Уравнения и неравенства с модулем графики функций

Графический способ решения неравенств с модулями

Решение неравенств с модулем

Сегодня, друзья, не будет никаких соплей и сантиментов. Вместо них я без лишних вопросов отправлю вас в бой с одним из самых грозных противников в курсе алгебры 8—9 класса.

Да, вы всё правильно поняли: речь идёт о неравенствах с модулем. Мы рассмотрим четыре основных приёма, с помощью которых вы научитесь решать порядка 90% таких задач. А что с остальными 10%? Что ж, о них мы поговорим в отдельном уроке.:)

Однако перед тем, как разбирать какие-то там приёмы, хотелось бы напомнить два факта, которые уже необходимо знать. Иначе вы рискуете вообще не понять материал сегодняшнего урока.

Что уже нужно знать

Капитан Очевидность как бы намекает, что для решения неравенств с модулем необходимо знать две вещи:

  1. Как решаются неравенства;
  2. Что такое модуль.

Начнём со второго пункта.

Определение модуля

Тут всё просто. Есть два определения: алгебраическое и графическое. Для начала — алгебраическое:

Определение. — это либо само это число, если оно неотрицательно, либо число, ему противоположное, если исходный $x$ — всё-таки отрицателен.

Записывается это так:

\[\left| x \right|=\left\ ;4 \right)$

Задача. Решите неравенство:

\[\left| ^ >+2x-3 \right|+3\left( x+1 \right) \lt 0\]

Решение. Это задание уже чуть посложнее. Для начала уединим модуль, перенеся второе слагаемое вправо:

\[\left| ^ >+2x-3 \right| \lt -3\left( x+1 \right)\]

Очевидно, перед нами вновь неравенство вида «модуль меньше», поэтому избавляемся от модуля по уже известному алгоритму:

\[-\left( -3\left( x+1 \right) \right) \lt ^ >+2x-3 \lt -3\left( x+1 \right)\]

Вот сейчас внимание: кто-то скажет, что я немного извращенец со всеми этими скобками. Но ещё раз напомню, что наша ключевая цель — грамотно решить неравенство и получить ответ. Позже, когда вы в совершенстве освоите всё, о чём рассказано в этом уроке, можете сами извращаться как хотите: раскрывать скобки, вносить минусы и т.д.

А мы для начала просто избавимся от двойного минуса слева:

\[-\left( -3\left( x+1 \right) \right)=\left( -1 \right)\cdot \left( -3 \right)\cdot \left( x+1 \right)=3\left( x+1 \right)\]

Теперь раскроем все скобки в двойном неравенстве:

Переходим к двойному неравенству. В этот раз выкладки будут посерьёзнее:

Оба неравенства являются квадратными и решаются методом интервалов (потому и говорю: если не знаете, что это такое, лучше пока не браться за модули). Переходим к уравнению в первом неравенстве:

Как видим, на выходе получилось неполное квадратное уравнение, которое решается элементарно. Теперь разберёмся со вторым неравенством системы. Там придётся применить теорему Виета:

Отмечаем полученные числа на двух параллельных прямых (отдельная для первого неравенства и отдельная для второго):

Опять же, поскольку мы решаем систему неравенств, нас интересует пересечение заштрихованных множеств: $x\in \left( -5;-2 \right)$. Это и есть ответ.

Думаю, после этих примеров схема решения предельно ясна:

  1. Уединить модуль, перенеся все другие слагаемые в противоположную часть неравенства. Таким образом мы получим неравенство вида $\left| f \right| \lt g$.
  2. Решить это неравенство, избавившись от модуля по описанной выше схеме. В какой-то момент потребуется перейти от двойного неравенства к системе из двух самостоятельных выражений, каждое из которых уже можно решать отдельно.
  3. Наконец, останется лишь пересечь решения этих двух самостоятельных выражений — и всё, мы получим окончательный ответ.

Аналогичный алгоритм существует и для неравенств следующего типа, когда модуль больше функции. Однако там есть парочка серьёзных «но». Об этих «но» мы сейчас и поговорим.

