Уравнения колмогорова для цепи маркова

Марковские случайные процессы. Уравнения Колмогорова для вероятностей состояний.

Наиболее полное исследование процесса функционирования систем получается, если известны явные математические зависимости, связывающие искомые показатели с начальными условиями, параметрами и переменными исследуемой системы. Для многих современных систем, являющихся объектами моделирования, такие математические зависимости отсутствуют или малопригодны, и следует применять другое моделирование, как правило, имитационное.

Большой класс случайных процессов составляют процессы без последействия, которые в математике называют марковскими процессами в честь Андрея Андреевича Маркова — старшего (1856 — 1922), выдающегося русского математика, разработавшего основы теории таких процессов.

Случайный процесс называется марковским, если вероятность перехода системы в новое состояние зависит только от состояния системы в настоящий момент и не зависит от того, когда и каким образом система перешла в это состояние.

Практически любой случайный процесс является марковским или может быть сведен к марковскому. В последнем случае достаточно в понятие состояния включить всю предысторию смен состояний системы.

Марковские процессы делятся на два класса:

· дискретные марковские процессы (марковские цепи);

· непрерывные марковские процессы.

Дискретной марковской цепьюназывается случайный процесс, при котором смена дискретных состояний происходит в определенные моменты времени.

Непрерывным марковским процессомназывается случайный процесс, при котором смена дискретных состояний происходит в случайные моменты времени.

Рассмотрим ситуацию, когда моделируемый процесс обладает следующими особенностями.

Система имеет возможных состояний: , . . Вообще говоря, число состояний может быть бесконечным. Однако модель, как правило, строится для конечного числа состояний.

Смена состояний происходит, будем считать, мгновенно и в строго определенные моменты времени . В дальнейшем будем называть временные точки шагами.

Известны вероятности перехода системы за один шаг из состояния в состояние .

Цель моделирования: определить вероятности состояний системы после -го шага.

Обозначим эти вероятности (не путать с вероятностями ).

Если в системе отсутствует последействие, то есть вероятности не зависят от предыстории нахождения системы в состоянии , а определяются только этим состоянием, то описанная ситуация соответствует модели дискретной марковской цепи.

Марковская цепь называется однородной, если переходные вероятности от времени не зависят, то есть от шага к шагу не меняются. В противном случае, то есть если переходные вероятности зависят от времени, марковская цепь называется неоднородной.

Значения обычно сводятся в матрицу переходных вероятностей:

Значения могут также указываться на графе состояний системы. На рис. показан размеченный граф для четырех состояний системы. Обычно вероятности переходов «в себя» — , и т. д. на графе состояний можно не проставлять, так как их значения дополняют до 1 сумму переходных вероятностей, указанных на ребрах (стрелках), выходящих из данного состояния.

Не указываются также нулевые вероятности переходов. Например, на рис. это вероятности , и др.

Математической моделью нахождения вероятностей состояний однородной марковской цепи является рекуррентная зависимость

где — вероятность -го состояния системы после -го шага, ;

— вероятность -го состояния системы после -го шага, ;

— число состояний системы;

-переходные вероятности.

Рис.Размеченный граф состояний системы

Для неоднородной марковской цепи вероятности состояний системы находятся по формуле:

где — значения переходных вероятностей для -го шага.

Сформулируем методику моделирования по схеме дискретных марковских процессов (марковских цепей).

1. Зафиксировать исследуемое свойство системы.

Определение свойства зависит от цели исследования. Например, если исследуется объект с целью получения характеристик надежности, то в качестве свойства следует выбрать исправность. Если исследуется загрузка системы, то — занятость. Если состояния объектов, то — поражен или непоражен.

2. Определить конечное число возможных состояний системы и убедиться в правомерности моделирования по схеме дискретных марковских процессов.

3. Составить и разметить граф состояний.

4. Определить начальное состояние.

5. По рекуррентной зависимости определить искомые вероятности.

В рамках изложенной методики моделирования исчерпывающей характеристикой поведения системы является совокупность вероятностей .

При моделировании состояния систем с непрерывными марковскими процессами мы уже не можем воспользоваться переходными вероятностями , так как вероятность «перескока» системы из одного состояния в другое точно в момент времени равна нулю (как вероятность любого отдельного значения непрерывной случайной величины).

Поэтому вместо переходных вероятностей вводятся в рассмотрение плотности вероятностей переходов :

где — вероятность того, что система, находившаяся в момент времени в состоянии за время перейдет в состояние .

