Уравнения и неравенство с переменной решение уравнений

Уравнения с одной переменной

Уравнением с одной переменной — это равенство, содержащее только одну переменную. Корнем (или решением) уравнения называется такое значение переменной, при котором уравнение превращается в верное числовое равенство.

Содержание:

Определение уравнения. Корни уравнения

Равенство с переменной f(x) = g (х) называют уравнением с одной переменной х, если поставлена задача найти все те же значения х, при которых равенство с переменной обращается в верное числовое равенство. Всякое значение переменной, при котором выражения /(х) и g(x) принимают равные числовые значения, называют корнем уравнения.

Решить уравнение — это значит найти все его корни или доказать, что их нет.

Пример 1.

Уравнение 3 + х = 7 имеет единственный корень 4, так как при этом и только при этом значении переменной равенство 3 + х = 7 является верным.

Пример 2.

Уравнение (х — 1)(х — 2) = 0 имеет два корня: 1 и 2.

Пример 3.

Уравнение не имеет действительных корней.

Заметим, что можно говорить и о мнимых корнях уравнений. Так, уравнение имеет два мнимых корня: (см. п. 47). Всюду ниже речь идет только о действительных корнях уравнений.

Равносильность уравнений

Уравнения, имеющие одни и те же корни, называют равносильными. Равносильными считаются и уравнения, каждое из которых не имеет корней.

Например, уравнения х + 2 = 5 и х + 5 = 8 равносильны, так как каждое из них имеет единственный корень — число 3. Равносильны и уравнения — ни одно из них не имеет корней.

Уравнения неравносильны, так как первое имеет только один корень 6, тогда как второе имеет два корня: 6 и — 6.

В процессе решения уравнения его стараются заменить более простым, но равносильным данному. Поэтому важно знать, при каких преобразованиях данное уравнение переходит в равносильное ему уравнение.

Теорема 1.

Если в уравнении какое-нибудь слагаемое перенести из одной части в другую, изменив его знак, то получится уравнение, равносильное данному.

Например, уравнение равносильно уравнению

Теорема 2.

Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Например, уравнение равносильно уравнению (обе части первого уравнения мы умножили на 3).

Линейные уравнения

Линейным уравнением с одной переменной х называют уравнение вида

где — действительные числа; называют коэффициентом при переменной, свободным членом.

Для линейного уравнения могут представиться три случая:

1) ; в этом случае корень уравнения равен ;

2) ; в этом случае уравнение принимает вид , что верно при любом х, т. е. корнем уравнения служит любое действительное число;

3) ; в этом случае уравнение принимает вид , оно не имеет корней.

Многие уравнения в результате преобразований сводятся к линейным.

Пример 1.

Решить уравнение

Решение:

По теореме 1 (см. п. 135), данное уравнение равносильно уравнению . Если разделить обе части этого уравнения на коэффициент при х, то по теореме 2 получим равносильное данному уравнение . Итак, — корень уравнения.

Пример 2.

Решение:

Это уравнение сводится к линейному уравнению. Умножив обе части уравнения на 12 (наименьшее общее кратное знаменателей 3, 4, 6,12), получим

Квадратные уравнения

где — действительные числа, причем , называют квадратным уравнением. Если , то квадратное уравнение называют приведенным, если , то неприведенным. Коэффициенты имеют следующие названия: первый коэффициент, второй коэффициент, с — свободный член. Корни уравнения находят по формуле

Выражение называют дискриминантом квадратного уравнения (1). Если D О, то уравнение имеет два действительных корня.

В случае, когда D = О, иногда говорят, что квадратное уравнение имеет два одинаковых корня.

Используя обозначение , можно переписать формулу (2) в виде Если , то формулу (2) можно упростить:

Формула (3) особенно удобна, если — целое число, т. е. коэффициент — четное число.

Пример 1.

Решение:

Здесь . Имеем:

Так как , то уравнение имеет два корня, которые найдем по формуле (2):

Итак, — корни заданного уравнения.

Пример 2.

Решить уравнение

Решение:

Здесь По формуле (3) находим т. е. х = 3 — единственный корень уравнения.

Пример 3.

Решить уравнение

Решение:

Здесь Так как D 0, откуда х>3, и 5 — х > 0, откуда х 5, тогда как для уравнения (2) областью определения служит вся числовая прямая. Поэтому найденное значение х = 4, являющееся корнем уравнения (2), может оказаться посторонним корнем для уравнения (1). В данном случае именно это и происходит, поскольку х = 4 не принадлежит области определения уравнения (1) (не удовлетворяет неравенству х > 5). Итак, х = 4 — посторонний корень, т. е. заданное уравнение не имеет корней.

Рациональные уравнения

Уравнение f(x) = g(x) называют рациональным, если f(x) и g(x) — рациональные вьфажения. При этом если f(x) и g(x) — целые выражения, то уравнение называют целым; если же хотя бы одно из выражений f(х), g(x) является дробным, то рациональное уравнение f(x) = g(x) называют дробным.

Например, целыми являются линейные (см. п. 136), квадратные (см. п. 137) уравнения.

Чтобы решить рациональное уравнение, нужно:

1) найти общий знаменатель всех имеющихся дробей;

2) заменить данное уравнение целым, умножив обе его части на общий знаменатель;

3) решить полученное целое уравнение;

4) исключить из его корней те, которые обращают в нуль общий знаменатель.

Пример:

Решение:

Общим знаменателем имеющихся дробей является 2х(2 — х). Найдя дополнительные множители для каждой дроби, освободимся от знаменателей. Имеем:

Из уравнения находим (см. п. 137). Осталось проверить, обращают ли найденные корни выражение 2х(2 — х) в нуль, т. е. проверить выполнение условия Замечаем, что 2 не удовлетворяет этому условию, а 4 удовлетворяет. Значит, х = 4 — единственный корень уравнения.

Решение уравнения р(х) = 0 методом разложения его левой части на множители

Суть этого метода состоит в следующем. Пусть нужно решить уравнение р(х) = 0, где р(х) — многочлен степени . Предположим, что удалось разложить многочлен на множители:, где — многочлены более низкой степени, чем . Тогда уравнение р(х) = 0 принимает вид . Если — корень уравнения а потому хотя бы одно из чисел равно нулю.

