Уравнения колебаний для шарика на нити

Уравнения колебаний для шарика на нити

Гармоническое колебательное движение и волны

Шарик, подвешенный на нити, длиной l = 2 м, отклоняют на угол α = 4° и наблюдают его колебания. Полагая колебания незатухающими гармоническими, найти скорость шарика при прохождении им положения равновесия. Проверить полученное решение, найдя скорость шарика при прохождении им положения равновесия из уравнений механики.

Дано:

Решение:

Уравнение колебаний запишем в виде

Скорость колеблющейся точки

Если рассматривать шарик на длинной нити как математический маятник, то период колебаний

Начальная фаза равна 0

Связь циклической частоты и периода колебаний

При прохождении положения равновесия скорость шарика будет максимальна и равна

Найдем скорость при прохождении положения равновесия, используя закон сохранения энергии

Гармонические колебания

О чем эта статья:

9 класс, 11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Механические колебания

Механические колебания — это физические процессы, которые точно или приблизительно повторяются через одинаковые интервалы времени.

Колебания делятся на два вида: свободные и вынужденные.

Свободные колебания

Это колебания, которые происходят под действием внутренних сил в колебательной системе.

Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.

Вынужденные колебания

А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.

Вынужденные колебания — это колебания, которые происходят под действием внешней периодически меняющейся силы.

Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.

Например, качели. Если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку — такое колебание будет считаться вынужденным.

Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.

Автоколебания

Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.

У автоколебательной системы есть три важных составляющих:

  • сама колебательная система
  • источник энергии
  • устройство обратной связи, обеспечивающей связь между источником и системой

Часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.

Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.

Характеристики колебаний

Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение можно описать величинами: период, частота, амплитуда, фаза колебаний.

Период — это время одного полного колебания. Измеряется в секундах и обозначается буквой T.

Формула периода колебаний

T = t/N

N — количество колебаний [—]

Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.

Формула частоты

ν = N/t = 1/T

N — количество колебаний [—]

Амплитуда — это максимальное отклонение от положения равновесия. Измеряется в метрах и обозначается либо буквой A, либо x max .

Она используется в уравнении гармонических колебаний:

Гармонические колебания

Простейший вид колебательного процесса — простые гармонические колебания, которые описывают уравнением:

Уравнение гармонических колебаний

x — координата в момент времени t [м]

t — момент времени [с]

(2πνt) в этом уравнении — это фаза. Ее обозначают греческой буквой φ

Фаза колебаний

t — момент времени [с]

Фаза колебаний — это физическая величина, которая показывает отклонение точки от положения равновесия. Посмотрите на рисунок, на нем изображены одинаковые фазы:

Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу.

На рисунке ниже показаны положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.

Если изменить период, начальную фазу или амплитуду колебания, графики тоже изменятся.

На рисунке ниже во всех трех случаях для синих кривых начальная фаза равна нулю, а в последнем (с) — красная кривая имеет меньшую начальную фазу.

В первом случае (а) красная кривая описывает колебание, у которого амплитуда больше колебания, описанного синей линией.

Во втором случае (b) красная кривая отличается от синей только значением периода — у красной период в два раза меньше.

Математический маятник

Математический маятник — отличный пример гармонических колебаний. Если мы подвесим шарик на нити, то это еще не будет математическим маятником — пока он только физический.

Математическим этот маятник станет, если размеры шарика много меньше длины нити (тогда этими размерами можно пренебречь и рассматривать шарик как материальную точку), растяжение нити очень мало, а масса нити во много раз меньше массы шарика.

Математическим маятником называется система, которая состоит из материальной точки массой m и невесомой нерастяжимой нити длиной l, на которой материальная точка подвешена, и которая находится в поле силы тяжести (или других сил).

Период малых колебаний математического маятника в поле силы тяжести Земли определяется по формуле:

Формула периода колебания математического маятника

l — длина нити [м]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g = 9,8 м/с 2

Пружинный маятник

Пружинный маятник — это груз, прикрепленный к пружине, массой которой можно пренебречь.

В пружинном маятнике колебания совершаются под действием силы упругости.
Пока пружина не деформирована, сила упругости на тело не действует.

Формула периода колебания пружинного маятника

m — масса маятника [кг]

k — жесткость пружины [Н/м]

Закон сохранения энергии для гармонических колебаний

Физика — такая клевая наука, в которой ничего не исчезает бесследно и не появляется из ниоткуда. Эту особенность описывает закон сохранения энергии.

Рассмотрим его на примере математического маятника.

  • Когда маятник отклоняют на высоту h, его потенциальная энергия максимальна.
  • Когда маятник опускается, потенциальная энергия переходит в кинетическую. Причем в нижней точке, где потенциальная энергия равна нулю, кинетическая энергия максимальна и равна потенциальной энергии в верхней точке. Скорость груза в этой точке максимальна.