С точностью до бесконечно малых второго порядка из приведенной формулы можно представить:

Непрерывный марковский процесс называется однородным,если плотности вероятностей переходов не зависят от времени (от момента начала промежутка ). В противном случае непрерывный марковский процесс называется неоднородным.

Целью моделирования,как и в случае дискретных процессов, является определение вероятностей состояний системы Эти вероятности находятся интегрированием системы дифференциальных уравнений Колмогорова.

Сформулируем методику моделирования по схеме непрерывных марковских процессов.

1. Определить состояния системы и плотности вероятностей переходов .

2. Составить и разметить граф состояний.

3. Составить систему дифференциальных уравнений Колмогорова. Число уравнений в системе равно числу состояний. Каждое уравнение формируется следующим образом.

4. B левой части уравнения записывается производная вероятности -го состоянии

5. В правой части записывается алгебраическая сумма произведений и . Число произведений столько, сколько стрелок связано с данным состоянием. Если стрелка графа направлена в данное состояние, то соответствующее произведение имеет знак плюс, если из данного состояния — минус.

6. Определить начальные условия и решить систему дифференциальных уравнений.

Пример. Составить систему дифференциальных уравнений Колмогорова для нахождения вероятностей состояний системы, размеченный граф состояний которой представлен на рисунке.

Рис. Размеченный граф состояний

Очевидно, .

Поэтому любое из первых трех уравнений можно исключить, как линейно зависимое.

Для решения уравнений Колмогорова необходимо задать начальные условия. Для рассмотренного примера можно задать такие начальные условия: , .

Дата добавления: 2015-04-03 ; просмотров: 7829 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Марковские цепи с непрерывным временем

Уравнения Колмогорова

На практике значительно чаще встречаются ситуации, когда переходы системы из состояния в состояние происходит в случайные моменты времени, которые заранее указать невозможно: например, выход из строя любого элемента аппаратуры, окончание ремонта (восстановление) этого элемента. Для описания таких процессов в ряде случаев может быть с успехом применена схема марковского случайного процесса с дискретными состояниями и непрерывным временем – непрерывная цепь Маркова. Покажем, как выражаются вероятности состояний для такого процесса. Пусть S=. Обозначим через pi(t) — вероятность того, что в момент t система S будет находиться в состоянии ). Очевидно . Поставим задачу – определить для любого t pi(t). Вместо переходных вероятностей Pij введем в рассмотрение плотности вероятностей перехода

.

Если не зависит от t, говорят об однородной цепи, иначе — о неоднородной. Пусть нам известны для всех пар состояний (задан размеченный граф состояний). Оказывается, зная размеченный граф состояний можно определить p1(t),p2(t)..pn(t) как функции времени. Эти вероятности удовлетворяют определенного видадифференциальным уравнениям, (уравнения Колмогорова).

Интегрирование этих уравнений при известном начальном состоянии системы даст искомые вероятности состояний как функции времени. Заметим, чтоp1+p2+p3+p4=1 и можно обойтись тремя уравнениями.

Переход из одного состояния в другое может быть отображен графом состояний, в кото­ром вершины представляют собой возможные состояния системы, а ду­ги графа отражают переходы из одного состояния в другое. Если две вершины i и j соединяются дугой (i,j), то это означает, что воз­можен непосредственный переход из состояния i в состояние j. Мар­ковская цепь может, таким образом, быть представлена как случай­ное блуждание на графе состояний системы.

Поскольку переход из одного состояния в другое для СМО воз­можен в любой момент времени, определяемый появлением заявки во входном потоке, то для изуче­ния СМО применяются непрерывные марковские цепи.

Одна из важнейших задач те­ории марковских процессов вообще и ТМО в частности заключается в нахождении вероятностей состоя­ний цепи. Эти вероятности для непрерывных марковских цепей оп­ределяются с помощью дифференци­альных уравнений Колмогорова.

Рассмотрим некоторую произвольную систему, граф состояний которой приведен на рис.1. Система имеет n состояний S1,S2. Sn. Процесс перехода из одного состояния в другое описывает­ся непрерывной цепью Маркова. Пусть Pi(t) — вероятность того, что в момент времени t система будет находиться в состоянии Si (i=1,2,…,n). Поскольку система не может находиться одновременно в двух состояниях, то события, заключающиеся в нахождении системы в состояниях S1,S2,…,Sn, несовместны и образуют полную сис­тему событий. Отсюда следует

(51)

Это соотношение называется условием нормировки. Задача заключает­ся в определении вероятности любого состояния Pi(t) в любой мо­мент времени t.

