Уравнения качественных реакций на хлорид анион

КАЧЕСТВЕННЫЕ РЕАКЦИИ НА ХЛОРИД-, БРОМИД-, ЙОДИД-ИОНЫ.

ЙОД МОЛЕКУЛЯРНЫЙ.

а) на хлорид-ион – действие раствора нитрата серебра → образуется белый творожистый осадок хлорида серебра:

Осадок нерастворим в азотной кислоте, но легко растворим в аммиаке с образованием комплексного соединения:

хлорид диаммин серебра

При прибавлении к раствору хлорида диаммина серебра концентрированной серной кислоты осадок снова выделяется:

Реакция является фармакопейной.

AgCl – также растворим в тиосульфате натрия.

Т.В.: к 2 каплям раствора NaCl прибавляют 2 капли раствора AgNO3.

К раствору с выпавшим осадком прибавляют концентрированный раствор аммиака до полного растворения осадка. Полученный раствор подкисляют концентрированной азотной кислотой и наблюдают выпадение осадка.

1) действие нитрата серебра → желтовато-белый осадок бромида серебра:

Осадок не растворяется в HNO3, плохо растворим в аммиаке в отличие от хлорида серебра и хорошо растворяется в растворе тиосульфата натрия.

Реакция является фармакопейной.

Т.В.: К 4 каплям раствора NaBr прибавляют 4 капли раствора AgNO3. Раствор с осадком делят на две части. К одной части прибавляют раствор тиосульфата натрия, а к другой – концентрированный раствор аммиака и сравнивают растворение осадка AgBr в этих реактивах.

2) с хлорной водой

Хлорная вода, прибавленная к раствору бромида, выделяет из него свободный бром, который растворяется в сероуглероде или хлороформе, окрашивая слой растворителя в оранжевый цвет:

Cl2 + 2 NaBr = 2 NaCl + Br2

При большом избытке хлорной воды окраска исчезает вследствие образования BrCl, имеющего более светлую окраску.

Т.В. К 5 каплям раствора NaBr прибавляют 1 мл хлороформа, 1-2 капли разбавленной H2SO4 и затем по каплям, при энергичном встряхивании 2-3 капли хлорной воды. Наблюдается окрашивание слоя хлороформа.

1) нитрат серебра выделяет из иодидов светло-желтый творожистый осадок серебра:

Осадок не растворяется в азотной кислоте и растворе аммиака и плохо растворяется в растворе тиосульфата натрия.

Реакция является фармакопейной.

Т.В.: К раствору KI прибавляют немного раствора AgNO3. Проверяют растворение выпавшего осадка в растворе натрия тиосульфата.

2) Хлорная вода выделяет из растворов иодидов свободный йод, который окрашивает сероуглерод или хлороформ в красновато-фиолетовый цвет, а раствор крахмала – в синий.

Т.В.: К 5 каплям раствора NI (KI) прибавить 1 мл хлороформа, 2-3 капли разбавленной H2SO4 и затем по каплям, при энергичном взбалтывании 2-3 капли хлорной воды. Наблюдают окрашивание слоя хлороформа в красновато-фиолетовый цвет. В другую пробирку наливают 1 каплю раствора KI, 1 каплю хлорной воды и 2 капли раствора крахмала. Наблюдают изменение окраски.

3) Хлорид железа (III), конц. H2SO4 и некоторые другие окислители окисляют ион I — до свободного йода; например:

2 FeCl3 + 2 KI = 2 FeCl2 + 2 KCl + I2

Реакция является фармакопейной.

Т.В.: На фильтровальную бумагу в одном месте последовательно по 1 капле наносят растворы KI, HCl, FeCl3. Наблюдают появление бурого пятна, синеющего от капли крахмала.

г) На йод молекулярный → действие крахмала → синее окрашивание.

Выводы: а) на хлорид-ион – действие раствора нитрата серебра → образуется белый творожистый осадок хлорида серебра:

Осадок нерастворим в азотной кислоте, но легко растворим в аммиаке с образованием комплексного соединения:

хлорид диаммин серебра

При прибавлении к раствору хлорида диаммина серебра концентрированной серной кислоты осадок снова выделяется:

Реакция является фармакопейной.

AgCl – также растворим в тиосульфате натрия.

Т.В.: к 2 каплям раствора NaCl прибавляют 2 капли раствора AgNO3.

