Уравнения кирхгофа для разветвленных цепей

Уравнения кирхгофа для разветвленных цепей

Для упрощения расчетов сложных электрических цепей, содержащих неоднородные участки, используются правила Кирхгофа , которые являются обобщением закона Ома на случай разветвленных цепей.

В разветвленных цепях можно выделить узловые точки ( узлы ), в которых сходятся не менее трех проводников (рис. 1.10.1). Токи, втекающие в узел, принято считать положительными; вытекающие из узла – отрицательными.

Рисунок 1.10.1.

Узел электрической цепи. 1, 2 > 0; 3, 4

В узлах цепи постоянного тока не может происходить накопление зарядов. Отсюда следует первое правило Кирхгофа :

Алгебраическая сумма сил токов для каждого узла в разветвленной цепи равна нулю:

1 + 2 + 3 + . + = 0.

Первое правило Кирхгофа является следствием закона сохранения электрического заряда.

В разветвленной цепи всегда можно выделить некоторое количество замкнутых путей, состоящих из однородных и неоднородных участков. Такие замкнутые пути называются контурами . На разных участках выделенного контура могут протекать различные токи. На рис. 1.10.2 представлен простой пример разветвленной цепи. Цепь содержит два узла и , в которых сходятся одинаковые токи; поэтому только один из узлов является независимым ( или ).

Рисунок 1.10.2.

В цепи можно выделить три контура , и . Из них только два являются независимыми (например, и ), так как третий не содержит никаких новых участков.

Второе правило Кирхгофа является следствием обобщенного закона Ома.

Запишем обобщенный закон Ома для участков, составляющих один из контуров цепи, изображенной на рис. 1.10.2, например, . Для этого на каждом участке нужно задать положительное направление тока и положительное направление обхода контура . При записи обобщенного закона Ома для каждого из участков необходимо соблюдать определенные «правила знаков», которые поясняются на рис. 1.10.3.

Рисунок 1.10.3.

Для участков контура обобщенный закон Ома записывается в виде:

Для участка : 11 = Δφ – 1.

Для участка : 22 = Δφ – 2.

Складывая левые и правые части этих равенств и принимая во внимание, что , получим:

.

Аналогично, для контура можно записать:

22 + 33 = 2 + 3.

Второе правило Кирхгофа можно сформулировать так: алгебраическая сумма произведений сопротивления каждого из участков любого замкнутого контура разветвленной цепи постоянного тока на силу тока на этом участке равна алгебраической сумме ЭДС вдоль этого контура .

Первое и второе правила Кирхгофа, записанные для всех независимых узлов и контуров разветвленной цепи, дают в совокупности необходимое и достаточное число алгебраических уравнений для расчета значений напряжений и сил токов в электрической цепи. Для цепи, изображенной на рис. 1.10.2, система уравнений для определения трех неизвестных токов 1, 2 и 3 имеет вид:

11 + 22 = – 12,

22 + 33 = 2 + 3,

1 + 2 + 3 = 0.

Таким образом, правила Кирхгофа сводят расчет разветвленной электрической цепи к решению системы линейных алгебраических уравнений. Это решение не вызывает принципиальных затруднений, однако, бывает весьма громоздким даже в случае достаточно простых цепей. Если в результате решения сила тока на каком-то участке оказывается отрицательной, то это означает, что ток на этом участке идет в направлении, противоположном выбранному положительному направлению.

Правила Кирхгофа для разветвленных цепей

Чтобы расчеты сложных электрических цепей с неоднородными участками не вызывали трудности, существует упрощение с помощью применения правил Кирхгофа, которые рассматривают как обобщение закона Ома на случай разветвленных цепей.

В таких цепях выделяют узловые точки, называемые узлами, где сходятся не менее трех проводников, как изображено на рисунке 1 . 10 . 1 . Токи, поступающие в узел, считают положительными, а вытекающие – отрицательными.

Рисунок 1 . 10 . 1 . Узел электрической цепи. I 1 , I 2 > 0 ; I 3 , I 4 0 .

Правила Кирхгофа. Примеры

В узлах цепи с постоянным током не происходит накопление зарядов. Получаем первое правило (закон) Кирхгофа:

Алгебраическая сумма сил токов для каждого узла разветвленной цепи равняется нулю:

I 1 + I 2 + I 3 + . . . + I n = 0 .

Данное правило принято считать следствием закона сохранения электрического заряда.

Наличие разветвленной цепи позволяет выделить несколько замкнутых путей, которые состоят из однородных и неоднородных участков. Их принято называть контурами.

На участках с выделенным контуром могут протекать различные токи. Рисунок 1 . 10 . 2 наглядно показывает пример такой цепи, соответствующей 1 закону Кирхгофа. Она состоит из двух узлов a и d , в которых сходятся одинаковые токи. Только один из заданных узлов будет независимым.

Рисунок 1 . 10 . 2 . Пример разветвленной электрической цепи. Цепь содержит один независимый узел ( a или d ) и два независимых контура (например, a b c d и a d e f ).

В предложенной цепи выделяют три контура вида a b c d , a d e f и a b c d e f . Независимыми считаются только два: a b c d и a d e f . Последний из вышеперечисленных не имеет никаких новых участков.

Второе правило Кирхгофа – это следствие обобщенного закона Ома.

Для записи обобщенного закона Ома участков, составляющих один из контуров цепи, используется пример, изображенный на рисунке 1 . 10 . 2 для a b c d . Каждому участку задаются положительные направления тока и обхода контура. Для записи следует учитывать «правила знаков», приведенные на рисунке 1 . 10 . 3 .