Введем понятие вероятности перехода системы из состояния i, где она находилась в момент времени t, в состояние j за время Dt Pij(t,Dt). Очевидно, что Pij(t,Dt) представляет собой условную вероятность того, что в момент времени t + Dt система окажется в состоянии Sj при условии, что в момент времени t она находилась в состоянии Si: pij(t,Dt)= p(Sj(t+Dt)/Si(t)).

Предел отношения вероятности перехода pij(t,Dt) к длине интервала времени Dt назовем плотностью вероятности перехода

. (52)

Плотность вероятности перехода определим только для случаев i¹j.

Если lij(t)=const, то марковская цепь называется однородной. В противном случае, когда lij(t) являются функциями времени, цепь называется неоднородной. При расчетах вероятностей состояний марковской цепи предполагается, что все эти плотности вероятнос­тей переходов lij известны. Если у каждой дуги графа состояний системы проставить плотность вероятности перехода по данной дуге, то полученный граф назовем размеченным графом состояний (см.рис.1). Уравнения Колмогорова составляются в соответствии с разме­ченным графом состояний. Рассмотрим фрагмент размеченного графа состояний (рис.1), обведенный штрихпунктирной линией. Отбро­сим вначале дуги, изображенные пунктиром, и определим вероятность нахождения системы в состоянии Si в момент времени t+Dt. С уче­том того, что вершина Siсвязана только с вершинами Sk и Sj, ука­занное событие будет иметь место в двух случаях:

— система находилась в состоянии Si в момент времени t и за время Dt из этого состояния не вышла;

— система находилась в состояния sk в момент времени t и за время Dt перешла из Skв Si.

Если отрезок Dt достаточно мал, то вероятность перехода pij(t,Dt) может быть определена приближенно с помощью (52)

С учетом (53) и свойства марковости процесса вероятность первого случая (отсутствие перехода по дуге (Si,Sj))

Вероятность второго случая с учетом (53)

Тогда можно определить искомую вероятность как

(54)

Переходя в (53) к пределу при Dt ® 0, получим

. (55)

Теперь добавим к вершине Si дуги, обозначенные на рис.1 пункти­ром. Тогда при вычислении pi(t+Dt) необходимо учитывать возможный переход из Si в Sj и Sr и переходы из Sk и Sl в Si. В этом случае

Повторяя вышеописанные рассуждения, получим

. (56)

На основании (55) и (56) можно сформулировать правила сос­тавления уравнений Колмогорова по размеченному графу состояний непрерывной марковской цепи:

1. Система дифференциальных уравнений Колмогорова имеет форму Коши. Каждое уравнение составляется с помощью рассмотрения ве­роятности состояния, представленного соответствующей вершиной в размеченном графе. Число уравнений системы равно числу вершин графа.

2. Число слагаемых правой части каждого уравнения равно чис­лу дуг, инцидентных соответствующей вершине.

3. Дугам с положительной инциденцией соответствуют отрица­тельные слагаемые, а дугам с отрицательной инциденцией — положи­тельные.

4. Каждое слагаемое правой части равно произведению вероят­ности состояния, соответствующего началу рассматриваемой дуги, на плотность вероятности перехода по данной дуге.

Начальные условия для системы уравнений Колмогорова опреде­ляются начальным состоянием системы. Например, если начальное состояние было S2 , то начальные условия имеют вид: p1(0)=0; р2(0)=1; р3(0)=0;…;рn(0)=0. Уравнения (55) и (56) были вы­ведены для общего случая неоднородной марковской цепи. Для одно­родной марковской цепи все lij(i,j=l,…,n) постоянны.

Рассмотрим одно важное свойство уравнений Колмогорова (55), которое может быть представлено в виде

, (57)

где — n-мерный вектор вероятностей состояний системы; р =1(t),…,pn(t)>; L — n´n-матрица плотностей перехода.

В соответствии с вышеописанными правилами составления урав­нений Колмогорова одна и та же плотность вероятности перехода lij будет входить в одно из уравнений со знаком «+», а в другое — со знаком «-«, поскольку для двух смежных вершин дуга, соединяющая их, будет обладать положительной инциденцией по отношению к одной вершине и отрицательной по отношению к другой. Это приведет к то­му, что сумма всех элементов в каждом столбце матрицы будет равна нулю. Тогда любая строка матрицы L будет равна сумме остальных строк. Следовательно, матрица L является всегда вырожденной. Бо­лее строго это свойство доказывается в [7].

