравенства будет верным. Рассмотрим три варианта записи ответа.

Ответ:

  1. x – любое число
  2. x ∈ ( − ∞ ; + ∞ )
  3. x ∈ ℝ

№2. Решить неравенство x + 3 ( 2 − 3 x ) > − 4 ( 2 x − 12 ).

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

x + 6 − 9 x > − 8 x + 48

− 8 x + 8 x > 48 − 6

Получили неверное равенство, которое не зависит от переменной x . Какие бы значения мы ни подставляли в исходное неравенство, результат окажется одним и тем же – неверное неравенство. Ни при каких значениях x исходное неравенство не станет верным. Данное неравенство не имеет решений. Запишем ответ.

Квадратные неравенства

Квадратные неравенства – это неравенства вида: a x 2 + b x + c > 0 a x 2 + b x + c ≥ 0 a x 2 + b x + c 0 a x 2 + b x + c ≤ 0 где a, b, c — некоторые числа, причем a ≠ 0, x — переменная.

Существует универсальный метод решения неравенств степени выше первой (квадратных, кубических, биквадратных и т.д.) – метод интервалов. Если его один раз как следует осмыслить, то проблем с решением любых неравенств не возникнет.

Для того, чтобы применять метод интервалов для решения квадратных неравенств, надо уметь хорошо решать квадратные уравнения (см. урок 4).

Алгоритм решения квадратного неравенства методом интервалов

  1. Решить уравнение a x 2 + b x + c = 0 и найти корни x 1 и x 2 .
  1. Отметить на числовой прямой корни трехчлена.

Если знак неравенства строгий > , , точки будут выколотые.

Если знак неравенства нестрогий ≥ , ≤ , точки будут жирные (заштрихованный).

  1. Расставить знаки на интервалах. Для этого надо выбрать точку из любого промежутка (в примере взята точка A ) и подставить её значение в выражение a x 2 + b x + c вместо x .

Если получилось положительное число, знак на интервале плюс. На остальных интервалах знаки будут чередоваться.

Точки выколотые, если знак неравенства строгий.

Точки жирные, если знак неравенства нестрогий.

Если получилось отрицательное число, знак на интервале минус. На остальных интервалах знаки будут чередоваться.

Точки выколотые, если знак неравенства строгий.

Точки жирные, если знак неравенства нестрогий.

  1. Выбрать подходящие интервалы (или интервал).

Если знак неравенства > или ≥ в ответ выбираем интервалы со знаком +.

Если знак неравенства или ≤ в ответ выбираем интервалы со знаком -.

Примеры решения квадратных неравенств:

№1. Решить неравенство x 2 ≥ x + 12.

Решение:

Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

a = 1, b = − 1, c = − 12

D = b 2 − 4 a c = ( − 1 ) 2 − 4 ⋅ 1 ⋅ ( − 12 ) = 1 + 48 = 49

D > 0 ⇒ будет два различных действительных корня

x 1,2 = − b ± D 2 a = − ( − 1 ) ± 49 2 ⋅ 1 = 1 ± 7 2 = [ 1 + 7 2 = 8 2 = 4 1 − 7 2 = − 6 2 = − 3

Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 6 . Подставляем эту точку в исходное выражение:

x 2 − x − 1 = 6 2 − 6 − 1 = 29 > 0

Это значит, что знак на интервале, в котором лежит точка 6 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

В ответ пойдут два интервала. В математике для объединения нескольких интервалов используется знак объединения: ∪ .

Точки -3 и 4 будут в квадратных скобках, так как они жирные.

Ответ: x ∈ ( − ∞ ; − 3 ] ∪ [ 4 ; + ∞ )

№2. Решить неравенство − 3 x − 2 ≥ x 2 .