Значит, — корень хотя бы одного из уравнений

Верно и обратное: если — корень хотя бы одного из уравнений то — корень уравнения т. е. уравнения р (х) = 0.

Итак, если , где — многочлены, то вместо уравнения р(х) = 0 нужно решить совокупность уравнений Все найденные корни этих уравнений, и только они, будут корнями уравнения р(х) = 0.

Пример 1.

Решить уравнение

Решение:

Разложим на множители левую часть уравнения. Имеем откуда

Значит, либо х + 2 = 0, либо . Из первого уравнения находим х = — 2, второе уравнение не имеет корней. Итак, получили ответ: -2.

Метод разложения на множители применим к любым уравнениям вида р(х) = 0, где р(х) необязательно многочлен. Пусть но среди выражений есть выражения более сложного вида, чем многочлены (например, иррациональные, логарифмические и т. д.). Среди корней уравнений могут быть посторонние для уравнения р(х) = 0.

Пример 2.

Решить уравнение

Решение:

Имеем ; значит, либо , либо .Из уравнения находим х = 0, из уравнения находим .

Но х = -3 не удовлетворяет исходному уравнению, так как при этом значении не определено выражение . Это посторонний корень.

Итак, уравнение имеет два корня: 3; 0.

Решение уравнений методом введения новой переменной

Суть этого метода поясним на примерах.

Пример 1.

Решение:

Положив , получим уравнение

откуда находим . Теперь задача сводится к решению совокупности уравнений

Первое квадратное уравнение не имеет действительных корней, так как его дискриминант отрицателен.

Из второго квадратного уравнения находим . Это корни заданного уравнения.

Пример 2.

Решение:

Положим , тогда

и уравнение примет вид

Решив это уравнение (см. п. 145), получим

Но . Значит, нам остается решить совокупность уравнений

Из первого уравнения находим , ; из второго уравнения получаем Тем самым найдены четыре корня заданного уравнения.

Биквадратные уравнения

Биквадратным уравнением называют уравнение вида

Биквадратное уравнение решается методом введения новой переменной: положив , придем к квадратному уравнению

Пример:

Решить уравнение .

Решение:

Положив , получим квадратное уравнение , откуда находим . Теперь задача сводится к решению совокупности уравнений Первое уравнение не имеет действительных корней, из второго находим Это — корни заданного биквадратного уравнения.

Решение задач с помощью составления уравнений

С помощью уравнений решаются многочисленные задачи, к которым приводят самые разнообразные вопросы физики, механики, экономики и т. д. Прежде всего напомним общий порядок решения задач с помощью уравнений.

1) Вводят переменные, т. е. буквами х, у, z обозначают неизвестные величины, которые либо требуется найти в задаче, либо они необходимы для отыскания искомых величин.

2) С помощью введенных переменных и данных в задаче чисел и их соотношений составляют систему уравнений (или одно уравнение).

3) Решают составленную систему уравнений (или уравнение) и из полученных решений отбирают те, которые подходят по смыслу задачи.

4) Если буквами х, у, z обозначили не искомые величины, то с помощью полученных решений находят ответ на вопрос задачи.

Задача 1.

Для перевозки 60 т груза из одного места в другое затребовали некоторое количество машин. Ввиду неисправности дороги на каждую машину пришлось грузить на 0,5 т меньше, чем предполагалось, поэтому дополнительно потребовались 4 машины. Какое количество машин было затребовано первоначально?

Решение: Обозначим через х количество машин, затребованных первоначально. Тогда на самом деле было вызвано (х + 4) машин. Так как надо было перевезти 60 т груза, то предполагалось, что на одну машину будут грузить т груза, а на самом деле грузили т груза, что на 0,5 т меньше, чем предполагалось. В результате мы приходим к уравнению

Это уравнение имеет два корня: х = -24, х = 20. Ясно, что по смыслу задачи значение х = —24 не подходит. Таким образом, первоначально было затребовано 20 машин.

Задача 2.

Моторная лодка, движущаяся со скоростью 20 км/ч, прошла расстояние между двумя пунктами по реке туда и обратно без остановок за 6 ч 15 мин. Расстояние между пунктами равно 60 км. Найти скорость течения реки.

Решение:

Пусть х км/ч — скорость течения реки. Тогда лодка, собственная скорость которой 20 км/ч, идет по течению со скоростью (20 + х) км/ч, а против течения — со скоростью (20 — х) км/ч. Время, за которое лодка пройдет путь между пунктами по течению, составит ч, а время, за которое лодка пройдет обратный путь, составит ч. Так как путь туда и обратно лодка проходит за 6 ч 15 мин, т. е. ч, приходим к уравнению

решив которое, находим два корня: х = 4, х = -4. Ясно, что значение х = -4 не подходит по смыслу задачи. Итак, скорость течения реки равна 4 км/ч.

Задача 3.

Найти двузначное число, зная, что цифра его единиц на 2 больше цифры десятков и что произведение искомого числа на сумму его цифр равно 144.

Решение:

Напомним, что любое двузначное число может быть записано в виде 10х + у, где х — цифра десятков, а у — цифра единиц. Согласно условию, если х — цифра десятков, то цифра единиц равна х + 2 и мы получаем

Решив это уравнение, найдем

Второй корень не подходит по смыслу задачи.

Итак, цифра десятков равна 2, цифра единиц равна 4; значит, искомое число равно 24.

Задача 4.

Двое рабочих, работая вместе, выполнили некоторую работу за 6 ч. Первый из них, работая отдельно, может выполнить всю работу на 5 ч скорее, чем второй рабочий, если последний будет работать отдельно. За сколько часов каждый из них, работая отдельно, может выполнить всю работу?