Рассмотрим систему с размеченным графом состояний, изобра­женным на рис.2. Система уравнений Колмогорова и матрица L для этого случая в соответствии с правилами 1-4 будут иметь вид:

Исключение любого уравнения из этой системы нарушает указанное соотношение для строк матрицы L, следовательно, ранг матрицы L будет равен n-1. Для того чтобы система уравнений Колмогорова имела единственное решение при заданных начальных условиях, не­обходимо исключить любое из уравнений системы (58) и заме­нить его условием нормировки (51).

Итак, решение системы (57) без одного уравнения (безразлич­но какого) с условием (51) определяет в любой момент времени поведение вероятностей состояний марковской цепи при заданных начальных условиях.

Получить это решение можно с помощью любых численных методов (например, Рунге-Кутта, Эйлера-Коши и т.д.), реализуемых на ЭВМ. Только в самых простых случаях система уравнений Колмогорова мо­жет быть проинтегрирована в квадратурах. В большинстве практичес­ких случаев для расчета вероятностей состояний используются не решения систем уравнений Колмогорова в любой момент времени, а асимптотические оценки этих решений при t®¥.

Лекция 15. Предельные вероятности состояний. Простейший поток событий.

Асимптотические оценки в соответствии с известной теоремой А.А.Маркова могут быть получены для марковских цепей, обладающих эргодическим свойством.

Определение 1. Если число состояний системы конечно и из каждого состояния можно перейти в любое другое за произвольное число шагов, то говорят, что такая система обладает эргодическим свойством.

Определение 2. Пусть марковский процесс характеризуется ве­роятностями перехода из состояния i в состояние j за время t

Процесс называется транзитивным, если существует такое t>0, что pij(t)>0 (0£i£n; 0£j£n). Из определений 1 и 2 следует, что процессы в марковских цепях с эргодическим свойством являются транзитивными.

Теорема Маркова. Для любого транзитивного марковского процесса предел существует и не зависит от начального состояния i.

Это означает, что при t®¥ в системе устанавливается неко­торый предельный стационарный режим, характеризующийся постоян­ной, не зависящей от времени, вероятностью каждого из состояний системы. При этом данная вероятность представляет собой среднее относительное время пребывания системы в данном состоянии. Это значит, что если время работы всей системы 100 ч, а вероятность состояния S1 равна p1=0,15, то система будет находиться в состоянии S1 в среднем 15 ч.

Пределы, к которым стремятся вероятности каждого из состоя­ний марковской цепи с эргодическим свойством при t®¥, называ­ются предельными вероятностями. При рассмотрении СМО мы будем иметь дело только с эргодическими марковскими цепями. Пусть V — некоторое подмножество множества состояний системы S , а V’ — его дополнение до S . Если множество V обладает эргодическим свойс­твом и ни из одного состояния множества V нельзя перейти ни в од­но из состояний множества V’, то множество называется замкнутым или эргодическим множеством. Эргодические системы состоят из од­ного единственного эргодического множества (S=V, V’=Æ) и называются поэтому неразложимыми. Если в системе S множество V’¹Æ или в этой системе можно выделить несколько эргодических множеств S = V1ÈV2È…ÈVn, то такая система называется разложимой. Примеры таких систем приведены на рис.3.

На рис.3,а представлена сис­тема с двумя эргодическими множест­вами V1=(S2,S3,S4) и V2(S5,S6). На рис.3, б эргодическое множество состоит лишь из одного состояния (S4). Если эргодическое множест­во состоит лишь из одного состоя­ния, то это состояние называется поглощающим, так как попав в не­го однажды, процесс остается нав­сегда в поглощающем состоянии. Ха­рактерная особенность графа состо­яний неразложимой эргодической мар­ковской системы заключается в том, что каждой вершине этого графа ин­цидентны дуги как с положительной, так и с отрицательной инцидент­ностью (т.е. у каждой вершины име­ются дуги, направленные как к вер­шине, так и от нее, см., например, рис. 1 и 2).