2. Неравенства вида «Модуль больше функции»

Выглядят они так:

\[\left| f \right| \gt g\]

Похоже на предыдущее? Похоже. И тем не менее решаются такие задачи совсем по-другому. Формально схема следующая:

Другими словами, мы рассматриваем два случая:

  1. Сначала просто игнорируем модуль — решаем обычное неравенство;
  2. Затем по сути раскрываем модуль со знаком «минус», а затем умножаем обе части неравенства на −1, меня при этом знак.

При этом варианты объединены квадратной скобкой, т.е. перед нами совокупность двух требований.

Обратите внимание ещё раз: перед нами не система, а совокупность, поэтому в ответе множества объединяются, а не пересекаются. Это принципиальное отличие от предыдущего пункта!

Вообще, с объединениями и пересечениями у многих учеников сплошная путаница, поэтому давайте разберёмся в этом вопросе раз и навсегда:

  • «∪» — это знак объединения. По сути, это стилизованная буква «U», которая пришла к нам из английского языка и является аббревиатурой от «Union», т.е. «Объединения».
  • «∩» — это знак пересечения. Эта хрень ниоткуда не пришла, а просто возникла как противопоставление к «∪».

Чтобы ещё проще было запомнить, просто пририсуйте к этим знакам ножки, чтобы получились бокалы (вот только не надо сейчас обвинять меня в пропаганде наркомании и алкоголизма: если вы всерьёз изучаете этот урок, то вы уже наркоман):

Разница между пересечением и объединением множеств

В переводе на русский это означает следующее: объединение (совокупность) включает в себя элементы из обоих множеств, поэтому никак не меньше каждого из них; а вот пересечение (система) включает в себя лишь те элементы, которые одновременно находятся и в первом множестве, и во втором. Поэтому пересечение множеств никогда не бывает больше множеств-исходников.

Так стало понятнее? Вот и отлично. Переходим к практике.

\[\left| 3x+1 \right| \gt 5-4x\]

Решение. Действуем по схеме:

Решаем каждое неравенство совокупности:

Отмечаем каждое полученное множество на числовой прямой, а затем объединяем их:

Объединение множеств

Совершенно очевидно, что ответом будет $x\in \left( \frac ;+\infty \right)$

Ответ: $x\in \left( \frac ;+\infty \right)$

Задача. Решите неравенство:

Решение. Ну что? Да ничего — всё то же самое. Переходим от неравенства с модулем к совокупности двух неравенств:

Решаем каждое неравенство. К сожалению, корни там будут не оч:

Во втором неравенстве тоже немного дичи:

Теперь нужно отметить эти числа на двух осях — по одной оси для каждого неравенства. Однако отмечать точки нужно в правильном порядке: чем больше число, тем дальше сдвигам точку вправо.

И вот тут нас ждёт подстава. Если с числами $\frac > \lt \frac > $ всё ясно (слагаемые в числителе первой дроби меньше слагаемых в числителе второй, поэтому сумма тоже меньше), с числами $\frac > \lt \frac > $ тоже не возникнет затруднений (положительное число заведомо больше отрицательного), то вот с последней парочкой всё не так однозначно. Что больше: $\frac > $ или $\frac > $? От ответа на этот вопрос будет зависеть расстановка точек на числовых прямых и, собственно, ответ.

Поэтому давайте сравнивать:

Мы уединили корень, получили неотрицательные числа с обеих сторон неравенства, поэтому вправе возвести обе стороны в квадрат:

Думаю, тут и ежу понятно, что $4\sqrt \gt 3$, поэтому $\frac > \gt \frac > $, окончательно точки на осях будут расставлены вот так:

Случай некрасивых корней

Напомню, мы решаем совокупность, поэтому в ответ пойдёт объединение, а не пересечение заштрихованных множеств.

Как видите, наша схема прекрасно работает как для простых задач, так и для весьма жёстких. Единственное «слабое место» в таком подходе — нужно грамотно сравнивать иррациональные числа (и поверьте: это не только корни). Но вопросам сравнения будет посвящён отдельный (и очень серьёзный урок). А мы идём дальше.

3. Неравенства с неотрицательными «хвостами»

Вот мы и добрались до самого интересного. Это неравенства вида:

\[\left| f \right| \gt \left| g \right|\]

Вообще говоря, алгоритм, о котором мы сейчас поговорим, верен н только для модуля. Он работает во всех неравенствах, где слева и справа стоят гарантированно неотрицательные выражения:

\[f \gt g,\quad f\ge 0,g\ge 0\]

Что делать с этими задачами? Просто помните:

В неравенствах с неотрицательными «хвостами» можно возводить обе части в любую натуральную степень. Никаких дополнительных ограничений при этом не возникнет.