Решение:

Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

a = − 1, b = − 3, c = − 2

D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ ( − 2 ) = 9 − 8 = 1

D > 0 ⇒ будет два различных действительных корня

x 1,2 = − b ± D 2 a = − ( − 3 ) ± 1 2 ⋅ ( − 1 ) = 3 ± 1 − 2 = [ 3 + 1 − 2 = 4 − 2 = − 2 3 − 1 − 2 = 2 − 2 = − 1

x 1 = − 2, x 2 = − 1

Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0 . Подставляем эту точку в исходное выражение:

− x 2 − 3 x − 2 = − ( 0 ) 2 − 3 ⋅ 0 − 2 = − 2 0

Это значит, что знак на интервале, в котором лежит точка 0 будет − .

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

Поскольку знак неравенства ≥ , выбираем в ответ интервал со знаком +.

Точки -2 и -1 будут в квадратных скобках, так как они жирные.

Ответ: x ∈ [ − 2 ; − 1 ]

№3. Решить неравенство 4 x 2 + 3 x .

Решение:

Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

a = − 1, b = − 3, c = 4

D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ 4 = 9 + 16 = 25

D > 0 ⇒ будет два различных действительных корня

x 1,2 = − b ± D 2 a = − ( − 3 ) ± 25 2 ⋅ ( − 1 ) = 3 ± 5 − 2 = [ 3 + 5 − 2 = 8 − 2 = − 4 3 − 5 − 2 = − 2 − 2 = 1

Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение:

− x 2 − 3 x + 4 = − ( 2 ) 2 − 3 ⋅ 2 + 4 = − 6 0

Это значит, что знак на интервале, в котором лежит точка 2 , будет -.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

Поскольку знак неравенства , выбираем в ответ интервалы со знаком − .

Точки -4 и 1 будут в круглых скобках, так как они выколотые.

Ответ: x ∈ ( − ∞ ; − 4 ) ∪ ( 1 ; + ∞ )

№4. Решить неравенство x 2 − 5 x 6.

Решение:

Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

a = 1, b = − 5, c = − 6

D = b 2 − 4 a c = ( − 5 ) 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 25 + 25 = 49

D > 0 ⇒ будет два различных действительных корня

x 1,2 = − b ± D 2 a = − ( − 5 ) ± 49 2 ⋅ 1 = 5 ± 7 2 = [ 5 + 7 2 = 12 2 = 6 5 − 7 2 = − 2 2 = − 1

Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 10. Подставляем эту точку в исходное выражение:

x 2 − 5 x − 6 = 10 2 − 5 ⋅ 10 − 6 = 100 − 50 − 6 = 44 > 0

Это значит, что знак на интервале, в котором лежит точка 10 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

Поскольку знак неравенства , выбираем в ответ интервал со знаком -.

Точки -1 и 6 будут в круглых скобках, так как они выколотые

Ответ: x ∈ ( − 1 ; 6 )

№5. Решить неравенство x 2 4.

Решение:

Переносим 4 в левую часть, раскладываем выражение на множители по ФСУ и находим корни уравнения.

( x − 2 ) ( x + 2 ) = 0 ⇔ [ x − 2 = 0 x + 2 = 0 [ x = 2 x = − 2

Наносим точки на ось x . Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 3 . Подставляем эту точку в исходное выражение:

x 2 − 4 = 3 2 − 4 = 9 − 4 = 5 > 0

Это значит, что знак на интервале, в котором лежит точка 3 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

Поскольку знак неравенства , выбираем в ответ интервал со знаком − .

Точки -2 и 2 будут в круглых скобках, так как они выколотые.

Ответ: x ∈ ( − 2 ; 2 )

№6. Решить неравенство x 2 + x ≥ 0.

Решение:

Выносим общий множитель за скобку, находим корни уравнения x 2 + x = 0.

x ( x + 1 ) = 0 ⇔ [ x = 0 x + 1 = 0 [ x = 0 x = − 1

Наносим точки на ось x . Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 1 . Подставляем эту точку в исходное выражение:

x 2 + x = 1 2 + 1 = 2 > 0

Это значит, что знак на интервале, в котором лежит точка 1 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

Поскольку знак неравенства ≥ , выбираем в ответ интервалы со знаком +.