Вычисление предельных вероят­ностей состояний для таких систем упрощается в связи с тем, что, поскольку все эти вероятности яв­ляются постоянными величинами, то их производные по времени рав­ны 0 (dpi/dt=0 для всех i). Поэтому левые части системы уравнений Колмогорова (58) приравниваются нулю и она превращается в систе­му линейных алгебраических уравнений

. (59)

Нетривиальное решение системы (59) может быть получено только в случае вырожденности матрицы L. Выше было доказано, что матрица плотностей вероятностей L является вырожденной. Система (59) без одного из своих уравнений дополняется условием нормировки

(60)

Соотношения (59) и (60) позволяют определить предельные вероят­ности состояний. Поскольку часть слагаемых, соответствующая дугам с отрицательной инцидентностью, положительна, а другая часть, со­ответствующая дугам с положительной инцидентностью, отрицательна, то каждое уравнение системы (59) может быть составлено с учетом мнемонического правила: для каждого состояния сумма членов, соот­ветствующих входящим дугам, равна сумме членов, соответствующих выходящим дугам.

Пример. Для системы, изображенной на рис.2, из уравнений Колмогорова (58) следует

Для решения (61) нужно исключить любое из первых пяти уравнений (например, пятое, как содержащее наибольшее число членов).

Предельные вероятности состояний используются в ТМО значи­тельно чаще, чем решения уравнений Колмогорова, причем, зная ре­шение системы уравнений Колмогорова, можно определить момент окончания переходного процесса изменения вероятностей состояний во времени. Это дает возможность рассчитать, промежуток времени начиная от включения системы в работу, по истечении которого ве­роятности состояний достигнут своих предельных значений и будут справедливы оценки, использующие эти значения. В заключение этого параграфа рассмотрим один частный, но практически очень важный класс марковских процессов, широко применяемых при исследовании СМО. Это — процессы «размножения и гибели». К ним относятся мар­ковские цепи, представимые размеченным графом, который состоит из вытянутой цепочки состояний, изображенной на рис.4.

Матрица плотностей вероятностей переходов такой системы яв­ляется якобиевой (тридиагональной):

Рассматривая начальное состояние S0 , получим в соответствии с (59)

Для состояния S1 имеем

Вычитая из (63) равенство (62), получим

Продолжая этот процесс до n-гo состояния включительно, получим

Из (62) теперь можно выразить p1 через р0:

Подставляя (64) в (65), получим

Очевидно, что для произвольного k (1£k£n) будет справедливо вы­ражение

. (66)

В соответствии с (66) и размеченным графом состояний, представленным на рис.4, можно сформулировать правило, с по­мощью которого можно выразить предельные вероятности состояний процесса «размножения и гибели» через вероятность начального сос­тояния р0. Это правило гласит: вероятность произвольного состоя­ния pk (l£k£n) равна вероятности начального состояния р0, умно­женной на дробь, числитель которой равен произведению плотностей вероятностей перехода для дуг, переводящих состояние системы сле­ва направо, а знаменатель — произведение плотностей вероятностей перехода справа налево от начального до k-гo состояний включи­тельно.

Вероятность р0 находится из условия нормировки и выражений (66) следующим образом:

(67)

Выражения (66) и (67) полностью определяют предельные вероят­ности процесса «размножения и гибели».

Цепи Маркова с непрерывным временем являются математическими моделями СМО. Для анализа СМО необходимо также иметь математичес­кие модели входных потоков заявок на обслуживание. Эти математи­ческие модели представляют собой потоки события, являющиеся от­дельным классом случайных процессов. Потоком событий называется последовательность однородных событий, следующих одно за другим в случайные моменты времени. Этот поток количественно может быть охарактеризован числом событий x(t), имевших место в течение определенного промежутка времени (0,t). Тогда случайный поток со­бытий можно определить как случайный процесс x(t) (t³0), в кото­ром функция x(t) является неубывающей функцией времени, способной принимать лишь целые неотрицательные значения. Иными словами, график функции x(t) является ступенчатой кривой с постоянной вы­сотой ступеньки, равной единице, причем ширина ступеньки — слу­чайная величина. Примерами таких потоков могут служить: поток вызовов на АТС, поток запросов в вычислительный центр коллективного пользования и т.п. Моменты появления событий можно отобразить точками на временной оси, поэтому поток событий часто представляется и как последовательность таких точек. Поток событий называется регулярным, если события следуют одно за другим через одинаковые, строго фиксированные промежутки времени.

В ТМО такие потоки практи­чески, не используются, однако они представляют интерес как предельный случай. Значительно чаще имеют дело с потоками, в которых времена поступления со­бытий и, следовательно, проме­жутки времени между ними являются случайными (иррегулярными). При этом наиболее простые рас­четные соотношения получаются при использовании простейших потоков событий, которые широко применяются при исследовании CMО.