Прежде всего нас будет интересовать возведение в квадрат — он сжигает модули и корни:

Вот только не надо путать это с извлечением корня из квадрата:

Бесчисленное множество ошибок было допущено в тот момент, когда ученик забывал ставить модуль! Но это совсем другая история (это как бы иррациональные уравнения), поэтому не будем сейчас в это углубляться. Давайте лучше решим парочку задач:

\[\left| x+2 \right|\ge \left| 1-2x \right|\]

Решение. Сразу заметим две вещи:

  1. Это нестрогое неравенство. Точки на числовой прямой будут выколоты.
  2. Обе стороны неравенства заведомо неотрицательны (это свойство модуля: $\left| f\left( x \right) \right|\ge 0$).

Следовательно, можем возвести обе части неравенства в квадрат, чтобы избавиться от модуля и решать задачу обычным методом интервалов:

На последнем шаге я слегка схитрил: поменял последовательность слагаемых, воспользовавшись чётностью модуля (по сути, умножил выражение $1-2x$ на −1).

Дальше можно перенести всё вправо и расписать разность квадратов. Только аккуратно:

Решаем методом интервалов. Переходим от неравенства к уравнению:

Отмечаем найденные корни на числовой прямой. Ещё раз: все точки закрашены, поскольку исходное неравенство — нестрогое!

Избавление от знака модуля

Напомню для особо упоротых: знаки мы берём из последнего неравенства, которое было записано перед переходом к уравнению. И закрашиваем области, требуемые в том же неравенстве. В нашем случае это $\left( x-3 \right)\left( 3x+1 \right)\le 0$.

Ну вот и всё. Задача решена.

Ответ: $x\in \left[ -\frac ;3 \right]$.

Задача. Решите неравенство:

Решение. Делаем всё то же самое. Я не буду комментировать — просто посмотрите на последовательность действий.

Возводим в квадрат:

Всего один корень на числовой прямой:

Ответ — целый интервал

Небольшое замечание насчёт последней задачи. Как точно подметил один мой ученик, оба подмодульных выражения в данном неравенстве заведомо положительны, поэтому знак модуля можно без ущерба для здоровья опустить.

Но это уже совсем другой уровень размышлений и другой подход — его условно можно назвать методом следствий. О нём — в отдельном уроке. А сейчас перейдём к финальной части сегодняшнего урока и рассмотрим универсальный алгоритм, который работает всегда. Даже тогда, когда все предыдущие подходы оказались бессильны.:)

4. Метод перебора вариантов

А что, если все эти приёмы не помогут? Если неравенство не сводится неотрицательным хвостам, если уединить модуль не получается, если вообще боль-печаль-тоска?

Тогда на сцену выходит «тяжёлая артиллерия» всей математики — метод перебора. Применительно к неравенствам с модулем выглядит он так:

  1. Выписать все подмодульные выражения и приравнять их к нулю;
  2. Решить полученные уравнения и отметить найденные корни на одной числовой прямой;
  3. Прямая разобьётся на несколько участков, внутри которого каждый модуль имеет фиксированный знак и потому однозначно раскрывается;
  4. Решить неравенство на каждом таком участке (можно отдельно рассмотреть корни-границы, полученные в пункте 2 — для надёжности). Результаты объединить — это и будет ответ.:)

Ну как? Слабо? Легко! Только долго. Посмотрим на практике:

\[\left| x+2 \right| \lt \left| x-1 \right|+x-\frac \]

Решение. Эта хрень не сводится к неравенствам вида $\left| f \right| \lt g$, $\left| f \right| \gt g$ или $\left| f \right| \lt \left| g \right|$, поэтому действуем напролом.

Выписываем подмодульные выражения, приравниваем их к нулю и находим корни:

Итого у нас два корня, которые разбивают числовую прямую на три участка, внутри которых каждый модуль раскрывается однозначно:

Разбиение числовой прямой нулями подмодульных функций

Рассмотрим каждый участок отдельно.