В ответ пойдут два интервала. Точки -1 и 0 будут в квадратных скобках, так как они жирные.

Ответ: x ∈ ( − ∞ ; − 1 ] ∪ [ 0 ; + ∞ )

Вот мы и познакомились с методом интервалов. Он нам еще пригодится при решении дробно рациональных неравенств, речь о которых пойдёт ниже.

Дробно рациональные неравенства

Дробно рациональное неравенство – это неравенство, в котором есть дробь, в знаменателе которой стоит переменная, т.е. неравенство одного из следующих видов:

f ( x ) g ( x ) 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

Дробно рациональное неравенство не обязательно сразу выглядит так. Иногда, для приведения его к такому виду, приходится потрудиться (перенести слагаемые в левую часть, привести к общему знаменателю).

Примеры дробно рациональных неравенств:

x − 1 x + 3 0 3 ( x + 8 ) ≤ 5 x 2 − 1 x > 0 x + 20 x ≥ x + 3

Как же решать эти дробно рациональные неравенства? Да всё при помощи того же всемогущего метода интервалов.

Алгоритм решения дробно рациональных неравенств:

  1. Привести неравенство к одному из следующих видов (в зависимости от знака в исходном неравенстве):

f ( x ) g ( x ) 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

  1. Приравнять числитель дроби к нулю f ( x ) = 0. Найти нули числителя .
  1. Приравнять знаменатель дроби к нулю g ( x ) = 0. Найти нули знаменателя .

В этом пункте алгоритма мы будем делать всё то, что нам запрещали делать все 9 лет обучения в школе – приравнивать знаменатель дроби к нулю. Чтобы как-то оправдать свои буйные действия, полученные точки при нанесении на ось x будем всегда рисовать выколотыми, вне зависимости от того, какой знак неравенства.

  1. Нанести нули числителя и нули знаменателя на ось x .

Вне зависимости от знака неравенства
при нанесении на ось x нули знаменателя всегда выколотые .

Если знак неравенства строгий ,
при нанесении на ось x нули числителя выколотые .

Если знак неравенства нестрогий ,
при нанесении на ось x нули числителя жирные .

  1. Расставить знаки на интервалах.
  1. Выбрать подходящие интервалы и записать ответ.

Примеры решения дробно рациональных неравенств:

№1. Решить неравенство x − 1 x + 3 > 0.

Решение:

Будем решать данное неравенство в соответствии с алгоритмом.

  1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду f ( x ) g ( x ) > 0.
  1. Приравниваем числитель к нулю f ( x ) = 0.

x = 1 — это ноль числителя . Поскольку знак неравенства строгий, ноль числителя при нанесени на ось x будет выколотым. Запомним это.

  1. Приравниваем знаменатель к нулю g ( x ) = 0.

x = − 3 — это ноль знаменателя . При нанесении на ось x точка будет всегда выколотой (вне зависимости от знака неравенства) .

  1. Наносим нули числителя и нули знаменателя на ось x .

При нанесении нулей числителя обращаем внимание на знак неравенства. В данном случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя выколоты всегда.

  1. Расставляем знаки на интервалах.

Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) : x − 1 x + 3 = 2 − 1 2 + 3 = 1 5 > 0,

Это значит, что знак на интервале, в котором лежит точка 2 будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

  1. Выбираем подходящие интервалы и записываем ответ.

Поскольку знак неравенства > , выбираем в ответ интервалы со знаком +.

В ответ пойдут два интервала. Точки -3 и 1 будут в круглых скобках, так как обе они выколотые.

Ответ: x ∈ ( − ∞ ; − 3 ) ∪ ( 1 ; + ∞ )

№2. Решить неравенство 3 ( x + 8 ) ≤ 5.

Решение:

Будем решать данное неравенство в соответствии с алгоритмом.

  1. Привести неравенство к виду f ( x ) g ( x ) ≤ 0.