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

§ 1.3. Уравнение движения математического маятника

Рассмотрим простой маятник — шарик, подвешенный на длинной прочной нити. Если размеры шарика много меньше длины нити, то этими размерами можно пренебречь и рассматривать шарик как материальную точку. Растяжением нити также можно пренебречь, так как оно очень мало. Можно пренебречь и ее массой по сравнению с массой шарика. Таким образом, вместо реального маятника — шарика определенного размера на нити, которая, конечно, немного деформируется при движении и имеет массу, мы вправе рассматривать простую модель: материальную точку, подвешенную на нерастяжимой невесомой нити. Такая модель маятника называется математическим маятником в отличие от реального маятника, называемого физическим. Маленький шарик на длинной тонкой нити должен вести себя практически так же, как и математический маятник. Выведем маятник из положения равновесия и отпустим. На шарик будут действовать две силы: сила тяжести = m, направленная вертикально вниз, и сила упругости нити у, направленная вдоль нити (рис. 1.8).

Конечно, при движении маятника на него еще действует сила трения. Но мы будем считать ее пренебрежимо малой.

Силу тяжести удобно разложить на две составляющие: тангенциальную τ, направленную по касательной к траектории перпендикулярно к нити, и нормальную n, направленную вдоль нити. Сила упругости нити у и составляющая силы тяжести п перпендикулярны к скорости маятника и сообщают ему нормальное ускорение. Действие этих сил не меняет скорости маятника по модулю, а приводит лишь к изменению направления скорости. Вектор скорости непрерывно поворачивается, так что в любой момент времени скорость направлена по касательной к дуге окружности — траектории маятника.

Тангенциальная составляющая τ силы тяжести создает тангенциальное ускорение, характеризующее изменение скорости по модулю. Она всегда направлена к положению равновесия, и именно она вызывает колебания маятника.

При колебаниях шарика на нерастяжимой нити он всегда движется по дуге окружности, радиус которой равен длине нити l. Поэтому положение шарика в любой момент определяется одной величиной — углом α отклонения нити от вертикали (см. рис. 1.8). Будем считать угол α положительным, если маятник отклонен вправо от положения равновесия, и отрицательным, если он отклонен влево.

Уравнение для тангенциальной составляющей ускорения

Тангенциальная проекция силы тяжести в момент, когда нить маятника отклонена от положения равновесия на угол α, выражается так:

(Мы считаем значение проекции положительным, если составляющая силы направлена слева направо.) Знак «-» в уравнении (1.3.1) стоит из-за того, что τ и α имеют противоположные знаки. При отклонении маятника вправо (α > 0) составляющая τ силы тяжести направлена влево и ее проекция отрицательна: τ 0.

Согласно второму закону Ньютона

Разделив левую и правую части этого уравнения на m, получим:

До сих пор считалось, что углы отклонения нити от вертикали могут быть любыми, в дальнейшем будем считать их малыми. При малых углах, если выражать угол α в радианах, sin α ≈ α. Следовательно,

Смещение шарика маятника от положения равновесия можно характеризовать не только углом, но и величиной, измеряемой длиной дуги ОА (см. рис. 1.8), взятой со знаком «+», если шарик смещается от положения равновесия вправо, и со знаком «-», если он смещается влево. Очевидно, что

где s — длина дуги ОА.

Подставив в уравнение (1.3.4) это значение α, получим:

приходим к окончательному виду уравнения движения маятника при малых углах отклонения от положения равновесия:

Это уравнение имеет такой же вид, как и уравнение (1.2.6) движения шарика, прикрепленного к пружине. Здесь только вместо проекции ускорения аx стоит тангенциальное ускорение аτ и вместо координаты х — величина s. Да и зависит уже не от жесткости пружины и массы груза, а от ускорения свободного падения и длины нити. Но по-прежнему ускорение прямо пропорционально смещению (определяемому дугой) шарика от положения равновесия. Если бы мы в случае маятника обозначили тангенциальное ускорение через аx, а дугу через х, то оба уравнения (1.2.6) и (1.3.8) были бы неразличимы.

Важное заключение. Мы пришли к замечательному выводу: уравнения движения, описывающие колебания таких различных систем, как груз на пружине и маятник, одинаковы. Это означает, что движение шарика и колебания маятника происходят одинаковым образом. Смещения груза на пружине и шарика маятника от положения равновесия изменяются со временем по одному и тому же закону, несмотря на то, что силы, вызывающие колебания, имеют различную физическую природу. В первом случае это сила упругости, а во втором — составляющая силы тяжести.

Уравнение движения (1.2.6), как и уравнение (1.3.8), выглядит внешне очень просто: ускорение прямо пропорционально координате. Но решить его, т. е. определить, как меняется координата колеблющегося тела с течением времени, не просто. До сих пор в механике мы в основном рассматривали движение с постоянным ускорением. При колебаниях же ускорение меняется со временем, так как меняется сила, действующая на тело.


источники:

http://skysmart.ru/articles/physics/garmonicheskie-kolebaniya

http://ansevik.ru/fizika-11/3.html