Решение:

Производительность труда, т. е. часть работы, выполняемая в единицу времени (обозначим ее через А), и время, необходимое для выполнения всей работы (обозначим его через t), — взаимно обратные величины, т. е. At = 1. Поэтому если обозначить через х ч время, необходимое для выполнения всей работы первому рабочему, а через (х + 5) ч — второму, то часть работы, выполняемая первым рабочим за 1 ч, равна , а часть работы, выполняемая вторым рабочим за 1 ч, равна Согласно условию, они, работая вместе, выполнили всю работу за 6 ч. Доля работы, выполненная за 6 ч первым рабочим, есть , а доля работы, выполненная за 6 ч вторым рабочим, есть Так как вместе они выполнили всю работу, т. е. доля выполненной работы равна 1, получаем уравнение

решив которое, найдем х = 10.

Итак, первый рабочий может выполнить всю работу за 10 ч, а второй — за 15 ч.

Задача 5.

Из сосуда емкостью 54 л, наполненного кислотой, вылили несколько литров и долили сосуд водой, потом опять вылили столько же литров смеси. Тогда в оставшейся в сосуде смеси оказалось 24 л чистой кислоты. Сколько кислоты вылили в первый раз?

Решение:

Пусть в первый раз было вылито х л кислоты. Тогда в сосуде осталось (54 — х) л кислоты. Долив сосуд водой, получили 54 л смеси, в которой растворилось (54 — х) л кислоты. Значит, в 1 л смеси содержится л кислоты (концентрация раствора). Во второй раз из сосуда вылили х л смеси, в этом количестве смеси содержалось л кислоты. Таким образом, в первый раз было вылито х л кислоты, во второй л кислоты, а всего

за два раза вылито 54 — 24 = 30 л кислоты. В результате приходим к уравнению

Решив это уравнение, найдем два корня: и . Ясно, что значение 90 не удовлетворяет условию задачи.

Итак, в первый раз было вылито 18 л кислоты.

Задача 6.

Имеется кусок сплава меди с оловом массой 12 кг, содержащий 45% меди. Сколько чистого олова надо прибавить к этому куску, чтобы получившийся новый сплав содержал 40% меди?

Решение:

Пусть масса добавленного олова составляет х кг. Тогда получится сплав массой (12 + х) кг, содержащий 40% меди. Значит, в новом сплаве имеется 0,4(12 + х) кг меди. Исходный сплав массой 12 кг содержал 45% меди, т. е. меди в нем было . Так как масса меди и в имевшемся, и в новом сплаве одна и та же, приходим к уравнению

Решив это уравнение, получим х = 1,5. Таким образом, к исходному сплаву надо добавить 1,5 кг олова.

Задача 7.

Имеется сталь двух сортов с содержанием никеля 5% и 40%. Сколько стали того и другого сорта надо взять, чтобы после переплавки получить 140 т стали с содержанием никеля 30% ?

Решение:

Пусть масса стали первого сорта равна х т, тогда стали второго сорта надо взять (140 — х) т. Содержание никеля в стали первого сорта составляет 5%; значит, в х т стали первого сорта содержится 0,05л; т никеля. Содержание никеля в стали второго сорта составляет 40%; значит, в (140 — х) т стеши второго сорта содержится 0,4 (140 — х) т никеля. По условию после соединения взятых двух сортов должно получиться 140 т стали с 30% -ным содержанием никеля, т. е. после переплавки в полученной стали должно быть 0,3 * 140 т никеля. Но это количество никеля складывается из 0,05л; т, содержащихся в стали первого сорта, и из 0,4 (140 — х) т, содержащихся в стали второго сорта. Таким образом, приходим к уравнению

0,05х + 0,4 (140 — х) = 0,3 * 140,

из которого находим х = 40. Следовательно, надо взять 40 т стали с 5% -ным и 100 т стали с 40% -ным содержанием никеля.

Иррациональные уравнения

Иррациональным называют уравнение, в котором переменная содержится под знаком радикала или под знаком возведения в дробную степень. Например, иррациональными являются уравнения

Используются два основных метода решения иррациональных уравнений:

1) метод возведения обеих частей уравнения в одну и ту же степень;

2) метод введения новых переменных (см. п. 147).

Метод возведения обеих частей уравнения в одну

и ту же степень состоит в следующем:

а) преобразуют заданное иррациональное уравнение к виду

б) возводят обе части полученного уравнения в п-ю степень:

в) учитывая, что , получают уравнение

г) решают уравнение и, в случае четного п, делают проверку, так как возведение обеих частей уравнения в одну и ту же четную степень может привести к появлению посторонних корней (см. п. 142). Эта проверка чаще всего осуществляется с помощью подстановки найденных значений переменной в исходное уравнение.

Пример 1.

Решить уравнение

Решение:

Возведем обе части уравнения в шестую степень; получим х — 3 = 64, откуда х = 67.

Проверка:

Подставив 67 вместо х в данное уравнение, получим , т. е. 2 = 2 — верное равенство.

Ответ: 67.

Пример 2.

Решение:

Преобразуем уравнение к виду

и возведем обе части его в квадрат. Получим

Еще раз возведем обе части уравнения в квадрат:

откуда

Проверка:

1) При х = 5 имеем

— верное равенство.

Таким образом, х = 5 является корнем заданного уравнения.

2) При х = 197 имеем Таким образом, х = 197 — посторонний корень.

Ответ: 5.

Пример 3.

Решение:

Применим метод введения новой переменной.

Положим и мы получаем уравнение , откуда находим

Теперь задача свелась к решению совокупности уравнений

Возведя обе части уравнения в пятую степень, получим х — 2 = 32, откуда х = 34.

Уравнение не имеет корней, поскольку под знаком возведения в дробную степень может содержаться только неотрицательное число, а любая степень неотрицательного числа неотрицательна.

Ответ: 34.

Показательные уравнения

Показательное уравнение вида

где равносильно уравнению f(х) = g(x).

Имеются два основных метода решения показательных уравнений:

1) метод уравнивания показателей, т. е. преобразование заданного уравнения к виду а затем к виду f(х) = g(x);

2) метод введения новой переменной.

Пример 1.

