Уравнения конических сечений в канонической форме

Реферат: Конические сечения

Министерство образования РФ

Калужский государственный педагогический университет

Им. К.Э. Циолковского

1. Работы Аполлония

2. «Конические сечения» Аполлония.

2.1 Вывод уравнения кривой для сечения прямоугольного конуса вращения

2.2 Вывод уравнения для параболы

2.3 Вывод уравнения для эллипса и гиперболы

2.4 Инвариантность конических сечений

2.5 Дальнейшее исследование конических сечений в трудах Аполлония

2.6 Дальнейшее развитие теории конических сечений

4. Список литературы

Аполлоний родился в Пергах в Малой Азии. Расцвет его деятельности падает примерно на 210г. до н.э. В это время он жил в Александрии, куда переехал еще юношей и где учился под руководством математиков школы Евклида. Аполлоний прославился как геометр и астроном. Умер он около 170г. до н. э.

В математике Аполлоний более всего известен своими «Коническими сечениями», в которых он дал полное изложение теории, причем развил аналитические и проективные методы. Аполлоний написал трактат «О вставках», посвященный классификации задач которые решаются с помощью вставок. Такие задачи могут оказаться разрешимыми циркулем и линейкой (плоские задачи), с помощью конических сечений (телесные задачи) и с помощью других кривых (линейные). Выявление того, к какому классу относится та или иная задача, могло означать начало их алгебраической классификации. Интерес Аполлония к алгебраическим проблемам проявился и в другой его работе – «О неупорядоченных иррациональностях», в которой он продолжал классификацию Евклида.

Чисто геометрическими работами Аполлония являются: работа «О спиральных линиях», в которой он рассматривает спирали на поверхности цилиндра, «О касании», где разбирается знаменитая задача Аполлония: «Даны три вещи, каждая из которых может быть точкой, прямой или окружностью; требуется провести окружность, которая проходила бы через каждую из данных точек и касалась бы каждой из данных прямых или окружностей».

Из сочинений «О плоских геометрических местах» можно заключить, что Аполлоний рассмотрел преобразование плоскости на себя, которые переводят прямые и окружности в прямые и окружности. Частным случаем этих преобразований являются преобразования подобия и инверсии некоторой точки.

Некоторые труды Аполлония были утрачены и не дошли до наших дней.

«Конические сечения» Аполлония

«Конические сечения» состоят из восьми книг. Первые четыре, в которых, по словам автора, излагаются элементы теории, дошли до нас по-гречески, следующие три – в арабском переводе Сабита ибн Корры, последняя – восьмая книга — утеряна. Имеется реконструкция ее текста, принадлежащая английскому астроному Э. Галлею (XVIIIв.).

Кривые второго порядка были впервые рассмотрены в связи с задачей удвоения куба, Менехм представил их как плоские сечения прямоугольного, тупоугольного и остроугольного конусов вращения. Такое стереометрическое представление гарантировало существование и непрерывность рассматриваемых кривых. Затем Менехм переходил к выводу основного планиметрического свойства сечения, которое древние называли симптомом (уравнение кривой).

Вывод уравнения кривой для сечения прямоугольного конуса вращения

Пусть OAB – сечение этого конуса плоскостью, проходящей через ось OL, и пусть PLK – след плоскости, перпендикулярной к образующей этого конуса (рис. 1). Тогда KM 2 = AK•KB, так как AMB – полукруг. Но AK=PP′=√2LP 2 , а KB=√2KP 2 , поэтому KM 2 =2LP•KP.

Обозначим KM через y, KP – через p, тогда получим

Это уравнение, или симптом, кривой, которое записывается с помощью буквенной символики, а древние записывали в словесно – геометрической форме: квадрат на полухорде KM в каждой точке равен прямоугольнику PKSR, построенному на отрезке PK оси до вершины (x) и на постоянном отрезке PR (рис. 2).

Аналогично выводилось уравнение для сечений остроугольного и тупоугольного конусов, т.е. эллипса и гиперболы:

= и =, (2)

где 2a – большая ось эллипса или действительная ось гиперболы,

В случае, когда р=а, уравнения (2) принимают вид

y 2 =x(2a-x) и y 2 =x(2a+x) (3)

первое из которых является уравнением окружности радиуса а, а второе – уравнением равносторонней гиперболы. Эллипс и гипербола (2) могут быть получены из окружности и гиперболы (3) сжатием к оси абсцисс в отношении √p/a.

Аполлоний прежде всего дает более общее определение. Во – первых, он берет произвольный круговой конус; во – вторых, рассматривает обе его полости ( что дает ему возможность изучать обе ветки гиперболы); наконец, он проводит сечение плоскостью расположенной под любым углом к образующей.

На привычном языке аналитической геометрии, можно сказать, что до Аполлония конические сечения рассматривались по отношению к прямоугольной системе координат, причем одна из осей совпадала с главным диаметром, а вторая проходила перпендикулярно к ней через вершину кривой; Аполлоний же относил кривые к любому диаметру касательной проведенной в одном из его концов, т.е. к некоторой косоугольной системе координат.