Простейшими называются потоки, обладающие следующими тремя свойствами: стационарностью, ординарностью и отсутствием последействия. Рассмотрим эти свойства подробнее.

1. Поток событий называется стационарным, если вероятность pk(l) того, что за отрезок времени t произойдет k событий, зави­сит только от его длины t и не зависит от его расположения на временной оси, т.е. pk(t’,t’+t)=pk(t). Из определения однородной марковской цепи следует, что стационар­ность — это однородность потока по времени.

2. Поток называется ординарным, если вероятность попадания на любой элементарный участок временной оси двух или более собы­тий является бесконечно малой величиной, т.е.

3. Поток событий называется потоком без последействия, если вероятность попадания событий на некоторый участок временной оси не зависит от того, сколько событий попало на другие участки. Иными словами, условная вероятность наступления k событий за про­межуток времени (t’,t’+t), вычисленная при любом условии чередо­вания событий до момента t’, равна безусловной вероятности pk(t) того же события, т.е.

p[(t’,t’+t),k/(t»,t»+t),m]=pk(t),tÇtk=Æ, t» T), т.е. вероятность того, что случайная величина Т при­мет значение, меньшее чем t. Для этого необходимо определить ве­роятность того, что в интервал времени t, отсчитываемый от момента t0 появления некоторого события, попадет еще хотя бы одно событие (см.рис.5,б). Эту вероятность можно определить, зная вероятность отсутствия событий в интервале t, равную вероятности p0(t) состояния S0 на графе рис.5, а. В соответствии с (72)

F(t)=p(t>T)=1-e -lt , t>0 . (73)

Дифференцируя (73) по времени, получим искомый закон распреде­ления

(74)

Закон распределения (74) называется показательным (экспоненци­альным). Определим первые два момента показательного распределе­ния:

(75)

(76)

Интегрируя (75) и (76) по частям, получим

. (77)

Из (77) следует, что для показательного распределения математи­ческое ожидание и среднеквадратичное отклонение равны друг другу. Кроме того из (77) следует, что в простейшем потоке среднее время между двумя соседними событиями равно обратной величине ин­тенсивности потока.

Определим теперь вероятность попадания одного события в простейшем потоке на элементарный участок временной оси (см.рис.5,б). Так же, как и в предыдущем случае, эта вероятность

Разлагая e -lDt в ряд по степеням lDt и ограничиваясь только первой степенью (в силу малости Dt), получим

Выражение в правой части (78) называется элементом вероятности появления события в простейшем потоке.

Марковские цепи являются математи­ческими моделями некоторых реальных систем, а потоки событий яв­ляются моделями внешних воздействий на эти системы. В дальнейшем будем считать, что переход системы из одного состояния i в другое j в соответствии с размеченным графом состояний происходит под действием потока событий с интенсивностью lij, равной соответс­твующей плотности вероятности перехода. Эта интенсивность определяется как среднее число переходов из состояния i в состояние j за единицу времени.

Если все потоки событий являются пуассоновскими, то процесс в системе будет марковским.

Уравнения Колмогорова составляют основу аналитических моделей СМО. Их можно получить следующим образом.

Изменение вероятности нахождения системы в состоянии за время есть вероятность перехода системы в состояние из любых других состояний за вычетом вероятности перехода из состояния в другие состояния за время , т.е.

(1)

где ( ) и ( ) — вероятности нахождения системы в состояниях и соответственно в момент времени ; произведение вида есть безусловная вероятность перехода из в , равная условной вероятности перехода, умноженной на вероятность условия; и — множества индексов инцидентных вершин по отношению к вершине по входящим и исходящим дугам на графе состояний соответственно.

Разделив выражение (1) на и перейдя к пределу при , получим

откуда следуют уравнения Колмогорова

В стационарном состоянии и уравнения Колмогорова составляют систему алгебраических уравнений, в которой -й узел представлен уравнением

(2)

Прибавляя к левой и правой частям уравнения (2) и учитывая что получаем т.е.

где — финальные вероятности.

Условия существования стационарного режима:

— цепь Маркова должна быть однородной;

— множество состояний системы должно быть эргодическим, т.е. из любого состояния Si можно за конечное число шагов перейти в состояниеSj .

Предельные вероятности состояний представляют собой среднее время пребывания системы в данном состоянии. Например, если у системы S три возможных состояния: S1, S2, S3 , причем их предельные вероятности равны 0.2, 0.3, 0.5, то это означает, что после перехода к установившемуся режиму система S в среднем две десятых времени будет находиться в состоянии S1, три десятых – в состоянии S2, половину времени – в S3.