К раствору с выпавшим осадком прибавляют концентрированный раствор аммиака до полного растворения осадка. Полученный раствор подкисляют концентрированной азотной кислотой и наблюдают выпадение осадка.

1) действие нитрата серебра → желтовато-белый осадок бромида серебра:

Осадок не растворяется в HNO3, плохо растворим в аммиаке в отличие от хлорида серебра и хорошо растворяется в растворе тиосульфата натрия.

Реакция является фармакопейной.

Т.В.: К 4 каплям раствора NaBr прибавляют 4 капли раствора AgNO3. Раствор с осадком делят на две части. К одной части прибавляют раствор тиосульфата натрия, а к другой – концентрированный раствор аммиака и сравнивают растворение осадка AgBr в этих реактивах.

2) с хлорной водой

Хлорная вода, прибавленная к раствору бромида, выделяет из него свободный бром, который растворяется в сероуглероде или хлороформе, окрашивая слой растворителя в оранжевый цвет:

Cl2 + 2 NaBr = 2 NaCl + Br2

При большом избытке хлорной воды окраска исчезает вследствие образования BrCl, имеющего более светлую окраску.

Т.В. К 5 каплям раствора NaBr прибавляют 1 мл хлороформа, 1-2 капли разбавленной H2SO4 и затем по каплям, при энергичном встряхивании 2-3 капли хлорной воды. Наблюдается окрашивание слоя хлороформа.

1) нитрат серебра выделяет из иодидов светло-желтый творожистый осадок серебра:

Осадок не растворяется в азотной кислоте и растворе аммиака и плохо растворяется в растворе тиосульфата натрия.

Реакция является фармакопейной.

Т.В.: К раствору KI прибавляют немного раствора AgNO3. Проверяют растворение выпавшего осадка в растворе натрия тиосульфата.

2) Хлорная вода выделяет из растворов иодидов свободный йод, который окрашивает сероуглерод или хлороформ в красновато-фиолетовый цвет, а раствор крахмала – в синий.

Т.В.: К 5 каплям раствора NI (KI) прибавить 1 мл хлороформа, 2-3 капли разбавленной H2SO4 и затем по каплям, при энергичном взбалтывании 2-3 капли хлорной воды. Наблюдают окрашивание слоя хлороформа в красновато-фиолетовый цвет. В другую пробирку наливают 1 каплю раствора KI, 1 каплю хлорной воды и 2 капли раствора крахмала. Наблюдают изменение окраски.

3) Хлорид железа (III), конц. H2SO4 и некоторые другие окислители окисляют ион I — до свободного йода; например:

2 FeCl3 + 2 KI = 2 FeCl2 + 2 KCl + I2

Реакция является фармакопейной.

Т.В.: На фильтровальную бумагу в одном месте последовательно по 1 капле наносят растворы KI, HCl, FeCl3. Наблюдают появление бурого пятна, синеющего от капли крахмала.

г) На йод молекулярный → действие крахмала → синее окрашивание.

а)на хлорид-ион – действие раствора нитрата серебра → образуется белый творожистый осадок хлорида серебра;осадок нерастворим в азотной кислоте, но легко растворим в аммиаке с образованием комплексного соединения хлориддиаммин серебра.

При прибавлении к раствору хлориддиаммина серебра концентрированной серной кислоты осадок снова выделяется:

Реакция является фармакопейной.

1) действие нитрата серебра → желтовато-белый осадок бромида серебра;осадок не растворяется в HNO3, плохо растворим в аммиаке в отличие от хлорида серебра и хорошо растворяется в растворе тиосульфата натрия.

Реакция является фармакопейной.

2) с хлорной водой

Хлорная вода, прибавленная к раствору бромида, выделяет из него свободный бром, который растворяется в сероуглероде или хлороформе, окрашивая слой растворителя в оранжевый цвет.

1) нитрат серебра выделяет из иодидов светло-желтый творожистый осадок серебра.

Осадок не растворяется в азотной кислоте и растворе аммиака и плохо растворяется в растворе тиосульфата натрия.

Реакция является фармакопейной.

2) Хлорная вода выделяет из растворов иодидов свободный йод, который окрашивает сероуглерод или хлороформ в красновато-фиолетовый цвет, а раствор крахмала – в синий.

3) Хлорид железа (III) окисляет ион I — до свободного йода;

Реакция является фармакопейной.

г) На йод молекулярный → действие крахмала → синее окрашивание.

Качественные реакции на анионы.