1. Пусть $x \lt -2$. Тогда оба подмодульных выражения отрицательны, и исходное неравенство перепишется так:

Получили довольно простое ограничение. Пересечём его с исходным предположением, что $x \lt -2$:

Уравнения с модулем

Эта статья посвящена приёмам решения различных уравнений и неравенств, содержащих
переменную под знаком модуля.

Если на экзамене вам попадётся уравнение или неравенство с модулем, его можно решить,
вообще не зная никаких специальных методов и пользуясь только определением модуля. Правда,
занять это может часа полтора драгоценного экзаменационного времени.

Поэтому мы и хотим рассказать вам о приёмах, упрощающих решение таких задач.

Прежде всего вспомним, что

Рассмотрим различные типы уравнений с модулем. (К неравенствам перейдём позже.)

Слева модуль, справа число

Это самый простой случай. Решим уравнение

Есть только два числа, модули которых равны четырём. Это 4 и −4. Следовательно, уравнение
равносильно совокупности двух простых:

Второе уравнение не имеет решений. Решения первого: x = 0 и x = 5.

Переменная как под модулем, так и вне модуля

Здесь приходится раскрывать модуль по определению. . . или соображать!

Уравнение распадается на два случая, в зависимости от знака выражения под модулем.
Другими словами, оно равносильно совокупности двух систем:

Решение первой системы: . У второй системы решений нет.
Ответ: 1.

Первый случай: x ≥ 3. Снимаем модуль:

Число , будучи отрицательным, не удовлетворяет условию x ≥ 3 и потому не является корнем исходного уравнения.

Выясним, удовлетворяет ли данному условию число . Для этого составим разность и определим её знак:

Значит, больше трёх и потому является корнем исходного уравнения

Стало быть, годятся лишь и .

Ответ:

Квадратные уравнения с заменой |x| = t

Поскольку , удобно сделать замену |x| = t. Получаем:

Модуль равен модулю

Речь идёт об уравнениях вида |A| = |B|. Это — подарок судьбы. Никаких раскрытий модуля по определению! Всё просто:

Например, рассмотрим уравнение: . Оно равносильно следующей совокупности:

Остаётся решить каждое из уравнений совокупности и записать ответ.

Два или несколько модулей

Не будем возиться с каждым модулем по отдельности и раскрывать его по определению — слишком много получится вариантов. Существует более рациональный способ — метод интервалов.

Выражения под модулями обращаются в нуль в точках x = 1, x = 2 и x = 3. Эти точки делят числовую прямую на четыре промежутка (интервала). Отметим на числовой прямой эти точки и расставим знаки для каждого из выражений под модулями на полученных интервалах. (Порядок следования знаков совпадает с порядком следования соответствующих модулей в уравнении.)

Таким образом, нам нужно рассмотреть четыре случая — когда x находится в каждом из интервалов.

Случай 1: x ≥ 3. Все модули снимаются «с плюсом»:

Полученное значение x = 5 удовлетворяет условию x ≥ 3 и потому является корнем исходного уравнения.

Случай 2: 2 ≤ x ≤ 3. Последний модуль теперь снимается «с минусом»:

Полученное значение x также годится — оно принадлежит рассматриваемому промежутку.

Случай 3: 1 ≤ x ≤ 2. Второй и третий модули снимаются «с минусом»:

Мы получили верное числовое равенство при любом x из рассматриваемого промежутка [1; 2] служат решениями данного уравнения.

Случай 4: x ≤ 1 ≤ 1. Второй и третий модули снимаются «с минусом»:

Ничего нового. Мы и так знаем, что x = 1 является решением.

Модуль в модуле

Начинаем с раскрытия внутреннего модуля.

1) x ≤ 3. Получаем:

Выражение под модулем обращается в нуль при . Данная точка принадлежит рассматриваемому
промежутку. Поэтому приходится разбирать два подслучая.

1.1) Получаем в этом случае:

Это значение x не годится, так как не принадлежит рассматриваемому промежутку.

1.2) . Тогда:

Это значение x также не годится.

Итак, при x ≤ 3 решений нет. Переходим ко второму случаю.