3 ( x + 8 ) − 5 \ x + 8 ≤ 0

3 x + 8 − 5 ( x + 8 ) x + 8 ≤ 0

3 − 5 ( x + 8 ) x + 8 ≤ 0

3 − 5 x − 40 x + 8 ≤ 0

− 5 x − 37 x + 8 ≤ 0

  1. Приравнять числитель к нулю f ( x ) = 0.

x = − 37 5 = − 37 5 = − 7,4

x = − 7,4 — ноль числителя . Поскольку знак неравенства нестрогий, при нанесении этой точки на ось x точка будет жирной.

  1. Приравнять знаменатель к нулю g ( x ) = 0.

x = − 8 — это ноль знаменателя . При нанесении на ось x , точка будет всегда выколотой (вне зависимости от знака неравенства).

  1. Наносим нули числителя и нули знаменателя на ось x .

При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства нестрогий, значит нули числителя будут жирными. Ну а нули знаменателя выколоты всегда.

  1. Расставляем знаки на интервалах.

Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) :

− 5 x − 37 x + 8 = − 5 ⋅ 0 − 37 0 + 8 = − 37 8 0

Это значит, что знак на интервале, в котором лежит точка 0 будет -.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

  1. Выбираем подходящие интервалы и записываем ответ.

Поскольку знак неравенства ≤ , выбираем в ответ интервалы со знаком -.

В ответ пойдут два интервала. Точка -8 будет в круглой скобке, так как она выколотая, точка -7,4 будет в квадратных скобках, так как она жирная.

Ответ: x ∈ ( − ∞ ; − 8 ) ∪ [ − 7,4 ; + ∞ )

№3. Решить неравенство x 2 − 1 x > 0.

Решение:

Будем решать данное неравенство в соответствии с алгоритмом.

  1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду f ( x ) g ( x ) > 0.
  1. Приравнять числитель к нулю f ( x ) = 0.

( x − 1 ) ( x + 1 ) = 0 ⇒ [ x − 1 = 0 x + 1 = 0 [ x = 1 x = − 1

x 1 = 1, x 2 = − 1 — нули числителя . Поскольку знак неравенства строгий, при нанесении этих точек на ось x точки будут выколотыми.

  1. Приравнять знаменатель к нулю g ( x ) = 0.

x = 0 — это ноль знаменателя . При нанесении на ось x , точка будет всегда выколотой (вне зависимости от знака неравенства).

  1. Наносим нули числителя и нули знаменателя на ось x .

При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя и так выколоты всегда.

  1. Расставляем знаки на интервалах.

Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2 . Подставляем эту точку в исходное выражение f ( x ) g ( x ) :

x 2 − 1 x = 2 2 − 1 2 = 4 − 1 2 = 3 2 > 0, Это значит, что знак на интервале, в котором лежит точка 2, будет +.

Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

  1. Выбираем подходящие интервалы и записываем ответ.

Поскольку знак неравенства > , выбираем в ответ интервалы со знаком +.

В ответ пойдут два интервала. Все точки будут в круглых скобках, так как они выколотые.

Ответ: x ∈ ( − 1 ; 0 ) ∪ ( 1 ; + ∞ )

Системы неравенств

Системой неравенств называют два неравенства с одной неизвестной, которые объединены в общую систему фигурной скобкой.

Пример системы неравенств:

Алгоритм решения системы неравенств

  1. Решить первое неравенство системы, изобразить его графически на оси x .
  1. Решить второе неравенство системы, изобразить его графически на оси x .
  1. Нанести решения первого и второго неравенств на ось x .
  1. Выбрать в ответ те участки, в которых решение первого и второго неравенств пересекаются. Записать ответ.

Примеры решений систем неравенств:

№1. Решить систему неравенств < 2 x − 3 ≤ 5 7 − 3 x ≤ 1

Решение:

Будем решать данную систему неравенств в соответствии с алгоритмом.

  1. Решаем первое неравенство системы.

2 x ≤ 8 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.

Точка 4 на графике жирная, так как знак неравенства нестрогий.

