Уравнения и неравенства со знаком модуля 10 класс

Уравнения с модулем

Эта статья посвящена приёмам решения различных уравнений и неравенств, содержащих
переменную под знаком модуля.

Если на экзамене вам попадётся уравнение или неравенство с модулем, его можно решить,
вообще не зная никаких специальных методов и пользуясь только определением модуля. Правда,
занять это может часа полтора драгоценного экзаменационного времени.

Поэтому мы и хотим рассказать вам о приёмах, упрощающих решение таких задач.

Прежде всего вспомним, что

Рассмотрим различные типы уравнений с модулем. (К неравенствам перейдём позже.)

Слева модуль, справа число

Это самый простой случай. Решим уравнение

Есть только два числа, модули которых равны четырём. Это 4 и −4. Следовательно, уравнение
равносильно совокупности двух простых:

Второе уравнение не имеет решений. Решения первого: x = 0 и x = 5.

Переменная как под модулем, так и вне модуля

Здесь приходится раскрывать модуль по определению. . . или соображать!

Уравнение распадается на два случая, в зависимости от знака выражения под модулем.
Другими словами, оно равносильно совокупности двух систем:

Решение первой системы: . У второй системы решений нет.
Ответ: 1.

Первый случай: x ≥ 3. Снимаем модуль:

Число , будучи отрицательным, не удовлетворяет условию x ≥ 3 и потому не является корнем исходного уравнения.

Выясним, удовлетворяет ли данному условию число . Для этого составим разность и определим её знак:

Значит, больше трёх и потому является корнем исходного уравнения

Стало быть, годятся лишь и .

Ответ:

Квадратные уравнения с заменой |x| = t

Поскольку , удобно сделать замену |x| = t. Получаем:

Модуль равен модулю

Речь идёт об уравнениях вида |A| = |B|. Это — подарок судьбы. Никаких раскрытий модуля по определению! Всё просто:

Например, рассмотрим уравнение: . Оно равносильно следующей совокупности:

Остаётся решить каждое из уравнений совокупности и записать ответ.

Два или несколько модулей

Не будем возиться с каждым модулем по отдельности и раскрывать его по определению — слишком много получится вариантов. Существует более рациональный способ — метод интервалов.

Выражения под модулями обращаются в нуль в точках x = 1, x = 2 и x = 3. Эти точки делят числовую прямую на четыре промежутка (интервала). Отметим на числовой прямой эти точки и расставим знаки для каждого из выражений под модулями на полученных интервалах. (Порядок следования знаков совпадает с порядком следования соответствующих модулей в уравнении.)

Таким образом, нам нужно рассмотреть четыре случая — когда x находится в каждом из интервалов.

Случай 1: x ≥ 3. Все модули снимаются «с плюсом»:

Полученное значение x = 5 удовлетворяет условию x ≥ 3 и потому является корнем исходного уравнения.

Случай 2: 2 ≤ x ≤ 3. Последний модуль теперь снимается «с минусом»:

Полученное значение x также годится — оно принадлежит рассматриваемому промежутку.

Случай 3: 1 ≤ x ≤ 2. Второй и третий модули снимаются «с минусом»:

Мы получили верное числовое равенство при любом x из рассматриваемого промежутка [1; 2] служат решениями данного уравнения.

Случай 4: x ≤ 1 ≤ 1. Второй и третий модули снимаются «с минусом»:

Ничего нового. Мы и так знаем, что x = 1 является решением.

Модуль в модуле

Начинаем с раскрытия внутреннего модуля.

1) x ≤ 3. Получаем:

Выражение под модулем обращается в нуль при . Данная точка принадлежит рассматриваемому
промежутку. Поэтому приходится разбирать два подслучая.

1.1) Получаем в этом случае:

Это значение x не годится, так как не принадлежит рассматриваемому промежутку.

1.2) . Тогда:

Это значение x также не годится.

Итак, при x ≤ 3 решений нет. Переходим ко второму случаю.

Здесь нам повезло: выражение x + 2 положительно в рассматриваемом промежутке! Поэтому никаких подслучаев уже не будет: модуль снимается «с плюсом»:

Это значение x находится в рассматриваемом промежутке и потому является корнем исходного уравнения.

Так решаются все задачи данного типа — раскрываем вложенные модули по очереди, начиная с внутреннего.

Читайте также о том, как решать неравенства с модулем.

Урок алгебры в 10-м классе по теме «Уравнения, содержащие переменную под знаком модуля»

Разделы: Математика

Цели урока: создать условия для:

  • обобщения и закрепления умений решать уравнения с переменной под знаком модуля;
  • промежуточного контроля и оценки качества усвоения учащимися способов решения уравнений;
  • формирования устной и письменной речи, познавательной активности, творческих способностей учащихся;
  • развития логического мышления;
  • воспитание навыков самоконтроля;
  • воспитание ответственного отношения к учебному труду.