Решить уравнение

Решение:

Данное уравнение равносильно уравнению откуда находим Решив это квадратное уравнение, получим

Пример 2.

Решение:

Приведем все степени к одному основанию . Получим уравнение которое преобразуем к виду Уравнение равносильно уравнению х = 2х — 3, откуда находим х = 3.

Пример 3.

Решить уравнение

Решение:

Применим метод введения новой переменной. Так как ,то данное уравнение можно переписать в виде

Введем новую переменную, положив Получим квадратное уравнение с корнями Теперь задача сводится к решению совокупности уравнений

Из первого уравнения находим х = 2. Второе уравнение не имеет корней, так как при любых значениях х.

Ответ: 2.

Логарифмические уравнения

Чтобы решить логарифмическое уравнение вида

где нужно:

1) решить уравнение f(x) = g(x);

2) из найденных корней отобрать те, которые удовлетворяют неравенствам f(x) > 0 и g(x) > 0; остальные корни уравнения f(x) = g(x) являются посторонними для уравнения (1).

Имеются два основных метода решения логарифмических уравнений:

1) метод, заключающийся в преобразовании уравнения к виду затем к виду f(x) = g(x);

2) метод введения новой переменной.

Пример 1.

Решение:

Перейдем от заданного уравнения к уравнению и решим его. Имеем Проверку найденных значений х выполним с помощью неравенств Число -3 этим неравенствам удовлетворяет, а число 4 — нет. Значит, 4 — посторонний корень.

Ответ: -3.

Пример 2.

Решение:

Воспользовавшись тем, что сумма логарифмов равна логарифму произведения (см. п. 120), преобразуем уравнение к виду

Из последнего уравнения находим

Осталось сделать проверку. Ее можно выполнить с помощью системы неравенств

Подставив поочередно найденные значения -1 и -5,5 в эти неравенства, убеждаемся, что -1 удовлетворяет всем неравенствам, а -5,5 — нет, например при этом значении не выполняется первое неравенство. Значит, -5,5 — посторонний корень.

Ответ: -1.

Пример 3.

Решение:

Так как заданное уравнение можно переписать следующим образом:

Введем новую переменную, положив Получим

Но ; из уравнения находим х = 4.

Ответ: 4.

Примеры решения показательно-логарифмических уравнений

Пример 1.

Решение:

Область определения уравнения: х > 0. При этом условии выражения, входящие в обе части уравнения (1), принимают только положительные значения. Прологарифмировав обе части уравнения (1) по основанию 10, получим уравнение

равносильное уравнению (1). Далее имеем

Полагая получим уравнение , откуда Остается решить совокупность уравнений Из этой совокупности получим — корни уравнения (1).

Здесь применен метод логарифмирования, заключающийся в переходе от уравнения f(x) = g(x) к уравнению

Пример 2.

(2)

Решение:

Воспользовавшись определением логарифма, преобразуем уравнение (2) к виду

Полагая , получим уравнение корнями которого являются

Теперь задача сводится к решению совокупности уравнений

Так как , а -1 0 и мы получаем

если , то D = 0 и мы получаем , т. е. (поскольку ) .

Итак, если то действительных корней нет; если = 1, то ; если ,то ; если и , то

Пример 3.

При каких значениях параметра уравнение

имеет два различных отрицательных корня?

Решение:

Так как уравнение должно иметь два различных действительных корня его дискриминант должен быть положительным. Имеем

Значит, должно выполняться неравенство

По теореме Виета для заданного уравнения имеем

Так как, по условию, , то и

В итоге мы приходим к системе неравенств (см. п. 177):

Из первого неравенства системы находим (см. п. 180, 183) ; из второго ; из третьего . С помощью координатной прямой (рис. 1.107) находим, что либо , либо

Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:

Смотрите также дополнительные лекции по предмету «Математика»:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Алгебра

План урока:

Целые неравенства

Неравенства по своей сути очень похожи на уравнения. Аналогично понятию целого уравнения существует понятие целого неравенства. Так называют то нер-во, в котором используются сложение и умножение, вычитание и деление, возведение в степень, но в котором нет деления на выражения с переменной. Другими словами, ни в одном знаменателе в целом нер-ве не должно быть переменных величин.

Приведем примеры целых нер-в:

14х 4 + 13х 2 ⩽ 91х 3 + 2

Если бы переменная могла быть в знаменателе, то знаменатель мог бы обращаться в ноль при некоторых ее значениях, что недопустимо в математике.Но так как в целых нер-вах переменная не находиться в знаменателе, то она может принимать любое значение.

Любое целое нер-во можно преобразовать так, чтобы в одной его части (обычно правой) стоял ноль, а в другой части – некоторый многочлен Р(х).

Пример. Преобразуйте нер-во

(х 3 + 7)(2х – 3) >4х(х 2 – 5х + 9)

к виду Р(х) > 0, где Р(х) – это многочлен.

Решение. Раскроем скобки в каждой части нер-ва:

(х 3 + 7)(2х – 3) >4х(х 2 – 5х + 9)

2х 4 – 3х 3 + 14х – 21 > 4x 3 – 20х 2 + 36х

Перенесем слагаемые влево и приведем подобные слагаемые:

2х 4 – 3х 3 + 14х – 21 – 4x 3 + 20х 2 – 36х > 0

2х 4 – 7х 3 + 20х 2 – 22х – 21 > 0

Ответ:2х 4 – 7х 3 + 20х 2 – 22х – 21 > 0

Как и в случае с уравнениями, у нер-в есть степени. Она равна степени многочлена, стоящего в одной из его частей. Так, степень неравенства в рассмотренном только что примере равна 4, ведь степень полинома 2х 4 – 7х 3 + 20х 2 – 22х – 21 равна 4.

Неравенства первой степени

В общем виде неравенства первой степени выглядит так:

где а и b– некоторые числа, а х – переменная.

Естественно, вместо знака «>»могут стоять знаки « 0

Напомним, что решения нер-в традиционно записывают в виде числовых промежутков. Запись х > 3 аналогична записи х∈(3; + ∞). На числовой прямой этот промежуток выглядит так (отмечен штриховкой):

Для наглядности построим график функции у = 5х – 15 и отметим промежуток, на котором она больше нуля:

Заметим, что неравенство строгое, а потому само число 3 в его решение не входит. Из-за этого в записи (3; + ∞) первая скобка – круглая.