После стереометрического определения Аполлоний также дает вывод симптомов – уравнений кривых. При этом он классифицирует полученные кривые по виду определяющего их уравнения, т.е. в основу кладется точка зрения, свойственная аналитической геометрии.

Вывод уравнения для параболы

Пусть BAC – сечение кругового конус плоскостью, проходящей через ось (рис. 3), и пусть проведена плоскость GHD так, что DE перпендикулярна BC, а GH параллельна AB ( GHможно было выбрать параллельной AC). Найдем уравнение кривой DGE, полученной в сечении.

Пусть К – произвольная точка этой кривой. Проведем KL параллельно DE и MN параллельно BC. Плоскость проходящая через KL и MN, будет параллельна плоскости основания и, как это ранее доказал Аполлоний, будет пересекать конус по кругу. Поэтому KL 2 =ML•LN.

Но , т.е. ,

, т.е. .

Отрезок GL есть переменное расстояние проекции точки Д от вершины, члены постоянны. Аполлоний выбирает такой отрезок GF, что

Тогда KL 2 =GF•LG. Это и есть симптом – уравнение сечения.

Если обозначить KL=y, LG=x, GF=2p, то мы получим уравнение в привычной форме: y 2 =2px.

У Аполлония уравнение записывается также словесно – гречески: если GH – один из диаметров параболы, а KL – полухорда, сопряженная с этим диаметром, то Аполлоний откладывает GR = 2р перпендикулярно к GH. Тогда утверждается, что в каждой точке квадрат, построенный на LK (рис. 4), должен равняться прямоугольнику GRSL, т.е. GL•GR.

Название «парабола» происходит от названия Аполлония παραβολή (приложение), так как задача о построении точки этой кривой сводится к задаче о приложении (до Аполлония параболу называли сечением прямоугольного конуса вращения).

Вывод уравнения для эллипса и гиперболы

Аналогично Аполлоний получает уравнение эллипса и гиперболы.

Так, для эллипса доказывается, что LK 2 = пл. GLL′G′ (рис. 5), где GH=2a – некоторый диаметр эллипса, LK – полухорда, сопряженная с ним, GR=2p – постоянная, причем GR перпендикулярна GH. Чтобы перейти к более привычной форме записи, заметим, что

Рис. 5

,

,

.

Таким образом, задача о построении точек эллипса сводится к задаче о приложении с недостатком («эллиптическая задача»), чем и объясняется название «эллипс» ( έλλειψις – недостаток). Это название было введено Аполлонием, до него эллипс называли сечением остроугольного конуса вращения.

Аналогично для гиперболы (рис. 6) получается уравнение

LK 2 = пл. GLL′G′, т.е. , или .

Следовательно, задача о построении точек гиперболы сводится к задаче о приложении с избытком («гиперболическая задача»), чем и объясняется название «гипербола» ( ύπερβολή – избыток). Это название также было введено Аполлонием, до него гиперболу называли сечением тупоугольного конуса вращения.

Построенный отрезок GR=2p, откладываемый перпендикулярно диаметру GH, Аполлоний назвал «прямой стороной».

В настоящее время величину p именуют параметром канонического сечения (в случае эллипса и гиперболы с полуосями a и bp=b 2 /a, и коэффициент сжатия √p/a, преобразующего окружность или равностороннюю гиперболу в данный эллипс или гиперболу, равен b/a).

Классификация конических сечений у Аполлония была по существу, алгебраической.

Инвариантность конических сечений

Аполлоний прекрасно понимал (и это сближало его с геометрами Нового времени), что такая классификация законна только в том случае, если вид уравнения не изменяется при отнесении кривой к другому ее диаметру и сопряженным с ним хордам.

В первой книге он исследует данный вопрос. Для этого необходимо было определить направление хорд, сопряженных с любым диаметром. При стереометрическом определении сопряженные направления получаются автоматически. Однако для решения задачи, поставленной Аполлонием, нужно определение, независимое от стереометрии. Аполлоний и делает это: он доказывает, что прямая проведенная через точку A канонического сечения параллельно направлению хорд, сопряженных с диаметром, проходящим через A, есть касательная. После этого он строит касательную к параболе, эллипсу, кругу и гиперболе.

Пусть P – некоторая точка на параболе и АА′ – один из диаметров (рис. 7). Аполлоний доказывает, что касательная PRотсечет от продолжения диаметра отрезок AR=AQ, если PL – хорда, сопряженная с AA′. Для гиперболы, эллипса и круга он получает соотношение (рис. 8, для эллипса)

Аполлоний преобразует затем уравнение эллипса и гиперболы так, что начало координат оказывается в центре кривой, а уравнение параболы так, что начало координат совмещается с вершиной этой кривой.

Таким образом, здесь осями координат служат два сопряженных диаметра. После этого он показывает, что вид уравнения не изменяется, если в качестве новых осей взять любой из диаметров кривой и касательную, проведенную в одном из его концов.