Здесь нам повезло: выражение x + 2 положительно в рассматриваемом промежутке! Поэтому никаких подслучаев уже не будет: модуль снимается «с плюсом»:

Это значение x находится в рассматриваемом промежутке и потому является корнем исходного уравнения.

Так решаются все задачи данного типа — раскрываем вложенные модули по очереди, начиная с внутреннего.

Читайте также о том, как решать неравенства с модулем.

Графики функций, содержащих переменную под знаком модуля. Обобщающее повторение при подготовке к экзамену

Разделы: Математика

Определение модуля

Алгебрагическое определение: | x | =

Геометрическое определение: модулем числа называется расстояние от точки, изображающей это число, до начала отсчета.

Понятие модуля впервые вводится в 6 классе, в 7 классе рассматривается линейная функция и ее график и уже можно показывать построение несложных графиков функций, содержащих модуль. Далее, по мере изучения различных функций, их свойств, каждую такую тему можно заканчивать рассмотрением более сложных графиков, в том числе с модулем. В этой статье рассматриваются основные приемы построения графиков таких функций.

I. На алгебрагическом определении основан метод «раскрытия модуля на промежутках».

Например: | x + 2 | = | x + 2 | =

Этот метод можно применять при построении графиков функций, содержащих один или более модулей. Например, построим график функции у = | x + 2 | – 2x + 1 , предварительно упростив ее.

у = у =

Если модулей несколько, то каждый из них раскрываем на промежутках относительно точек, обращающих каждый из них в нуль. Например, построим график функции у = | 3 – x | – x + | x + 2 | + 1.

Функцию записываем как кусочно-заданную:

у =

Подобно тому, как числовая прямая точками – 2 и 3 разбивается на промежутки, координатная плоскость прямыми х = – 2 и х = 3 разбивается на части («полосы»), в каждой из которых строим свой график. Заметим, что данная функция непрерывна, поэтому на «границах» части графика должны соединяться.

II. Этот метод можно применять к функциям разных видов.

Например, построим график функции у = | log2 x – 1 | – log0,5 x.

Заметим, что х > 0.

Построим сначала график функции у = х 2 – 2х – 3. Графиком этой функции является парабола, ветви которой направлены вверх. Координаты ее вершины: х = 1, у = – 4. Точки пересечения параболы с осями координат: (0; – 3); (– 1; 0); (3; 0). Далее выполняем отображение части графика, лежащей в нижней полуплоскости, относительно оси абсцисс.

2) у = f(| x |). Используем определение модуля: f(| x |) =

Чтобы построить график такой функции строим график функции у = f(x) и берем ту его часть, где х > 0 (в правой полуплоскости). Затем эту часть симметрично отображаем в левую полуплоскость, где х 2 – 2| х | – 3. Сначала строим график функции у = х 2 – 2х – 3, далее выполняем указанные преобразования.

3) Построим график функции y = | f(| x |)|, например, y = | x 2 – 2| х | – 3 |, выполним последовательно преобразования, рассмотренные в пунктах 2 и 1.

4. Рассмотрим зависимость | y | = f(x). Ее нельзя назвать функцией, так как не выполняется условие: каждому значению х должно соответствовать единственное значение у.

Рассмотрим построение графика такой зависимости (можно говорить «графика уравнения»). Используем определение модуля: у = f(x), если у > 0, – у = f(x), y = – f(x), если у 0; чтобы построить график в нижней полуплоскости (где у 2 – 2х – 3

Заметим, что графики, не относящиеся к рассмотренным частным случаям, следует строить « раскрывая модули на промежутках».

1

0

– 1

y

0

x

IV. Приведем некоторые примеры

1. Построим график уравнения | y | = arccos| x |.

2. Графическим способом можно решать и неравенства с двумя переменными. Например, решением неравенства | y | 2 – 4 | x | + 3 |; y = + 1.

2. Решите графически уравнения c одной и двумя переменными: | 3 – x | – 3 = 2| x | – x 2 ; | y | = 2| x | – x 2 ; = | x – 2,5 | –1,5.

3. Решите графически неравенства с двумя переменными: | y | > x 2 4x + 3; | x | + | y | 15.11.2011


источники:

http://ege-study.ru/ru/ege/materialy/matematika/uravneniya-i-neravenstva-s-modulem/

http://urok.1sept.ru/articles/604549