  1. Решаем второе неравенство системы.

− 3 x ≤ − 6 | ÷ ( − 3 ), поскольку − 3 0, знак неравенства после деления меняется на противоположный.

Графическая интерпретация решения:

Точка 2 на графике жирная, так как знак неравенства нестрогий.

  1. Наносим оба решения на ось x .
  1. Выбираем подходящие участки и записываем ответ.

Пересечение решений наблюдается на отрезке от 2 до 4 . Точки 2 и 4 в ответе буду в квадратных скобках, так как обе они жирные.

№2. Решить систему неравенств < 2 x − 1 ≤ 5 1 − 3 x − 2

Решение:

Будем решать данную систему неравенств в соответствии с алгоритмом.

  1. Решаем первое неравенство системы.

2 x ≤ 6 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.

Точка 3 на графике жирная, так как знак неравенства нестрогий.

  1. Решаем второе неравенство системы.

3 x − 3 | ÷ 3 , поскольку 3 > 0, знак неравенства после деления сохраняется.

Графическая интерпретация решения:

Точка -1 на графике выколотая, так как знак неравенства строгий.

  1. Наносим оба решения на ось x .
  1. Выбираем подходящие участки и записываем ответ.

Пересечение решений наблюдается на самом левом участке. Точка -1 будет в ответе в круглых скобках, так как она выколотая.

Ответ: x ∈ ( − ∞ ; − 1 )

№3. Решить систему неравенств < 3 x + 1 ≤ 2 x x − 7 >5 − x

Решение:

Будем решать данную систему неравенств в соответствии с алгоритмом.

  1. Решаем первое неравенство системы.

Графическая интерпретация решения:

  1. Решаем второе неравенство системы

2 x > 12 | ÷ 2 , поскольку 2 > 0, знак неравенства после деления сохраняется.

Графическая интерпретация решения:

  1. Наносим оба решения на ось x .
  1. Выбираем подходящие участки и записываем ответ.

Пересечений решений не наблюдается. Значит у данной системы неравенств нет решений.

№4. Решить систему неравенств < x + 4 >0 2 x + 3 ≤ x 2

Решение:

Будем решать данную систему неравенств в соответствии с алгоритмом.

  1. Решаем первое неравенство системы.

Графическая интерпретация решения первого неравенства:

  1. Решаем второе неравенство системы

Решаем методом интервалов.

a = − 1, b = 2, c = 3

D = b 2 − 4 a c = 2 2 − 4 ⋅ ( − 1 ) ⋅ 3 = 4 + 12 = 16

D > 0 — два различных действительных корня.

x 1,2 = − b ± D 2 a = − 2 ± 16 2 ⋅ ( − 1 ) = − 2 ± 4 − 2 = [ − 2 − 4 − 2 = − 6 − 2 = 3 − 2 + 4 − 2 = 2 − 2 = − 1

Наносим точки на ось x и расставляем знаки на интервалах. Поскольку знак неравенства нестрогий, обе точки будут заштрихованными.

Графическая интерпретация решения второго неравенства:

  1. Наносим оба решения на ось x .
  1. Выбираем подходящие участки и записываем ответ.

Пересечение решений наблюдается в двух интервалах. Для того, чтобы в ответе объединить два интервала, используется знак объединения ∪ .

Точка -4 будет в круглой скобке, так как она выколотая, а точки -1 и 3 в квадратных, так как они жирные.

Математическое пособие «Уравнения и неравенства»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Математическое пособие

Уравнения и неравенства

Методические указания

Пособие по данной теме, является наглядным, позволяет систематизировать знания учащихся. Все темы подробно разобраны (поэтапно). Материал служит как в качестве изучения темы с «нуля», так и в качестве вспомогательного материала. Включает в себя разобранные примеры, задания для самостоятельной работы (закрепления знаний).

Уравнения и неравенства– важнейшие понятия математики.