Пример. Решите нер-во

х ⩽ 9/(– 3) (обратите внимание, из-за деления на отрицательное число изменился знак нер-ва!)

Также построим график у = – 3х – 9 и убедимся, что мы не ошиблись:

Неравенство нестрогое, и число – 3 входит в ответ, поэтому поле него в промежутке стоит квадратная скобка.

Неравенства второй степени

Неравенства второй степени в общем виде записываются так:

Примерами таких нер-в являются

5х 2 – 3х + 19 > 0

– 12у 2 + 1,23у + 64 ⩾ 0

462z 2 + 3z– 54 2 + bx + c смотрят вверх, если коэффициент а > 0, и смотрят вниз, если а 2 + bx + c, надо решить квадратное ур-ние ах 2 + bx + c = 0. Если его дискриминант (D) больше нуля, то есть два нуля. Если D = 0, то есть только один ноль. Если D 2 + bx + c> 0

надо решить ур-ние ах 2 + bx + c = 0 и проанализировать положение графика квадратичной функции относительно оси Ох.

Пример. Найдите промежуток, на котором справедливо нер-во

2х 2 – 5х + 2 2 – 5х + 2 = 0.

D = b 2 – 4ас = (– 5) 2 – 4•2•2 = 25 – 16 = 9

Коэффициент а параболы положителен, поэтому ее ветви смотрят вверх. Сам график будет выглядеть так:

Однако нам достаточно и схематичного изображения параболы и ее нулей на координатной прямой:

Нули функции разбивают прямую на три промежутка. На каждом из них знак квадратичной функции неизменен. Отметим эти знаки:

В нер-ве стоит знак « 2 + 9х – 9 ≤ 0

Решение. Сначала находим нули параболы, решая ур-ние

D = b 2 – 4ас = 9 2 – 4•(– 2)•(– 9) = 81 – 72 = 9

Коэффициент а параболы отрицательный, поэтому ее ветви смотрят вниз. Отметим на координатной прямой нули ф-ции и схематично график параболы, а также промежуток, на котором она неположительна:

Так как нер-во нестрогое, то сами нули ф-ции входят в ответ, а потому скобки рядом с нулями – квадратные. В итоге х∊(– ∞; 1,5]∪[3; + ∞).

Пример Решите нер-во

х 2 – 2х + 1 > 0

Решение. Решим квадратное ур-ние

D = b 2 – 4ас = (– 2) 2 – 4•1•1 = 4 – 4 = 0

Дискриминант равен нулю, поэтому у ур-ния лишь 1 корень.

Парабола будет касаться прямой Ох в единственной точке, при этом ветви параболы должны смотреть вверх:

Получается, что ф-ция положительна на всей координатной прямой, кроме точки х = 1, где она обращается в ноль. Соответственно, в ответе надо указать объединение промежутков: х∊(– ∞; 1)∪(1; + ∞).

Пример. Найдите решение нер-ва

– 5х 2 + х – 100 2 + х – 100 = 0

D = b 2 – 4ас = 1 2 – 4•(– 5)•(– 100) = 1 – 2000 = – 2001

Дискриминант меньше нуля, поэтому корней не будет. Вся парабола будет находиться ниже оси Ох, так как ее ветви должны смотреть вниз из-за отрицательного коэффициента а = – 5.

Видно, что при любых значениях х левая часть нер-ва меньше нуля, то есть нер-во справедливо при х∊(– ∞; + ∞).

Метод интервалов

Ясно, что знак произведения зависит от знаков множителей. Так, если мы перемножаем три отрицательных числа и два положительных, то мы получим отрицательное произведение:

Если же отрицательных множителей два или четыре, то итоговое произведение получится положительным:

Вообще можно заметить, что если в произведении находится нечетное количество множителей (1, 3, 5, 7…), то и всё произведение отрицательно. Если же количество отрицательных множителей четно (0, 2, 4, 6, 8…), то произведение положительно. Дело в том, что при умножении отрицательных чисел действует правило «минус на минус дает плюс», то есть два минуса как бы «самоуничтожаются». Поэтому при перемножении четного количества отрицательных чисел все минусы попарно сократятся. Из этого правила есть одно исключение – если хотя бы один множитель равен нулю, то и всё произведение равно нулю, независимо от количества отрицательных сомножителей.

Пример. Справедливо ли нер-во

(– 12)•453•62,36•725•(– 975)•(– 812,99) 0

Перенеся единицу вправо, получим, что

Графически это можно показать так:

Аналогично, рассматривая нер-ва

можно показать, какие значения принимает каждая из скобок при различных х:

Видно, что скобки (х – 1), (х – 2), (х – 3) и (х – 4) изменяют знаки с «–» на «+» при «перескоке» через точки 1, 2, 3 и 4. Отметим их все вместе на одной прямой и укажем знаки скобок на каждом из образовавшихся промежутков:

Получили 5 промежутков. Если выражение выделено красным, то оно отрицательно на промежутке, а если синим – то положительно. Напомним, что произведение отрицательно, если в его состав входит нечетное количество (1, 3, 5…) отрицательных множителей. На рисунке видно, что на промежутке (1; 2) отрицательны 3 множителя, а на промежутке (3; 4) – один множитель. Следовательно, именно на них всё произведение

(х – 1)(х – 2)(х – 3)(х – 4)

оказывается отрицательным. Соответственно на других промежутках произведение положительно. Это можно отметить так:

Штриховкой отмечены промежутки, где произведение отрицательно. Получается, что решением нер-ва является объединение промежутков (1; 2)∪(3; 4). Сами точки 1, 2, 3 и 4 исключены из решения, так как нер-во строгое. Если бы нер-во было нестрогим, то на рисунке точки были бы закрашены, а скобки в промежутке были бы квадратными.