2.1. Качественные реакции на сульфид-анион S 2 — . Из сульфидов растворимы сульфиды только щелочных металлов и аммония. Нерастворимые сульфиды имеют специфическую окраску, по которым можно определить тот или иной сульфид.
Окраска:
MnS — телесный (розовый).
ZnS — белый.
PbS — черный.
Ag2S — черный.
CdS — лимонно-желтый.
SnS — шоколадный.
HgS (метакиноварь) — черный.
HgS (киноварь) — красный.
Sb2S3 — оранжевый.
Bi2S3 — черный.
Некоторые сульфиды при взаимодействии с кислотами-неокислителями образуют токсичный газ сероводород H2S с неприятным запахом (тухлых яиц):
Na2S + 2HBr = 2NaBr + H2S↑
S 2- + 2H + = H2S↑

А некоторые устойчивы к разбавленным растворам HCl, HBr, HI, H2SO4, HCOOH, CH3COOH — к примеру CuS, Cu2S, Ag2S, HgS, PbS, CdS, Sb2S3, SnS и некоторые другие. Но они переводятся в раствор конц. азотной кислотой при кипячении (Sb2S3 и HgS растворяются тяжелее всего, причем последний гораздо быстрее растворится в царской водке):
CuS + 8HNO3 =t= CuSO4 + 8NO2↑ + 4H2O

Также сульфид-анион можно выявить, приливая раствор сульфида к бромной воде:
S 2- + Br2 = S↓ + 2Br —
Образующаяся сера выпадает в осадок.

2.2. Качественная реакция на сульфат-анион SO4 2- . Сульфат-анион обычно осаждают катионом свинца, либо бария:
Pb 2+ + SO4 2- = PbSO4

Ва 2+ + SO4 2- = ВаSO4
Осадки сульфата свинца и сульфата бария белого цвета.

2.3. Качественная реакция на силикат-анион SiO3 2- . Силикат-анион легко осаждается из раствора в виде стекловидной массы при добавлении сильных кислот:
SiO3 2- + 2H + = H2SiO3↓ (SiO2 * nH2O)

2.4. Качественные реакции на хлорид-анион Cl — , бромид-анион Br — , иодид-анион I — смотрите в пункте «качественные реакции на катион серебра Ag + »

2.5. Качественная реакция на сульфит-анион SO3 2- . При добавлении к раствору сильных кислот образуется диоксид серы SO2 — газ с резким запахом (запах зажженной спички):
SO3 2- + 2H + = SO2↑ + H2O

2.6. Качественная реакция на карбонат-анион CO3 2- . При добавлении к раствору карбоната сильных кислот образуется углекислый газ CO2, не поддерживающий горение, вызывающий помутнение известковой воды:
CO3 2- + 2H + = CO2↑ + H2O

2.7. Качественная реакция на тиосульфат-анион S2O3 2- . При добавлении раствора серной или соляной кислоты к раствору тиосульфата образуется диоксид серы SO2 и выпадает в осадок элементарная сера S:
S2O3 2- + 2H + = S↓ + SO2↑ + H2O

2.8. Качественная реакция на хромат-анион CrO4 2- . При добавлении к раствору хромата раствора солей бария выпадает желтый осадок хромата бария BaCrO4, разлагающегося в сильнокислой среде:
Ba 2+ + CrO4 2- = BaCrO4
Растворы хроматов окрашены в желтый цвет. При подкислении раствора цвет изменится на оранжевый, отвечающий дихромат-аниону Cr2O7 2- :
2CrO4 2- + 2H + = Cr2O7 2- + H2O
Кроме того хроматы являются окислителями в щелочной и нейтральной средах (окислительные способности хуже, чем у дихроматов):
S 2- + CrO4 2- + H2O = S + Cr(OH)3 + OH —

2.9. Качественная реакция на дихромат-анион Cr2O7 2- . При добавлении к раствору дихромата раствора соли серебра образуется осадок оранжевого цвета Ag2Cr2O7:
2Ag + + Cr2O7 2- = Ag2Cr2O7
Растворы дихроматов окрашены в оранжевый цвет. При подщелачивании раствора окраска изменяется на желтую, отвечающую хромат-аниону CrO4 2- :
Cr2O7 2- + 2OH — = 2CrO4 2- + H2O
Кроме того, дихроматы — сильные окислители в кислой среде. При внесении в подкисленный раствор дихромата какого-либо восстановителя окраска раствора изменится с оранжевого на зеленый, отвечающей катиону хрома (III) Сr 3+ (в качестве восстановителя бромид-анион):
6Br — + Cr2O7 2- + 14H + = 3Br2 + 2Cr 3+ + 7H2O
Эффектная качественная реакция на шестивалентный хром — темно-синее окрашивание раствора при добавлении конц. перекиси водорода в эфире. Образуется пероксид хрома состава CrO5.