Рисунок 1 . 10 . 3 . «Правила знаков».

Запись обобщенного закона Ома для участков контура a b c d принимает вид:

Для b c : I 1 R 1 = ∆ φ b c — δ 1 .

Для d a : I 2 R 2 = ∆ φ d a — δ 2 .

Сумма левых и правых частей равенств с условием ∆ φ b c = — ∆ φ d a преобразует выражение:

I 1 R 1 + I 2 R 2 = ∆ φ b c + ∆ φ d a — δ 1 + δ 2 = — δ 1 — δ 2 .

Таким же образом можно записать для a d e f контура:

— I 2 R 2 + I 3 R 3 = δ 2 + δ 3 .

Формулировка 2 правила или закона Кирхгофа: алгебраическая сумма сопротивления каждого из участков любого замкнутого контура разветвленной цепи постоянного тока на силу тока этого участка равняется сумме ЭДС вдоль этого контура.

Модель постоянного тока

Оба правила Кирхгофа для всех узлов и контуров разветвленной цепи дают необходимое и достаточное число алгебраических уравнений для расчета значений напряжений и сил токов электрической цепи. Цепь, изображенная на рисунке 1 . 10 . 2 , рассматривается как система уравнений для определения трех неизвестных I 1 , I 2 и I 3 :

I 1 R 1 + I 2 R 2 = — δ 1 — δ 2 ,

— I 2 R 2 + I 3 R 3 = δ 2 + δ 3 ,

— I 1 + I 2 + I 3 = 0 .

То есть применение этих правил помогает свести расчет электрической цепи постоянного тока к решению системы. Процесс не вызывает трудностей, но зачастую приходится работать с громоздкими выражениями простых цепей. При получении отрицательного значения силы тока на участке цепи говорят о противоположном направлении тока, относительно выбранного.

Рисунок 1 . 10 . 4 . Модель цепи постоянного тока.

Рисунок 1 . 10 . 5 . Модель конденсаторов в цепях постоянного тока.

Правила Кирхгофа для разветвлённых цепей

Введём понятие узла. Узел – точка цепи, в которой сходится не менее трёх проводников.

Тогда разветвлённой цепью назовём цепь, имеющую один или более узлов.

Для расчёта таких цепей используются два правила Кирхгофа.

Рис. 1. Первое правило Кирхгофа

Первое правило Кирхгофа: сумма токов, входящих в узел, равна сумме токов, выходящих из узла (рис. 1). A — узел в цепи постоянного тока. Путь в цепи протекают токи — . Тогда, исходя из первого правила Кирхгофа:

  • где
    • — сумма токов, входящих в узел,
    • — сумма токов, выходящих из узла.

Рис. 2. Второе правило Кирхгофа (цепь)

Второе правило Кирхгофа касается такого понятия как контур. Назовём контуром замкнутый участок цепи, содержащий любые элементы цепи. Для визуализации правила введём произвольную цепь с узлами (рис. 2). Пусть наша цепь содержит резисторы — , конденсатор ёмкостью и два источника ЭДС , с собственными внутренними сопротивлениями и соответственно.

Рис. 3. Второе правило Кирхгофа (Контур)

По нашей схеме нарисуем контуры (рис. 3). В цепе можно выделить 3 контура обхода: для определённости, красный, синий и зелёный.

Расставим токи для каждого из элементов, обладающих сопротивлением (рис. 4). Направление силы тока выбираем случайным образом.

Рис. 4. Второе правило Кирхгофа (Сила тока)

Тогда второе правило Кирхгофа — сумма падений напряжений на каждом из элементов контура равно сумме ЭДС в этом контуре.

Тогда второе правило Кирхгофа формульно:

(3)

  • где
    • — сумма ЭДС в контуре,
    • — сумма падений напряжения в контуре.

Тогда составим второе правило Кирхгофа для контуров на рис. 3 при нескольких условиях:

  • ток считать положительным при совпадении направления обхода и отрицательным при несовпадении;
  • ЭДС считать положительным при направлении обхода совпадающим с генерацией тока в источнике (от плюса к минусу) и отрицательным в обратном случае.

Итак, зелёный контур:

(4)

Для синего контура:

(5)

Для красного контура:

(6)

Вывод: правила Кирхгофа (1) и (3) можно использовать для любого вида цепей, однако наибольшую пользу они приносят в случае разветвлённых цепей, в которых есть узлы. При использовании правил необходимо опираться на следующие идеи:

  • ищем узлы и расписываем первое правило Кирхгофа (1) для каждого из них (часть уравнений может получится одинаковым);
  • по количеству получившихся уравнений и неизвестных узнаём количество добавочных уравнений;
  • определяем контур (или несколько), который будем использовать во втором правиле Кирхгофа (3);
  • задаём направление обхода в контуре (произвольно);
  • обозначаем токи на каждом из элементов, имеющих сопротивление (направление тока выбираем произвольно);
  • записываем второе правило Кирхгофа для контура (условия выше).


источники:

http://zaochnik.com/spravochnik/fizika/postojannyj-elektricheskij-tok/pravila-kirhgofa-dlja-razvetvlennyh-tsepej/

http://www.abitur.by/fizika/teoreticheskie-osnovy-fiziki/postoyannyj-elektricheskij-tok/pravila-kirxgofa-dlya-razvetvlyonnyx-cepej/