Убедимся в верности этого решения, выбрав произвольное число из каждого промежутка и подставив его в произведение.

Из промежутка (– ∞; 1) возьмем значение х = 0:

(0 – 1)(0 – 2)(0 – 3)(0 – 4) = (– 1)•(– 2)(– 3)•(– 4) = 24 > 0

Из следующего промежутка возьмем х = 1,5:

(1,5 – 1)(1,5 – 2)(1,5 – 3)(1,5 – 4) = 0,5•(– 0,5)•(– 1,5)•(– 2,5) 0

Из промежутка (3; 4) выберем х = 3,5:

(3,5 – 1)(3,5 – 2)(3,5 – 3)(3,5 – 4) = 3,5•1,5•0,5•(– 0,5) 0

Для решения нер-ва мы просто нашли, при каких значениях выражение слева принимает нулевые значения, а потом расставили знаки в полученных интервалах. Данный способ называется методом интервалов.

Пример. Решите неравенство методом интервалов:

(у – 5)(– 2у + 6)(у + 4) ≥0

Решение. Вынесем из второй скобки множитель (– 2):

(у – 5)(– 2)(у – 3)(у + 4) ≥ 0

Поделим нер-во на число (– 2). Напомним, что при делении нер-ва на отрицательную величину его знак меняется на противоположный:

(у – 5)(у – 3)(у + 4) ≤ 0

Используем метод интервалов. Отметим на координатной прямой точки, при которых каждая скобка обращается в ноль (это 5, 3 и (– 4)), и расставим знаки над получившимися промежутками:

Определить эти знаки можно, просто выбрав произвольное число из промежутка и подставив его в левую часть. Так, выберем из промежутка (– ∞; – 4) число (– 5) и получим:

(– 5 – 5)(– 5 – 3)(– 5 + 4) = (– 10)•(– 8)•(– 1) 0

Из промежутка (3; 5) возьмем число 4:

(4 – 5)(4 – 3)(4 + 4) = (– 1)•1•8 0

Итак, выражение слева меньше или равно нулю при у∊(– ∞; – 4]∪[3; 5].

Обратим внимание, что в рассмотренных примерах знаки на промежутках чередовались. Это значит, что достаточно было определить знак на одном промежутке, а дальше просто менять их при переходе через отмеченные точки. Есть один частный случай, когда такое чередование НЕ происходит. Такое возможно, если в двух скобках находится одинаковые выражения.

Пример. Решите нер-во

(z – 5)(3z – 15)(7 – z) ≤ 0

Решение. Вынесем из второй скобки множитель 3, а из третьей – (– 1):

(z – 5)•3•(z – 5)•(– 1)•(z – 7) ≤ 0

Делим нер-во на (– 3):

(z – 5)(z – 5)(z – 7) ≥ 0

Обратите внимание – мы получили две одинаковые скобки (z – 5). Отметим на прямой нули левого выражения (это числа 5 и 7), а также знаки промежутков:

Для расстановки знаков подставим в выражение слева числа:

при z = 4 (4 – 5)(4 – 5)(4 – 7) = (– 1)•(– 1)•(– 3) 0

Получилось, что на соседних интервалах (– ∞; 5) и (5; 7) знаки совпадают, а не чередуются. Так произошло из-за того, что при переходе через точку z = 5 знак поменяла не одна, а сразу 2 скобки (х – 5).

При записи ответа надо учесть, что в задании дано нестрогое нер-во. Поэтому в ответ надо включить как промежуток [7; + ∞), так и число 5, которое обращает в ноль произведение в левой части.

Неравенства высоких степеней

Напомним, что если некоторое число а – корень многочлена Р(х) (то есть оно является корнем ур-ния Р(х) = 0), то этот многочлен можно представить как произведение двучлена (х – а) и какого-то другого многочлена Р1(х). Другими словами, зная корни многочлена, можно разложить его на множители. За счет этого можно решать нер-ва высоких степеней.

Пример. Решите нер-во

х 3 – 3х 2 – х + 3 3 – 3х 2 – х + 3 = 0

Попробуем подобрать корни, начав с целых чисел. Напомним, что все целые корни должны быть делителем свободного члена, то есть в данном случае числа 3. Поэтому «кандидатами» являются числа 1, (– 1), 3 и (– 3). Подставляя их в ур-ние, находим, что оно имеет три корня: 1, (– 1) и 3:

1 3 – 3•1 2 – 1 + 3 = 1 – 3 – 1 + 3 = 0

(– 1) 3 – 3•(– 1) 2 – (– 1) + 3 = – 1 – 3 + 1 + 3 = 0

3 3 – 3•3 2 – 3 + 3 = 27 – 27 – 3 + 3 = 0

Число (– 3) не подходит, ведь при его подстановке в левую часть ноль не получается:

(– 3) 3 – 3•(– 3) 2 – (– 3) + (– 3) = – 27 +27 + 3 + 3 = 6

Напомним, что у ур-ния 3-ей степени не может быть более 3 корней, поэтому других корней у ур-ния нет.

Зная корни, мы можем разложить многочлен на множители:

х 3 – 3х 2 – х + 3 = (х – 1)(х + 1)(х – 3).

В справедливости такого разложения можно убедиться, раскрыв скобки в правой части этого равенства. Теперь можно переписать исходное нер-во

х 3 – 3х 2 – х + 3 0

при х = 2 имеем (2 – 1)(2 + 1)(2 – 3) = 1•3•(– 1) 0

Получаем, что левая часть отрицательна при х∊(– ∞; – 1)∪(1; 3).

Пример. Решите нер-во

Решение. Рассмотрим ур-ние

Подбором можно определить лишь один его корень – единицу:

Поделим исходный многочлен на (х – 1):

Получили, что х 3 + 2х – 3 = (х – 1)(х 2 + 2х + 3)

Можно ли разложить на множители квадратный трехчлен х 2 + 2х + 3? Попытаемся решить ур-ние

D = b 2 – 4ас = 4 2 – 4•2•3 = 16 – 24 = – 8

Получили, что корней нет. Это значит, что функция у = х 2 + 2х + 3 не пересекает ось Ох, и, так как коэффициент а этого трехчлена положителен, то выражение х 2 + 2х + 3 больше нулю при любом х.