В большинстве практических и научных задач, где какую-то величину непосредственно нельзя измерить или вычислить по готовой формуле, удается составить соотношение, которым она удовлетворяет. Так получают уравнения и неравенства для определения неизвестных величины, которые каждый должен уметь решать.

Решение уравнений и неравенств

Уравнение – это два выражения, соединенные знаком равенства; в эти выражения входят одна или несколько переменных, называемых неизвестными.

Значения переменных, которые обращают уравнение в верное числовое равенство, называются корнями или решениями уравнения. Решить уравнение – значит найти все его корни или установить, что корней нет.

Обычный путь решения уравнения состоит в том, что с помощью преобразований его сводят к более простым уравнениям.

Два уравнения называются равносильными , если каждое решение первого уравнения есть решение второго и наоборот, каждое решение второго есть решение первого. Перечислим преобразования, приводящие данное уравнение к равносильному ему уравнению:

Если к обеим частям уравнения прибавить одно и то же выражение, то получится уравнение, равносильное данному.

Если обе части уравнения умножить или разделить на одно и то же выражение, которое не обращается в нуль ни при каких значениях переменных, то получится уравнение, равносильное данному.

Уравнение с одной переменной называется линейным , если переменная входит в уравнение не выше, чем в первой степени.

Пример: 1) х +8( х –2)=2 х –3 – линейное уравнение;

2) х 3 – х 2 +3 х –4=–3 х +5 – не является линейным.

Стандартный вид линейного уравнения с одной переменной:

Для решения уравнения переносим слагаемое, не содержащее переменную вправо и делим обе части уравнения на коэффициент при неизвестном:

.

Для решения любого линейного уравнения нужно привести его к стандартному виду.

Пример: Решить уравнение:

Приведем уравнение к виду (*), для чего раскроем скобки и перенесем все члены уравнения влево

Приведем подобные члены

Перенесем слагаемое, не содержащее переменную вправо и поделим обе части уравнения на коэффициент при х , на (–3)

– 3 х =4  .

Ответ: .

Приведем уравнение к стандартному виду (*)

Перенесем слагаемое, не содержащее переменную вправо и поделим обе части уравнения на коэффициент при х на (–11)

х =1.

приведем все дроби к общему знаменателю

Это уравнение не является линейным, но его можно свести к решению нескольких линейных уравнений. Разложим левую часть уравнения на множители, для чего сгруппируем 1-е и 2-е слагаемые и 3-е и 4-е слагаемые.

вынесем х из первого слагаемого и (–2) из второго

вынесем ( х 2 –1) за скобки

разложим первый сомножитель на множители, используя формулу разности квадратов

Произведение равно нулю, когда хотя бы одно из сомножителей равно нулю:

Таким образом, решение уравнения свелось к решению трех линейных уравнений, находим корень каждого из этих уравнений:

Рассмотрим пример решения уравнения с параметром (то есть уравнения, где коэффициенты при неизвестном могут принимать различные числовые значения и выражены буквами).

Здесь х – неизвестное, а – параметр.

Перенесем слагаемые, содержащие переменные влево, а слагаемые, не содержащие переменную, вправо

Следующий шаг при решении линейного уравнения: разделить обе части уравнения на коэффициент при неизвестном, но в нашем случае этот коэффициент зависит от параметра а, и может быть равен нулю, в такой ситуации делить на этот коэффициент нельзя, поэтому рассмотрим случай, когда коэффициент при неизвестном равен нулю отдельно.

а) Если а –2=0, то есть а =2, то уравнение принимает вид

и ни при каком значении х мы не получим верного равенства, следовательно в этом случае уравнение решений не имеет

б) Если а –2  0, то есть а  2, то поделим обе части уравнения на (а–2), получим

Таким образом мы получили:

Ответ: при а =2 решений нет;

при а  2 .

 Решить уравнение с параметром:

.