Для вычисления предельных вероятностей необходимо в системе уравнений Колмогорова положить все левые части (производные) равными нулю. Действительно, в предельном (стационарном) режиме все вероятности состояний постоянны, а значит, их производные равны нулю. Следовательно, система дифференциальных уравнений превращается в систему линейных алгебраических уравнений.

Последнее изменение этой страницы: 2019-04-19; Просмотров: 452; Нарушение авторского права страницы

Уравнения Колмогорова.
Предельные вероятности состояний

Рассмотрим математическое описание марковского процесса с дискретными состояниями и непрерывным временем* на примере случайного процесса из примера 1, граф которого изображен на рис. 1. Будем полагать, что все переходы системы из состояния в происходят под воздействием простейших потоков событий с интенсивностями ; так, переход системы из состояния в будет происходить под воздействием потока отказов первого узла, а обратный переход из состояния в — под воздействием потока «окончаний ремонтов» первого узла и т.п.

Граф состояний системы с проставленными у стрелок интенсивностями будем называть размеченным (см. рис. 1). Рассматриваемая система имеет четыре возможных состояния: .

Вероятностью i-го состояния называется вероятность того, что в момент система будет находиться в состоянии . Очевидно, что для любого момента сумма вероятностей всех состояний равна единице:

Рассмотрим систему в момент и, задав малый промежуток , найдем вероятность того, что система в момент будет находиться в состоянии . Это достигается разными способами.

1. Система в момент с вероятностью находилась в состоянии , а за время не вышла из него.

Вывести систему из этого состояния (см. граф на рис. 1) можно суммарным простейшим потоком с интенсивностью , т.е. в соответствии с формулой (7), с вероятностью, приближенно равной . А вероятность того, что система не выйдет из состояния , равна . Вероятность того, что система будет находиться в состоянии по первому способу (т.е. того, что находилась в состоянии и не выйдет из него за время ), равна по теореме умножения вероятностей:

2. Система в момент с вероятностями (или ) находилась в состоянии или и за время перешла в состояние .

Потоком интенсивностью (или — с- рис. 1) система перейдет в состояние с вероятностью, приближенно равной (или ). Вероятность того, что система будет находиться в состоянии по этому способу, равна (или ).

Применяя теорему сложения вероятностей, получим

Переходя к пределу при (приближенные равенства, связанные с применением формулы (7), перейдут в точные), получим в левой части уравнения производную (обозначим ее для простоты ):

Получили дифференциальное уравнение первого порядка, т.е. уравнение, содержащее как саму неизвестную функцию, так и ее производную первого порядка.

Рассуждая аналогично для других состояний системы , можно получить систему дифференциальных уравнений Колмогорова для вероятностей состояний:

Сформулируем правило составления уравнений Колмогорова . В левой части каждого из них стоит производная вероятности i-го состояния. В правой части — сумма произведений вероятностей всех состояний (из которых идут стрелки в данное состояние) на интенсивности соответствующих потоков событий, минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного (i-го состояния).

В системе (9) независимых уравнений на единицу меньше общего числа уравнений. Поэтому для решения системы необходимо добавить уравнение (8).

Особенность решения дифференциальных уравнений вообще состоит в том, что требуется задать так называемые начальные условия, т.е. в данном случае вероятности состояний системы в начальный момент . Так, например, систему уравнений (9) естественно решать при условии, что в начальный момент оба узла исправны и система находилась в состоянии , т.е. при начальных условиях .

Уравнения Колмогорова дают возможность найти все вероятности состояний как функции времени . Особый интерес представляют вероятности системы в предельном стационарном режиме , т.е. при , которые называются предельными (или финальными) вероятностями состояний.

В теории случайных процессов доказывается, что если число состояний системы конечно и из каждого из них можно (за конечное число шагов) перейти в любое другое состояние, то предельные вероятности существуют.

Предельная вероятность состояния имеет четкий смысл: она показывает среднее относительное время пребывания системы в этом состоянии . Например, если предельная вероятность состояния , т.е. , то это означает, что в среднем половину времени система находится в состоянии .