Это можно показать и иначе, если выделить полный квадрат из трехчлена:

х 2 + 2х + 3 = х 2 + 2х + 1 + 2 = (х + 1) 2 + 2

Перепишем исходное нер-во с учетом разложения многочлена на множители:

(х – 1)(х 2 + 2х + 3) > 0

Так как выражение х 2 + 2х + 3 положительно при любом значении х, то мы можем поделить неравенство на него:

Отсюда получаем, что х∊(1; + ∞).

Пример. Укажите наименьшее целое решение неравенства

4х 3 + 4х 2 – 7х + 2 > 0

Решение. Попытаемся найти корень многочлена 4х 3 + 4х 2 – 7х + 2. Целый корень должен быть делителем двойки (свободного члена), то есть возможны варианты 1 и (–1), 2 и (– 2). Из них подходит только – 2:

4•(– 2) 3 + 4•(– 2) 2 – 7•(– 2) + 2 = – 32 + 16 + 14 + 2 = 0

Значит, можно поделить исходный многочлен на х + 2:

Можно записать, что 4х 3 + 4х 2 – 7х + 2 = (х + 2)(4х 2 – 4х + 1).

Далее разложим получившийся при делении квадратный трехчлен на множители, для чего приравняем его к нулю:

D = b 2 – 4ас = (– 4) 2 – 4•4•1 = 16 – 16 = 0

Получается, что есть лишь один корень.

х = – b/(2a) = – (– 4)/(2•4) = 0,5

Если у квадратного трехчлена дискриминант равен нулю, то это значит, что он является полным квадратом какого-то выражения. Действительно:

4х 2 – 4х + 1 = (2х) 2 – 2•2х•1 + 1 2 = (2х – 1) 2

Тогда можно записать:

4х 3 + 4х 2 – 7х + 2 = (х + 2)(4х 2 – 4х + 1) = (х + 2)(2х – 1) 2 =

Перепишем с учетом этого исходное нер-во:

4х 3 + 4х 2 – 7х + 2 > 0

(х + 2)(2х – 1)(2х – 1) > 0

Вынесем множитель 2 из двух последних скобок и поделим нер-во на них:

(х + 2)•2•(х – 0,5)•2•(х – 0,5) > 0

(х + 2)(х – 0,5)(х – 0,5) > 0

Решим его методом интервалов:

Снова из-за двух одинаковых скобок (х – 0,5) на соседних промежутках (– 2; 0,5) и (0,5; 2) получили один и тот же знак. Функция положительна на них, однако она равна нулю при х = 0,5, поэтому это число из решения неравенства исключается. Получаем, что х∈(– 2; 0,5)∪(0,5; + ∞).

Нам надо указать наименьшее целое решение. Самым малым целым числом из множества (– 2; 0,5)∪(0,5; + ∞) является (– 1).

Дробно-рациональные неравенства

До сих пор мы рассматривали целые нер-ва. Однако, по аналогии с уравнениями, существуют ещё и дробно-рациональные нер-ва. В них выражение с переменной может стоять в знаменателе. Приведем примеры дробно-рациональных нер-в:

Любое такое нер-во можно представить в виде

где Р(х) и Q(х) – некоторые многочлены. Естественно, вместо знака «>» может стоять и другой знак. Для примера преобразуем к такому виду нер-во

Перенесем все слагаемые влево:

Далее приведем левую часть к общему знаменателю:

Осталось раскрыть скобки:

В итоге и в числителе, и в знаменателе стоят многочлены.

Докажем, что они равносильны друг другу. Возможны 5 случаев:

  1. И а, и b являются положительными числами. Тогда оба нер-ва верны, ведь и произведение, и отношение двух положительных чисел само положительно:
  1. Оба числа, а и b, отрицательны, тогда снова оба нер-ва справедливы, ведь при умножении и делении двух отрицательных чисел получается положительное число. Например:
  1. Только одно из чисел положительно, а другое отрицательно, тогда их произведение, как и частное, меньше нуля, и нер-ва неверны:

(– 10)•5 = – 50 0 и ab> 0 снова одновременно неверны.

Получили, что при любых значениях а и b нер-ва а/b> 0 и ab> 0 либо одновременно справедливы, либо одновременно несправедливы. Это значит, что они равносильны.

Это значит, что от дробно-рационального нер-ва можно перейти к равносильному ему целому нер-ву.

Пример. Решите нер-во

Исходному нер-ву равносильно иное нер-во:

(х – 1)(х – 2)(х – 3)(х – 4)> 0

Решим его методом интервалов:

Получаем, что х∊(1; 2)∪(3; 4).

Пример. Решите нер-во

Решение. В числителе и знаменателе находятся квадратные трехчлены. Их можно разложить на корни, если знать их корни. Найдем их.

D = b 2 – 4ас = (– 9) 2 – 4•1•14 = 84 – 56 = 25

Так как корни равны 2 и 7, то можно записать, что

х 2 – 9х + 14 = (х – 2)(х – 7)

Аналогично разложим знаменатель

х 2 – 14х + 45 = 0

D = b 2 – 4ас = (– 14) 2 – 4•1•45 = 196 – 180 = 16

х 2 – 14х + 45 = (х – 5)(х – 9)

Перепишем исходное нер-во:

Ему равносильно другое нер-во:

(х – 2)(х – 7)(х – 5)(х – 9) > 0

Его можно решить методом интервалов:

Получаем, что х∊(– ∞; 2)∪(5; 7)∪(9; + ∞).

Обратим внимание на одну особенность метода интервала в случаях, когда решается дробно-рациональное нер-во. Она касается нестрогих нер-в (со знаками «≤» и «≥»). В целых нестрогих нер-вах сами точки, при которых выражение слева обращается в ноль, включаются в решение. Но при рассмотрении дроби важно понимать, что ее знаменатель не может быть равным нулю. Поэтому при нестрогом нер-ве в ответ надо включить точки, обращающие в ноль числитель, но при этом исключить точки, обращающие в ноль знаменатель.