Так как в знаменателе дроби может стоять только выражение отличное от нуля, то

Уравнение имеет смысл, если а  2 и а  0. Решим уравнение при этих условиях. Приведем дроби к общему знаменателю

дробь равна нулю, когда числитель равен нулю, а знаменатель от нуля отличен

получили линейное уравнение с параметром а, относительно переменной х .

а) Если 3+ а =0, то есть а =–3, получим

и ни при каком х верного числового равенства мы не получим.

б) Если 3+ а  0, то есть а  –3, то

.

Ответ: при уравнение решений не имеет;

при .

2. Квадратные уравнения

Квадратным уравнением называют уравнение вида

Квадратное уравнение, в котором коэффициент при х 2 равен 1 называется приведенным.

Любое квадратное уравнение можно привести к приведенному, разделив обе части уравнения на коэффициент при х 2 , при этом полученное приведенное уравнение будет равносильно данному.

Пример: 3 х 2 –4 х +7=0  .

Для нахождения корней квадратного уравнения ах 2 + bx + с =0 пользуются формулами:

где D = b 2 –4 ac .

D называется дискриминантом квадратного уравнения, от его знака зависит число корней квадратного уравнения. Если:

D =0, – уравнение имеет один корень;

D >0, уравнение имеет два корня.

Пример: Решить уравнение.

В данном случае а =4, b =–7, с =3.

D = b 2 –4 ac =49–4  4  3=49–48=1>0  уравнение имеет два корня.

.

Ответ: .

Зная корни квадратного уравнения ax 2 + bx + c =0 можно разложить трехчлен, стоящий слева на множители. Если х 1 , х 2 – корни уравнения ax 2 + bx + c =0, то ax 2 + bx + c = a ( xx 1 )( xx 2 ), если квадратное уравнение имеет один корень x 1 , то ax 2 + bx + c = а ( хх 1 ) 2 .

Корни приведенного квадратного уравнения x 2 + px + q =0 можно находить, используя теорему Виета :

Теорема: Сумма корней квадратного уравнения x 2 + px + q =0 равна коэффициенту при х , взятому с противоположным знаком; произведение корней равно свободному члену уравнения, то есть если x 1 , x 2 – корни уравнения, то

.

I способ . .

Найдем дискриминант квадратного уравнения

 уравнение имеет два корня, найдем их по формулам:

.

II способ . Умножим обе части первоначального уравнения на 3, получим приведенное квадратное уравнение, равносильное данному

Найдем корни квадратного уравнения, используя теорему Виета:

Если х 1 , х 2 – корни, то:

делителями числа 5 являются  1;  5, но только (–1) и (–5) в сумме дают (–6), поэтому х 1 =–5; х 2 =–1. Получили те же корни уравнения.

.

Приведем уравнение к стандартному виду, для чего перенесем все дроби с противоположным знаком влево, и приведем их к общему знаменателю

.

Дробь равна нулю, когда числитель равен нулю, а знаменатель от нуля отличен. Знаменатель этой дроби отличен от нуля при любых значениях х , поэтому приравняем к нулю числитель

.

Ответ: .

Рассмотрим примеры решения уравнений, которые квадратными не являются, но которые могут быть сведены к решению квадратных уравнений.

Перенесем все члены уравнения влево

слагаемые имеют одинаковые сомножители, вынесем одинаковые множители за скобку

Левая часть уравнения – есть произведение двух сомножителей, правая – нуль. Произведение равно нулю только в том случае, когда хотя бы один из множителей равен нулю. Таким образом, решение данного уравнения сводится к решению двух уравнений: линейного и квадратного:

х =2

.

Ответ: .

.

Выражение, содержащее дробь имеет смысл, если знаменатель дроби отличен от нуля, поэтому 2 х –5  0  , х  0.

Приведем дроби к общему знаменателю

Дробь равна нулю, когда числитель равен нулю, знаменатель от нуля отличен. Мы уже выяснили условия, при которых знаменатель отличен от нуля, поэтому приравняем к нулю числитель дроби и решим квадратное уравнение.

