Уравнения и неравенства с модулем схемы

Методы решения уравнений и неравенств с модулем

Методы решения уравнений и неравенств с модулем

Цели. Целью моей работы является классификация методов решения уравнений и неравенств, содержащих переменную под знаком модуля (абсолютной величины). Данное исследование возникло из необходимости обобщить все знания по этой теме для проникающего повторения при подготовке к Единому Государственному Экзамену в 10 – 11 классах. В результате исследования мне удалось выделить три основных метода, которые являются универсальными для решения уравнений (неравенств) своего типа, а так же, были выявлены частные случаи этих методов, упрощающие общую схему решения.

Считаю, что данная работа будет полезна ученикам 11-х классов.

Типы уравнений (неравенств) и методы их решения:

I. Простейшие – уравнения и неравенства вида

|f(x)| = a, |f(x)| a, где а – любое число.

При решении простейших уравнений и неравенств исходим из определения модуля, как расстояния от нуля до числа, выраженного в единичных отрезках.

1. Рассмотрим уравнения вида | f(x)| = a:

Решение неравенства – множество значений f(х) «между» числами а и – а:

двойное неравенство — a а ():

б). Если а = 0, то |f(x)| > 0. Тогда , т. к. |f(x)| 0.

(|f(x)|0. Решение: (см. выше)).

|f(x)| > a Решение неравенства: множество значений х «за» числами а и – а.

1.| x+2| = 3

2.

Ответ: x = 3, x = -1.

3., тогда или

.

Ответ: (-∞;1 ).

4. | x2 +5x | ≥ 6,

Ответ: (-∞;-6][-3;-2] [1;+ ∞).

    |f(x)| = f(x) f(x) ≥ 0 Решение уравнения – решение неравенства. |f(x)| = — f(x) f(x) ≤ 0. |f(x)|=|g(x)|

1.

x = 1, x =3.

2.| x2 – 1| = (x – 1)(x + 1),

Ответ: (-∞; — 1] [1;+ ∞).

II. По определению модуля.

Если в уравнении или неравенстве один модуль и функция (|f(x)| * g(x)), то решаем по определению модуля:

|f(x)|=

Для этого нужно рассмотреть два случая, раскрывая модуль, в зависимости от знака подмодульного выражения Изменения происходят только в части, содержащей модуль.

1. 2|x +1|>x+4,

Ответ:

2.

Ответ: x = 1, x = —

Данное равенство возможно, только если . Тогда:

Только для уравнений, в которых g(x) проще f(x).

1.

Ответ: x = 1, x = 6.

III. Метод интервалов

А) В случае, когда в уравнении или неравенстве сумма (разность) нескольких модулей.

1.

1.Приведем подмодульные выражения к виду ax + b, где a > 0, по свойству . .

2.Найдем нули модулей: х = — 1, х = 4.

3.Отметим нули модулей на числовом луче и выделим числовые промежутки.

4.Заполним таблицу и расставим знаки, используя свойство линейной функции y = kx + b при k>0 (возрастающая функция, при переходе через ноль знак меняется с « — » на « + »).

5. Решим уравнения (неравенства) на каждом из участков, раскрывая модуль с учетом знака подмодульного выражения.

1. x 5.

Объединяем решения всех случаев, тогда x(-

Ответ: (-

2.Существуют уравнения этого типа (в тестах!), условие которых позволяет сократить количество рассматриваемых случаев, но для этого надо внимательно исследовать подмодульные выражения.

данное равенство возможно только, если , т. е. когда , .

Значит, и

Тогда рассматриваем только один случай:

Ответ:

Так как обе части уравнения (неравенства) — неотрицательные числа, то можно возвести обе части в квадрат. Тогда получим:

f2(x) * g2(x) или f2(x) — g2(x) * 0 – это разность квадратов, можно разложить на множители.

(Очень эффективно, когда функции сложно заданы!)

    | x2 — 3x + 2| ≥ | x2 + 3x + 2|,

(x2 — 3x +x2 + 3x + 2) 2 ≥ 0,

(x2 — 3x + 2 — x2 — 3x – 2)∙(x2 — 3x + 2 + x2 + 3x + 2) ≥ 0,

— 6x∙(2×2 + 4) ≥ 0, т. к. 2×2 + 4 > 0, то получим:

Б). Произведение или частное сравнивается с нулем.

    x∙

1.Найдем нули всех множителей: х =0, х = — 1.

2.Учтем, что ноль модуля не является знакоменяющей точкой, т. к. («лепесток»).