Пример. Решите нер-во

Числитель обращается в ноль в точках (– 2) и 4, а знаменатель – в точках (– 7) и 8. Так как нер-во нестрогое, то числа 4 и (– 2) будут входить в решение (на координатной прямой мы отметим их закрашенным кружочком), а числа (– 7) и 8 – нет (их отметим как «выколотые точки»):

В итоге получаем, что дробь неотрицательна при х∊(– ∞; – 7)∪[– 2; 4]∪(8; – ∞).

Алгебра и начала математического анализа. 11 класс

Конспект урока

Алгебра и начала математического анализа, 11 класс

Урок №42. Линейные уравнения и неравенства с двумя переменными

Перечень вопросов, рассматриваемых в теме:

  • Решение уравнений, неравенств, систем уравнений и систем неравенств с двумя переменными;
  • Изображение в координатной плоскости множества решений уравнений, неравенств, систем уравнений, систем неравенств;
  • Нахождение площади получившейся фигуры.

Глоссарий по теме

Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными, где a, b и c — некоторые числа (a ≠ 0 , b ≠0), а, х и у — переменные.

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. Учебник: Алгебра 9 кл с углубленным изучением математики Мнемозина, 2014.

Открытые электронные ресурсы:

Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/.

Открытый банк заданий ЕГЭ ФИПИ, Элементы комбинаторики, статистики и теории вероятностей, базовый уровень. Элементы комбинаторики, статистики и теории вероятностей. Базовый уровень. http://ege.fipi.ru/.

Теоретический материал для самостоятельного изучения

Уравнения, а также системы уравнений имеют давнюю историю. Нам известно, что уже в Древнем Вавилоне и Индии повседневные задачи, связанные с земляными работами или планированием военных расходов, а также астрономическими наблюдениями решались с помощью уравнений и их систем.

В то время еще не существовало привычного нам формального языка математики. Вавилоняне, также, как и индусы не использовали в своих трактатах привычные нам «икс» и «игрек». Не обозначали степень надстрочными индексами. И т.д. Их уравнения записаны в виде текстовых задач. Также, как и решения, не похожи на современные, а скорее напоминают цепочку логических рассуждений.

Вместе с тем, если перевести в привычный нам вид те уравнения, которые умели решать в Древнем Вавилоне, то мы увидим: . И в древнем индийском манускрипте «Ариабхаттиам», датируемом 499 годом нашей эры, также встречаются задачи, решаемые с помощью квадратных уравнений. Индийские мудрецы (слово ученый тоже еще не существовало) уже не ограничивались решением конкретных житейских задач, но и работали над решением квадратного уравнения в общем виде.

Привычный нам вид уравнения обретают только в конце шестнадцатого века, благодаря трудам Франсу Виета (1540 – 1603 гг.). Именно он, помимо прочих своих научных достижений обладает и неофициальным титулом «создатель алгебры». Поскольку разработал и активно внедрял символический язык алгебры – те самые, привычные нам «иксы и игреки».

1.Найдите уравнения, которые являются линейными.

4х + 5у = 10; ; у = 7х +4

Ответ: 4х + 5у = 10; у = 7х +4

Сегодня на уроке мы вспомним что такое линейные уравнения и неравенства с двумя переменными; системы линейный уравнений и неравенств, а также научимся изображать множество на плоскости, задаваемое линейным уравнением и неравенством.

  1. Линейные уравнения с двумя переменными.

Уравнение вида ах + by +с =0, где а,b,с – некоторые числа, называется линейным уравнением с двумя переменными х и у.

Решением уравнения ах + by +с =0, где а,b,с – некоторые числа, называется пара значений обращающая уравнение в верное числовое равенство.

Если одновременно а и b, то уравнение ах + by +с =0 является уравнением некоторой прямой. Для построения прямой достаточно найти две точки этой прямой.

Построить график уравнения 2х+у =1

На координатной плоскости отметим точки с координатами (0;1) и (2;-3). Через две точки на плоскости проведем прямую. Полученная прямая является геометрической моделью уравнения 2х+у =1.

  1. Линейные неравенства с двумя переменными.

Линейным неравенством с двумя переменными называется неравенство вида ах + bу + с 0, где х и у – переменные, а, b, c – некоторые числа.

Решением неравенства с двумя переменными называется пара значений переменных, обращающая его в верное равенство.

Является ли пара (2;1) решением неравенства 5х + 2у > 4 . Является, тк при подстановке в него вместо х числа 2, а вместо у числа 1 получается верное равенство 10 + 2 > 4.

Если каждое решение неравенства с двумя переменными изобразить точкой в координатной плоскости, то получится график этого неравенства. Он является некоторой фигурой.

Найти множество точек координатной плоскости, удовлетворяющих неравенству 3х – 2у +6 > 0.

  1. Уравнение 3х – 2у +6 = 0 является уравнением прямой, проходящей через точки(- 2; 0) и (0; 3).
  2. Пусть точка М11,у1) лежит в заштрихованной полуплоскости (ниже прямой 3х – 2у +6 = 0, а М21,у2)лежит на прямой 3х – 2у +6 = 0. Тогда 2у2 – 3х1 – 6 = 0, а 2у1 – 3х1 – 6 0 штриховкой (рис. 1)

Рисунок 1 – решение неравенства 3х – 2у +6 > 0

Если в линейном неравенстве с двумя переменными знак неравенства заменить знаком равенства, то получится линейное уравнение ах + by +с =0, графиком которого является прямая при условии, что и . Прямая разбивает плоскость на две полуплоскости. Одна из них является графиком неравенства ах + bу + с 0

Чтобы решить неравенство ах + bу + c 0, достаточно взять какую-нибудь точку М11; у1), не лежащую на прямой aх + bу + c = 0, и определить знак числа aх1 + bу1 + c.


источники:

http://100urokov.ru/predmety/urok-3-neravenstva-s-odnoj-peremennoj

http://resh.edu.ru/subject/lesson/6122/conspect/