Тип урока: обобщения и закрепления знаний и умений.

I. Определение темы и цели урока

Совместно с учащимися формулируем тему урока;

Совместно с учащимися ставим цели и задачи урока;

Определяем основные этапы урока.

Для этого обратиться к учащимся с вопросами:

Решением каких уравнений мы занимались на предыдущих уроках?

Что нужно знать для этого?

Каким образом можно это закрепить , проверить?

II. Обобщение и систематизация знаний

1. Учитель: Сформулируйте определение модуля числа.

Ученики: Модулем действительного числа х называется само это число, если х ≥ 0, и противоположное ему число, если х 2 = х 2 ;

3. Учитель: Решение уравнения вида

Ученики: Уравнение

4. Учитель: Решение уравнения вида

Ученики: Т.к. то

5. Учитель: Решение уравнения вида

Ученики: Уравнения такого вида решаются методом разбиения на промежутки. Для этого надо: 1) найти нули выражений, стоящих под знаком модуля; 2) разбить ОДЗ переменной на промежутки, на каждом из которых выражения, стоящие под знаком модуля, сохраняют знак; 3) на каждом из полученных промежутков решить уравнение с учётом определения модуля. Объединение решений на указанных промежутках и составляет все решения данного уравнения.

6. Учитель: Решение уравнения, в котором под знаком модуля находится выражение, содержащее модуль?

Ученики: Надо сначала освободиться от внутренних модулей, а затем в полученных уравнениях раскрыть оставшиеся модули.

III. Устная работа

Учащиеся выполняют задания устно, комментируя своё решение.

1. Раскрыть знак модуля:

а) б)

а)

б)

в)

2. Найти множество решений уравнения:

а) б) в) г)

б) т.к. при любом х, а -7, то уравнение решений не имеет.

Ответ:

в)

г)

Ответ:

IV. Закрепление умений учащихся решать уравнения

4 ученика решают на доске, остальные в тетрадях. Затем сверяют решения, при необходимости исправляют ошибки. Работающие у доски отвечают на возникающие вопросы.

1) .

Решение: Данное уравнение равносильно совокупности систем:

Ответ: 1,5; .

2) .

Ответ: ; 1; 3.

3)

3х+4 = 0, х = —;

1) х 3, тогда 3х + 4 + 2·(х – 3) = 16 х = 3,6 – является корнем уравнения.

4) = 4.

Решение: Данное уравнение равносильно совокупности двух систем:

Вторая система решений не имеет. Первая система равносильна совокупности двух систем: х = 0.

V. Самостоятельная работа (разноуровневая)

Самостоятельная письменная работа в трёх уровнях с последующей сдачей учителю. Ученик может выбрать любой из трёх уровней.

Первый уровень оценивается оценкой «3», второй – оценкой «4», третий – «5».

а) ;

б)

а) ;

б)

а) ;

б) Найти сумму корней уравнения:

VI. Постановка домашнего задания

1. Решить уравнения:

а) х 2 = ;
б) ;

в)

г)

* д) Найти сумму целых решений уравнения

VII. Итоги урока

Какими навыками, умениями овладели?

Какими понятиями, приёмами воспользовались при решении уравнений?

Решение каких уравнений вам показалось сложным?

Урок по математике на тему «Решение уравнений с модулем» (10 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.


Урок по теме: «Решение уравнений, содержащих знак абсолютной величины (модуля)»

Цель урока: Обобщение и систематизация знаний учащихся , развитие навыка решения уравнений и логического мышления учащихся.

Оборудование урока: таблица “Модуль”, плакаты с изображением уравнений содержащих переменную под знаком модуля и с графическим способом решения уравнений.

Сообщается план урока и почему именно эта тема выбрана.

II. Вступительное слово учителя.

Существенной характеристикой числа, как в действительной, так и в комплексной области является понятие его абсолютной величины (модуля).
Это понятие имеет широкое распространение в различных отделах физико-математических наук. Так, в математическом анализе одно из первых и фундаментальных понятий – понятие предела – в своем определении содержит понятие абсолютной величины числа. В теории приближенных вычислений первым, важнейшим понятием, является понятие абсолютной погрешности приближенного числа. В механике основным первоначальным понятием является понятие вектора, важнейшей характеристикой которого служит его абсолютная величина (модуль).
С понятием модуля (абсолютной величины) действительного числа учащиеся знакомятся еще в 6 классе. Однако в программах общеобразовательных школ и соответствующих учебниках в дальнейшем это понятие ни в теоретических материалах, ни в задачах и упражнениях почти не применяется. Возможность решения уравнений и неравенств, содержащих неизвестные под знаком модуля, имеют учащиеся классов или школ с углубленным изучением математики и некоторых других альтернативных школ, однако и в учебниках для этих школ задач подобного рода до обидного мало. В то же время на ЕГЭ задачи с модулем предлагаются все чаще и чаще.