3.Расставим в промежутках знаки, чередуя их, и в лепестках тоже, начиная с самого правого (рис. 4).

4.Выберем промежутки соответственно знаку неравенства: «больше» — c « + »,

Ответ: <- 1>.

Нули числителя: x=0 (●).

Нули знаменателя: x=1, «лепесток» (○).

Ответ: .

Проделанная мной работа позволила мне привести в систему мои знания по этой теме, что необходимо каждому старшекласснику для успешной сдачи Единого Государственного Экзамена. Кроме того, я открыла для себя новые схемы решения уравнений и неравенств с модулями, которые значительно облегчают процесс решения и позволяют сократить время, требуемое для выполнения задания. Расширила знания по работе с компьютерной программой Microsoft Word, выходящие за рамки простого набора текста, что необходимо каждому современному человеку.

Уравнения с модулем

Эта статья посвящена приёмам решения различных уравнений и неравенств, содержащих
переменную под знаком модуля.

Если на экзамене вам попадётся уравнение или неравенство с модулем, его можно решить,
вообще не зная никаких специальных методов и пользуясь только определением модуля. Правда,
занять это может часа полтора драгоценного экзаменационного времени.

Поэтому мы и хотим рассказать вам о приёмах, упрощающих решение таких задач.

Прежде всего вспомним, что

Рассмотрим различные типы уравнений с модулем. (К неравенствам перейдём позже.)

Слева модуль, справа число

Это самый простой случай. Решим уравнение

Есть только два числа, модули которых равны четырём. Это 4 и −4. Следовательно, уравнение
равносильно совокупности двух простых:

Второе уравнение не имеет решений. Решения первого: x = 0 и x = 5.

Переменная как под модулем, так и вне модуля

Здесь приходится раскрывать модуль по определению. . . или соображать!

Уравнение распадается на два случая, в зависимости от знака выражения под модулем.
Другими словами, оно равносильно совокупности двух систем:

Решение первой системы: . У второй системы решений нет.
Ответ: 1.

Первый случай: x ≥ 3. Снимаем модуль:

Число , будучи отрицательным, не удовлетворяет условию x ≥ 3 и потому не является корнем исходного уравнения.

Выясним, удовлетворяет ли данному условию число . Для этого составим разность и определим её знак:

Значит, больше трёх и потому является корнем исходного уравнения

Стало быть, годятся лишь и .

Ответ:

Квадратные уравнения с заменой |x| = t

Поскольку , удобно сделать замену |x| = t. Получаем:

Модуль равен модулю

Речь идёт об уравнениях вида |A| = |B|. Это — подарок судьбы. Никаких раскрытий модуля по определению! Всё просто:

Например, рассмотрим уравнение: . Оно равносильно следующей совокупности:

Остаётся решить каждое из уравнений совокупности и записать ответ.

Два или несколько модулей

Не будем возиться с каждым модулем по отдельности и раскрывать его по определению — слишком много получится вариантов. Существует более рациональный способ — метод интервалов.

Выражения под модулями обращаются в нуль в точках x = 1, x = 2 и x = 3. Эти точки делят числовую прямую на четыре промежутка (интервала). Отметим на числовой прямой эти точки и расставим знаки для каждого из выражений под модулями на полученных интервалах. (Порядок следования знаков совпадает с порядком следования соответствующих модулей в уравнении.)

Таким образом, нам нужно рассмотреть четыре случая — когда x находится в каждом из интервалов.

Случай 1: x ≥ 3. Все модули снимаются «с плюсом»:

Полученное значение x = 5 удовлетворяет условию x ≥ 3 и потому является корнем исходного уравнения.

Случай 2: 2 ≤ x ≤ 3. Последний модуль теперь снимается «с минусом»:

Полученное значение x также годится — оно принадлежит рассматриваемому промежутку.

Случай 3: 1 ≤ x ≤ 2. Второй и третий модули снимаются «с минусом»:

Мы получили верное числовое равенство при любом x из рассматриваемого промежутка [1; 2] служат решениями данного уравнения.

Случай 4: x ≤ 1 ≤ 1. Второй и третий модули снимаются «с минусом»:

Ничего нового. Мы и так знаем, что x = 1 является решением.

Модуль в модуле

Начинаем с раскрытия внутреннего модуля.

1) x ≤ 3. Получаем:

Выражение под модулем обращается в нуль при . Данная точка принадлежит рассматриваемому
промежутку. Поэтому приходится разбирать два подслучая.

1.1) Получаем в этом случае:

Это значение x не годится, так как не принадлежит рассматриваемому промежутку.