2.10. Качественная реакция на перманганат-анион MnO4 — . Перманганат-анион «выдает» темно-фиолетовая окраска раствора. Кроме того, перманганаты — сильнейшие окислители, в кислой среде восстанавливаются до Mn 2+ (фиолетовая окраска исчезает), в нейтральной — до Mn +4 (окраска исчезает, выпадает бурый осадок диоксида марганца MnO2) и в щелочной — до MnO4 2- (окраска раствора изменяется на темно-зеленый):
5SO3 2- + 2MnO4 — + 6H + = 5SO4 2- + 2Mn 2+ + 3H2O
3SO3 2- + 2MnO4 — + H2O = 3SO4 2- + 2MnO2↓ + 2OH —
SO3 2- + 2MnO4 — + 2OH — = SO4 2- + 2MnO4 2- + H2O

2.11. Качественная реакция на манганат-анион MnO4 2- . При подкислении раствора манганата темно-зеленая окраска изменяется на темно-фиолетовую, отвечающую перманганат-аниону MnO4 — :
3K2MnO4(р.) + 4HCl(разб.) = MnO2↓ + 2KMnO4 + 4KCl + 2H2O

2.12. Качественная реакция на фосфат-анион PO4 3- . При добавлении к раствору фосфата раствора соли серебра выпадает желтоватый осадок фосфата серебра (I) Ag3PO4:
3Ag + + PO4 3- = Ag3PO4
Аналогична реакция и к дигидрофосфат-аниону H2PO4 — .

2.13. Качественная реакция на феррат-анион FeO4 2- . Осаждение из раствора феррата бария красного цвета (реакция проводится в среде щелочи):
Ba 2+ + FeO4 2- =OH — = BaFeO4
Ферраты — сильнейшие окислители (сильнее перманганатов). Устойчивы в щелочной среде, неустойчивы в кислой:
4FeO4 2- + 20H + = 4Fe 3+ + 3O2↑ + 10H2O

2.14. Качественная реакция на нитрат-анион NO3 — . Нитраты в растворе не проявляют окислительных способностей. Но при подкислении раствора способны окислить, к примеру, медь (раствор подкисляют обычно разб. H2SO4):
3Cu + 2NO3 — + 8H + = 3Cu 2+ + 2NO↑ + 4H2O

2.15. Качественная реакция на гексацианноферрат (II) и (III) ионы [Fe(CN)6] 4- и [Fe(CN)6] 3- . При приливании растворов, содержащих Fe 2+ , образуется осадок темно-синего цвета (турнбулева синь, берлинская лазурь):
K3[Fe(CN)6] + FeCl2 = KFe[Fe(CN)6] + 2KCl (при этом осадок состоит из смеси KFe(II)[Fe(III)(CN)6], KFe(III)[Fe(II)(CN)6], Fe3[Fe(CN)6]2, Fe4[Fe(CN)6]3).

2.1.6. Качественная реакция на арсенат-анион AsO4 3- . Образование нерастворимого в воде арсената серебра (I) Ag3AsO4, имеющего цвет «кофе с молоком»:
3Ag + + AsO4 3- = Ag3AsO4

3. Качественные реакции на простые и сложные вещества. Некоторые простые и сложные вещества, как и ионы, обнаруживаются качественными реакциями.

3.1. Качественная реакция на водород H2. Характерный хлопок при поднесении горящей лучинки к источнику водорода.

3. 2. Качественная реакция на азот N2.Не поддерживает горение. При пропускании через раствор известковой воды осадок не выпадает.

3. 3. Качественная реакция на кислород O2. Яркое вспыхивание тлеющей лучинки в атмосфере кислорода.

3. 4. Качественная реакция на озон O3. Взаимодействие озона с раствором иодидов с выпадением кристаллического иода I2 в осадок:
2KI + O3 + H2O = 2KOH + I2↓ + O2
Кислород в данную реакцию не вступает.