(2 х ) 2 –2  2  5 х +(5) 2 =0

(2 х –5) 2 =0 

но при знаменатель дроби обращается в нуль, поэтому это значение переменной решением уравнения не является.

Ответ: решений нет.

.

Найдем значения переменной, которые обращают в нуль знаменатель дроби, для чего решим уравнение

Разложим многочлен, стоящий слева на множители.

таким образом, имеем уравнение:

Произведение равно нулю только в том случае, когда хотя бы один из сомножителей равен нулю, поэтому уравнение сводится к решению двух уравнений:

 уравнение корней не имеет

таким образом, знаменатель дроби отличен от нуля при условии u  1.

Переходим к решению первоначального уравнения. Приравняем числитель дроби к нулю и решим квадратное уравнение.

решим приведенное уравнение, используя теорему Виета:

так как при u =1 знаменатель дроби обращается в нуль, решением уравнения будет только u =–2.

Линейные неравенства с одной переменной

Длина стороны прямоугольника 6 см. Какой должна быть длина другой стороны, чтобы периметр прямоугольника был меньше, чем периметр квадрата со стороной 4 см?

Решение: Если обозначить неизвестную сторону прямоугольника через х , то периметр прямоугольника будет равен: ( х +6)  2. Периметр же квадрата со стороной 4 см равен

По условию надо найти такие значения х , при которых ( х +6)  2>16.

Решение задачи свелось к решению неравенства, содержащего переменную. К решению неравенств приводят и многие другие задачи.

Решением неравенства с одной переменной называют значение переменной, которое обращает его в верное числовое неравенство.

Решить неравенство – это значит найти все его решения (или доказать, что их нет).

Неравенства называются равносильными , если множества их решений совпадают (неравенства, не имеющие решений также равносильны). При нахождении решений неравенств применяются утверждения, похожие на те, которыми мы пользовались при нахождении решений уравнений:

Решение неравенства не изменяется, если перенести какое-нибудь слагаемое в другую часть, изменив его знак на противоположный.

Решение неравенства не изменится, если умножить обе части этого неравенства на одно и то же положительное число; при умножении обеих частей неравенства на отрицательное число надо поменять знак неравенства на противоположный.

Используя это утверждение, решим полученное в задаче неравенство.

Ответ: длина стороны прямоугольника должна быть больше 2.

Рассмотрим примеры решения други х неравенств.

.

Ответ:

Ответ: .

 Найти все значения а , при которых квадратное уравнение: (2 а –1) х 2 +2 х –1=0 имеет два действительных различных корня.

Решение: Квадратное уравнение имеет два различных действительных корня, когда дискриминант уравнения больше нуля. Вычислим дискриминант уравнения и потребуем, чтобы он был больше нуля.

решим полученное неравенство

таким образом, уравнение имеет два различных действительных корня при .

Несколько неравенств с одной переменной образуют систему , если ставится задача найти все числа, каждое из которых является решением каждого из указанных неравенств. Неравенства, образующие систему, объединяются фигурной скобкой.

Например:

Несколько неравенств с одной переменной образуют совокупность , если ставится задача найти все числа, каждое из которых является решением хотя бы одного из заданных неравенств. Неравенства, образующие совокупность, обычно объединяются квадратной скобкой.

Например:

Чтобы найти решение системы неравенств нужно найти общую часть промежутков, которые являются решениями неравенств системы.

Н
анесем полученные решения на числовую ось и выберем пересечение всех трех промежутков.

Общей частью всех трех промежутков является промежуток .

Ответ: .

Решением первого неравенства является вся числовая ось, поэтому

Ответ: .

Задания для самостоятельного решения

1. Найдите все значения а , при которы х квадратное уравнение ( а –1) х 2 –(2 а +3) х + а +5=0 имеет действительные корни.

Решить системы неравенств:

2. 3.


источники:

http://epmat.ru/modul-algebra/urok-8-neravenstva-sistemy-neravenstv/

http://infourok.ru/matematicheskoe-posobie-uravneniya-i-neravenstva-3779840.html