1.2) . Тогда:

Это значение x также не годится.

Итак, при x ≤ 3 решений нет. Переходим ко второму случаю.

Здесь нам повезло: выражение x + 2 положительно в рассматриваемом промежутке! Поэтому никаких подслучаев уже не будет: модуль снимается «с плюсом»:

Это значение x находится в рассматриваемом промежутке и потому является корнем исходного уравнения.

Так решаются все задачи данного типа — раскрываем вложенные модули по очереди, начиная с внутреннего.

Читайте также о том, как решать неравенства с модулем.

Модули. Применение геометрического смысла модуля при решений уравнений и неравенств

Классы: 9 , 10 , 11

Ключевые слова: модуль числа , свойства модуля , геометрический смысл модуля

Цель: Актуализировать знания школьников о смысле понятия «модуль». Учить их применять эти знания при решении уравнении, неравенств и систем уравнении с модулями.

Для того, чтобы научиться решать уравнения и неравенства с модулем, необходимо хорошо разобраться с понятием модуля, его геометрическим смыслом и свойствами.

С рассмотрения этого материала мы и начнем наше занятие.

1. Определение: Модулем числа называется само число, если оно неотрицательно, или число противоположное данному, если оно отрицательно.

Следовательно, при любых значениях переменной |а| есть число неотрицательное.

2. Рассмотрим основные свойства модуля, которые используются при решении уравнений и неравенств, содержащих модуль.

Свойства модуля

— Модуль числа есть величина неотрицательная: |а|>0 или равно 0.

— Модули противоположенных чисел равны: |а|= |-а|

— Модуль произведения равен произведению модулей множителей: |а*в|= |а|*|в|.

— Модуль частного равен частному модулей числителя и знаменателя: |а/в|=|а|/|в|, где в не равен нулю.

— Квадрат модуля равен квадрату подмодульного выражения: |а| 2 =а 2 .

— Модуль суммы не больше суммы модулей ее слагаемых: |а+в|≤|а|+|в|.

При этом равенство |а+в|=|а|+|в| имеет место тогда и только тогда, когда слагаемые одного знака или одно из слагаемых равно нулю.

— Два числа, модули которых равны, либо равны между собой, либо отличаются только знаками, то есть являются противоположными: |а|=|в|, если, а=в или, а=–в.

Преобразование выражений, содержащих модули

При решении уравнении и неравенств с модулем, часто приходится преобразовывать их, раскрывая знак модуля.

Рассмотрим, по каким правилам раскрывается модуль.

Из определения модуля следует: чтобы раскрыть знак модуля, надо знать знак подмодульного выражения.

Составим схему раскрытия модуля:

а) если знак подмодульного выражения неотрицателен, то знак модуля опускается: |а| =а.

б) если знак подмодульного выражения отрицателен, то подмодульное выражение умножается на (-1), то есть заменяется противоположенным выражением: |а| =-1а.

Рассмотрим несколько примеров.

Пример 1.1

а) т.к. с 0, то -7х 5;

б) |3+х|, если х 5, то х-2 > 0, поэтому |х-2|=х-2;

в) т.к. х 0, |8-х|= 8 – х, х-6 (=) 2/3 3х – 2 >(=)0, следовательно, |3[ — 2|= 3х – 2.

4. Задания для самостоятельной работы

б) |- 3/7х|, если х 2 |, если а > 0;

г) |8 + х|, если х > -7;

д) |х — 5| — |х + 4|, если -3 13.

3. Решить неравенство самостоятельно:

4. Решить уравнение:

5. Решить уравнение:

6. Решить неравенство:

7. Найдите наибольшее натуральное значение параметра с при котором решение неравенства

  1. ||2х + 4| — 7| — 13 ≤ 2с 2 удовлетворяет условию х [-37; 35].

Это задание можно предложить сильным школьникам для домашней работы с последующей проверкой на уроке.

Решения и ответы:

1. Для решения уравнении используем рисунок на доске и правило: «Модуль — это расстояние»:

2. Для решения неравенства сделаем ещё два рисунка.

Значение выражения, стоящего под модулем, не должно превышать 2, значит

Значение выражения, стоящего под модулем, должно быть больше, чем 48 единиц, значит:

18 – х ≥ 48 или 18 – х ≤ -48 => х ≤ -30 или х ≥66.


источники:

http://ege-study.ru/ru/ege/materialy/matematika/uravneniya-i-neravenstva-s-modulem/

http://urok.1sept.ru/articles/676940