3. 5. Качественная реакция на хлор Cl2. Хлор – газ желто-зеленого цвета с резким запахом. При взаимодействии недостатка хлора с растворами иодидов в осадок выпадает иод I2:
2KI + Cl2 = 2KCl + I2
Избыток хлора приведет к окислению образовавшегося иода:
I2 + 5Cl2 + 6H2O = 2HIO3 + 10HCl

3. 6. Качественные реакции на аммиак NH3. Примечание: данные реакции не дают в школьном курсе. Однако, это самые надежные качественные реакции на аммиак.
Почернение бумажки, смоченной в растворе соли ртути (I) Hg2 + :
Hg2Cl2 + 2NH3 = Hg(NH2)Cl + Hg + NH4Cl
Бумажка чернеет из-за выделения мелкодисперсной ртути.

Взаимодействие аммиака с щелочным раствором тетраиодомеркурата (II) калия K2[HgI4] (реактив Несслера):
2K2[HgI4] + NH3 + 3KOH = [Hg2N]I · H2O↓ + 7KI + 2H2O
Комплекс [Hg2N]I · H2O бурого цвета (цвет ржавчины) выпадает в осадок.
Две последние реакции являются самыми надежными на аммиак.

Реакция аммиака с хлороводородом («дым» без огня):
NH3 + HCl = NH4Cl

3. 7. Качественная реакция на угарный газ (моноксид углерода) CO. Помутнение раствора при пропускании угарного газа в раствор хлорида палладия (II):
PdCl2 + CO + H2O = CO2↑ + 2HCl + Pd↓

3. 8. Качественная реакция на углекислый газ (диоксид углерода) CO2. Тушение тлеющей лучинки в атмосфере углекислого газа.
Пропускание углекислого газа в раствор гашеной извести Ca(OH)2:
Ca(OH)2 + CO2 = CaCO3↓ + H2O
Дальнейшее пропускание приведет к растворению осадка:
CaCO3 + CO2 + H2O = Ca(HCO3)2

3.9. Качественная реакция на оксид азота (II) NO. Оксид азота (II) очень чувствителен к кислороду воздуха, потому на воздухе буреет, окисляясь до оксида азота (IV) NO2:
2NO + O2 = 2NO2

Анионы — это. Качественные реакции на анионы

Анионы — это составные части двойных, комбинированных, средних, кислых, основных солей. В качественном анализе каждый из них можно определить с помощью определенного реактива. Рассмотрим качественные реакции на анионы, используемые в неорганической химии.

Особенности анализа

Он является одним из важнейших вариантов идентификации веществ, распространенных в неорганической химии. Существует подразделение анализа на два компонента: качественный, количественный.

Все качественные реакции на анионы подразумевают идентификацию вещества, установление наличия в нем определенных примесей.

Количественный анализ устанавливает четкое содержание примесей и базового вещества.

Специфика качественного обнаружения анионов

Далеко не все взаимодействия можно использовать в качественном анализе. Характерной считается реакция, которая приводит к изменению окраски раствора, выпадению осадка, его растворению, выделению газообразного вещества.

Группы анионов определяют путем селективной реакции, благодаря которой можно обнаружить только определенные анионы в составе смеси.

Чувствительность — это наименьшая концентрация раствора, при которой определяемый анион можно обнаружить без его предварительной обработки.

Групповые реакции

Существуют такие химические вещества, которые способны при взаимодействии с разными анионами давать сходные результаты. Благодаря применению группового реактива можно выделять различные группы анионов, проводя их осаждение.

При проведении химического анализа неорганических веществ, в основном, проводят исследование водных растворов, в которых соли присутствуют в диссоциированном виде.

Именно поэтому анионы солей определяют путем их открытия в растворе вещества.

Аналитические группы

В кислотно-основном методе принято выделять три аналитические группы анионов.

Проанализируем, какие анионы можно определять, пользуясь определенными реактивами.

Сульфаты

Для их выявления в смеси солей в качественном анализе применяют растворимые соли бария. Учитывая, что сульфат-анионы — это SO4, краткое ионное уравнение происходящей реакции имеет вид:

Полученный в результате взаимодействия сульфат бария имеет белый цвет, является нерастворимым веществом.

Галогениды

При определении анионов хлора в солях в качестве реактива используют растворимые соли серебра, так как именно катион этого благородного металла дает нерастворимый белый осадок, поэтому так определяют хлорид-анионы. Это далеко не полный перечень качественных взаимодействий, используемых в аналитической химии.