Так как предельные вероятности постоянны, то, заменяя в уравнениях Колмогорова их производные нулевыми значениями, получим систему линейных алгебраических уравнений, описывающих стационарный режим. Для системы с графом состояний, изображенном на рис. 1), такая система уравнений имеет вид:

Систему (10) можно составить непосредственно по размеченному графу состояний, если руководствоваться правилом , согласно которому слева в уравнениях стоит предельная вероятность данного состояния , умноженная на суммарную интенсивность всех потоков, ведущих из данного состояния, а справа — сумма произведений интенсивностей всех потоков, входящих в i-е состояние, на вероятности тех состояний, из которых эти потоки исходят.

Пример 2. Найти предельные вероятности для системы из примера 1, граф состояний которой приведен на рис. 1, при

Решение. Система алгебраических уравнений, описывающих стационарный режим для данной системы, имеет вид (10) или

(Здесь мы вместо одного «лишнего» уравнения системы (10) записали нормировочное условие (8)).

Решив систему (11), получим , т.е. в предельном, стационарном режиме система в среднем 40% времени будет находиться в состоянии (оба узла исправны), 20% — в состоянии (первый узел ремонтируется, второй работает), 27% — в состоянии (второй узел ремонтируется, первый работает) и 13% времени — в состоянии (оба узла ремонтируются)

Пример 3. Найти средний чистый доход от эксплуатации в стационарном режиме системы в условиях примеров 1 и 2, если известно, что в единицу времени исправная работа первого и второго узлов приносит доход соответственно в 10 и 6 ден.ед., а их ремонт требует затрат соответственно в 4 и 2 ден.ед. Оценить экономическую эффективность имеющейся возможности уменьшения вдвое среднего времени ремонта каждого из двух узлов, если при этом придется вдвое увеличить затраты на ремонт каждого узла (в единицу времени).

Решение. Из примера 2 следует, что в среднем первый узел исправно работает долю времени, равную , а второй узел — . В то же время первый узел находится в ремонте в среднем долю времени, равную , а второй узел — . Поэтому средний чистый доход в единицу времени от эксплуатации системы, т.е. разность между доходами и затратами, равен

Уменьшение вдвое среднего времени ремонта каждого из узлов в соответствии с (6) будет означать увеличение вдвое интенсивностей потока «окончаний ремонтов» каждого узла, т.е. теперь и система линейных алгебраических уравнений (10), описывающая стационарный режим системы , вместе с нормировочным условием (8) примет вид:

Решив систему, получим .

Учитывая, что , а затраты на ремонт первого и второго узла составляют теперь соответственно 8 и 4 ден.ед., вычислим средний чистый доход в единицу времени:

Так как больше (примерно на 20%), то экономическая целесообразность ускорения ремонтов узлов очевидна.

Процесс гибели и размножения

В теории массового обслуживания широкое распространение имеет специальный класс случайных процессов — так называемый процесс гибели и размножения . Название этого процесса связано с рядом биологических задач, где он является математической моделью изменения численности биологических популяций.

Граф состояний процесса гибели и размножения имеет вид, показанный на рис. 4.

Рассмотрим упорядоченное множество состояний системы . Переходы могут осуществляться из любого состояния только в состояния с соседними номерами, т.е. из состояния возможны переходы только либо в состояние , либо в состояние .

Предположим, что все потоки событий, переводящие систему по стрелкам графа, простейшие с соответствующими интенсивностями или .

По графу, представленному на рис. 4, составим и решим алгебраические уравнения для предельных вероятностей состояний (их существование вытекает из возможности перехода из каждого состояния в каждое другое и конечности числа состояний).

В соответствии с правилом составления таких уравнений (см. 13) получим: для состояния

для состояния имеем , которое с учетом (12) приводится к виду

Аналогично, записывая уравнения для предельных вероятностей других состояний, можно получить следующую систему уравнений:

к которой добавляется нормировочное условие

При анализе численности популяций считают, что состояние соответствует численности популяции, равной , и переход системы из состояния в состояние происходит при рождении одного члена популяции, а переход в состояние — при гибели одного члена популяции.

Решая систему (14), (15), можно получить

Легко заметить, что в формулах (17) для коэффициенты при есть слагаемые, стоящие после единицы в формуле (16). Числители этих коэффициентов представляют произведение всех интенсивностей, стоящих у стрелок, ведущих слева направо до данного состояния , а знаменатели — произведение всех интенсивностей, стоящих у стрелок, ведущих справа налево до состояния .

Пример 4. Процесс гибели и размножения представлен графом (рис. 5). Найти предельные вероятности состояний.


источники:

http://lektsia.com/14x71ba.html

http://mathhelpplanet.com/static.php?p=uravneniya-kolmogorova