.Изучение нового материала

Учитель: при решении уравнений, содержащих переменную под знаком модуля, чаще всего применяются следующих методы: 1) раскрытие модуля по определению, 2) возведение обоих частей в квадрат, 3) метод разбиения на промежутки, 4) графический метод.

Сообщение №1 «Некоторые способы решения уравнений с модулями».

Напомним сначала определение числа x:

Приведем также основные свойства модуля, часто применяемых в решение задач:

Поговорим о некоторых способах решения задач с модулем. Среди них один занимает самое главное место, так как он является самым общим, однако, иногда не самым рациональным. Заключается он в следующем.

Предположим, что имеется уравнение или неравенство, в которое входят один или несколько модулей.

Первым делом нужно отделить критические точки. Под этим мы понимаем все значения переменной, при которых один из модулей обращается в нуль.

Нанесите полученное множество значений на ось данной переменной, например Ox. Прямая разобьется на несколько конечных и два бесконечных интервала. Каждый интервал соответствует знакопостоянству подмодульных выражений.

Рассмотреть столько случаев решения, сколько получилось интервалов. При этом освобождаться от модулей нужно, проверяя знак подмодульного выражения. Т.е. изменять его на противоположный, если выражение отрицательно и оставлять его прежним в противном случае. Важно не забыть, что частным ответом в каждом из полученных случаев является пересечение интервала и найденного решения.

Объединить полученные в каждом интервале ответы в один.

Рассмотрим подробнее этот метод на следующем примере.

Нанесем на числовую прямую значение x, при котором x + 2 = 0 и значение x, при котором x – 3 = 0. Числовая прямая разобьется на промежутки (-; -2), [-2; 3], (3; +).

Решим уравнений на каждом из этих интервалов.

(-; -2)

(3; +)

Рассмотрим первый промежуток, чтобы определить знак подмодульного выражения, возьмем контрольную точку x = 3, подставим ее в наше уравнение –3 + 2

–х – 2 – х + 3 = 5
–2х + 1 = 5
–2х = 4

х = –2
–2

Не может быть корнем.

х + 2 – х + 3 = 5
0х = 0 x любое число из [-2; 3].

3)

х + 2 + х – 3 = 5, x = 3
3 , не может быть корнем.

Вывод: Решение второй системы является объединением решений 3-х систем.

Ответ: x принадлежит [-2;3] или все значения сегмента [-2;3].

Сообщение №2 Графический метод.

Этот способ уже не столь универсален, но им нельзя пренебрегать, если он применим. Часто уравнение или неравенства с модулем содержит только линейные выражения относительно переменной. В этом случае существует очень простой рецепт построения графиков с модулями, что часто существенно облегчает решение задачи. Он базируется на простом замечании – графики таких выражений состоят из кусков линий, т.е. являются ломаными. Метод состоит в следующем:

Найти, как и раньше, все критические точки и нанести их на ось абсцисс. Найти непосредственно значения заданной функции в этих точках (это удобно делать с помощью отдельной таблицы) и нанести их на координатную плоскость.

В каждой из конечных интервалов, получаемых после разбиения критическими точками, график является прямой и может быть простым соединением нанесенных в предыдущем пункте точек на координатной плоскости.

Выбрать две удобные для вычисления точки, расположенные в левом и правом бесконечных интервалах и аналогично п.1 найти значения функций в них. Окончательно, соединяя построенный участок графика с оставшимися двумя точками, получим требуемый график.

Проиллюстрируем это на примере построения графика |x+2|+|x-3|=5. Построим график функции

у = |x + 2| + |x – 3| и y = 5

Наносим на ось корни линейных функций стоящих под знаком модуля. На каждом из трех промежутков знаки этих линейных функций постоянны и мы можем избавиться от знака модуля.

если x 3, то y = +(x + 2) + (x – 3) = 2x – 1

При построении графика провести вертикальные прямые x = –2 и x = 3, которые разобьют плоскость на три части. В левой части надо провести прямую y=–2x + 1, в центральной полосе y = 5 и в правой y = 2x – 1: (для контроля надо следить, чтобы ломаная была непрерывной, т.е. чтобы значения в разделяющих точках изломах, вычисленные по соседним формулам совпали). В нашем случае при x — 2 значение функции y = –2x + 1 совпадает со значением y = 5, точно так же при x=3 совпадают значения функции y = 5 и y=2x – 1

Строим график


источники:

http://urok.1sept.ru/articles/574624

http://infourok.ru/urok-po-matematike-na-temu-reshenie-uravneniy-s-modulem-klass-797103.html