Помимо хлоридов, соли серебра используют также для выявления наличия в смеси йодидов, бромидов. Каждая из солей серебра, образующая соединение с галогенидом, имеет определенную окраску.

Например, AgI имеет желтый цвет.

Качественные реакции на анионы 1 аналитической группы

Сначала рассмотрим, какие в нее входят анионы. Это карбонаты, сульфаты, фосфаты.

Самой распространенной в аналитической химии, считается реакция на определение сульфат-ионов.

Для ее проведения можно воспользоваться растворами сульфата калия, хлорида бария. При смешивании между собой этих соединений образуется белый осадок сульфата бария.

В аналитической химии обязательным условием является написание молекулярных и ионных уравнений тех процессов, которые были проведены для выявления анионов определенной группы.

Если записывать полное и сокращенное ионное уравнение для данного процесса, можно подтвердить образование нерастворимой соли BaSO4 (сульфата бария).

При выявлении карбонат-иона в смеси солей используют качественную реакцию с неорганическими кислотами, сопровождающуюся выделением газообразного соединения – углекислого газа. Кроме того, при выявлении карбоната в аналитической химии также используется реакция с хлоридом бария. В результате ионного обмена выпадает белый осадок карбоната бария.

Сокращенное ионное уравнение процесса описывается схемой.

Хлорид бария осаждает карбонат-ионы в виде белого осадка, что используется в качественном анализе анионов первой аналитической группы. Иные катионы не дают такого результата, поэтому не подходят для определения.

При взаимодействии карбоната с кислотами краткое ионное уравнении имеет следующий вид:

При выявлении фосфат-ионов в смеси также применяется растворимая соль бария. Смешивание раствора фосфата натрия с хлоридом бария приводит к образованию нерастворимого фосфата бария.

Таким образом, можно сделать вывод об универсальности хлорида бария, возможности его применения для определения анионов первой аналитической группы.

Качественные реакции на анионы второй аналитической группы

Хлорид-анионы можно обнаружить при взаимодействии с раствором нитрата серебра. В результате ионного обмена образуется творожистый белый осадок хлорида серебра (1).

Бромид этого металла имеет желтоватый цвет, а йодид отличается насыщенной желтой окраской.

Молекулярное взаимодействие хлорида натрия с нитратом серебра имеет следующий вид:

Среди специфических реактивов, которые можно использовать при определении в смеси иодид-ионов, выделим катионы меди.

Данный окислительно-восстановительный процесс характеризуется образованием свободного йода, что и применяется в качественном анализе.

Силикат–ионы

Для обнаружения этих ионов используют концентрированные минеральные кислоты. Например, при добавлении к силикату натрия концентрированной соляной кислоты образуется осадок кремниевой кислоты, имеющий гелеобразный вид.

В молекулярном виде данный процесс:

Гидролиз

В аналитической химии гидролиз по аниону является одним из способов определения реакции среды в растворах солей. Для того чтобы правильно определить вариант протекающего гидролиза, необходимо выяснить, из какой кислоты и основания получена соль.

Например, сульфид алюминия образован нерастворимым гидроксидом алюминия и слабой сероводородной кислотой. В водном растворе этой соли происходит гидролиз по аниону и по катиону, поэтому среда нейтральна. Ни один из индикаторов не будет менять своей окраски, следовательно, путем гидролиза сложно будет провести определение состава данного соединения.

Заключение

Качественные реакции, которые используют в аналитической химии для определения анионов, позволяют получать в виде осадков определенные соли. В зависимости от того, анионы какой аналитической группы необходимо выявить, для эксперимента подбирается определенный групповой реактив.

Именно по этой методике проводят определение качества питьевой воды, выявляя, не превышает ли количественное содержание анионов хлора, сульфата, карбоната тех предельных допустимых концентраций, которые установлены санитарно-гигиеническими требованиями.

В условиях школьной лаборатории эксперименты, касающиеся определения анионов, являются одним из вариантов заданий исследовательского характера на практической работе. В ходе эксперимента школьники не только анализируют цвета получаемых осадков, но и составляют уравнения реакций.

Кроме того, элементы качественного анализа предлагаются выпускникам в итоговых тестах по химии, позволяют определить уровень владения будущими химиками и инженерами молекулярными, полными и сокращенными ионными уравнениями.


источники:

http://lektsii.org/13-66644.html

http://www.syl.ru/article/307363/anionyi—eto-kachestvennyie-reaktsii-na-anionyi