В первой книги Аполлоний рассматривает множество систем координат, зависящее от одного параметра, так как эти системы координат определяются одной точкой кривой – концом диаметра, и доказывает инвариантность уравнений эллипса, гиперболы и параболы относительно преобразований соответствующих систем координат.

В конце первой книги Аполлоний показывает, что можно выбрать диаметр, который будет перпендикулярен к сопряженным с ним хордам. Тогда рассматриваемую кривую можно представить как сечение любого тупоугольного, либо остроугольного, либо прямоугольного конусов вращения плоскостью, перпендикулярной к образующей. Этим устанавливается тождество кривых, введенных Аполлонием, с каноническими сечениями, которые рассматривались до него.

Основная идея первой книги состоит в том, чтобы за основу классификации кривых принять свойства их алгебраических уравнений, и именно те которые остаются инвариантными при допустимых преобразованиях координат. Только в XIX в. Эта мысль понята до конца, когда Клейн в «Эрлангенской программе» установил новый взгляд на геометрию, как науку об инвариантах определенных групп преобразований плоскости или пространства.

Дальнейшее исследование конических сечений в трудах Аполлония

В последующих трех книгах Аполлоний развивает теорию конических сечений: выясняет основные свойства сопряженных диаметров асимптот, получает уравнение гиперболы относительно асимптот (xy=const) и устанавливает основные свойства фокусов эллипса и гиперболы. Здесь же впервые появляются полюсы и поляры относительно конических сечений: если из точки можно провести две касательные к коническому сечению, то прямая соединяющая точки касания, называется полярой данной точки, а точка полюсом этой прямой. Если передвигать полюс по прямой, пересекающей сечение, то поляра будет вращаться вокруг полюса этой прямой, если же передвигать полюс по прямой, не пересекающей сечение, то поляра тоже будет вращаться вокруг некоторой точки, причем в этом случае точку вокруг которой вращается поляра, и прямую, по которой движется полюс, также называют полюсом и полярой. В четвертой книге Аполлоний рассматривает вопрос о числе точек пересечения двух конических сечений.

В пятой книге Аполлоний определяет все нормали к коническому сечению (перпендикуляры к касательной, восстановленные в точке касания). В шестой книге изучаются подобные конические сечения.

В седьмой книге содержатся знаменитые теоремы Аполлония:

a) сумма квадратов на сопряженных диаметрах эллипса равна сумме квадратов на главных осях;

b) разность квадратов на двух сопряженных диаметрах гиперболы равна разности квадратов на главных осях;

c) параллелограмм, построенный на двух сопряженных диаметрах эллипса или гиперболы, имеет постоянную площадь.

Дальнейшее развитие теории конических сечений

В древности методы исследования кривых созданные Аполлонием, не получили развития, хотя до начала V в. н.э. его труды изучались и комментировались. Что касается самих конических сечений, то они были применены еще Архимедом для решения и исследования кубического уравнения. Для тех же целей применяли конические сечения позднейшие античные геометры и ученые стран ислама.

В математическом естествознании долгое время не получили ни какого применения, если не считать изучение отражения света от параболических зеркал. Только в XVII в. наступило возрождение идей Аполлония: Ферма и Декарт перевели его метод на язык новой алгебры, основав аналитическую геометрию, а Ньютон, применил эти методы для описания и исследования кривых третьего порядка. Но еще раньше теория конических сечений получила самое широкое применение в механике земных и небесных тел: Кеплер установил, что планеты нашей солнечной системы движутся по эллипсам, в одном из фокусов которой находится Солнце; Галилей показал, что брошенный камень летит в пустоте по параболе. Наконец, в 80-х годах XVII в. Ньютон создал свои «Математические начала натуральной философии», непосредственно опираясь на труды Аполлония.

Конические сечения Аполлонием являются примером математической теории, созданной задолго до того как она оказалась необходимой. По этому поводу А. Эйнштейн писал: «К восхищению перед этим замечательным человеком (речь идет о Кеплере) еще одно чувство восхищения и благоговения, но относящееся не к человеку, а к загадочной гармонии природы, которые соответствуют простейшим законам. Наряду с прямой и окружностью среди них были эллипс и гипербола. Последние мы видим реализованными в орбитах небесных тел, во всяком случае, с хорошим приближением».

1. Пути и лабиринты. Очерки по истории математики. Даан – Дальмедико А., Пейффер Ж. Пер. с франц. – М.: Мир, 1986.

2. История математики с древних времен до начала XIX столетия. Юшкевич А.П. – М.: Наука, 1970.

КОНИЧЕСКИЕ СЕЧЕНИЯ

КОНИЧЕСКИЕ СЕЧЕНИЯ, плоские кривые, которые получаются пересечением прямого кругового конуса плоскостью, не проходящей через его вершину (рис. 1). С точки зрения аналитической геометрии коническое сечение представляет собой геометрическое место точек, удовлетворяющих уравнению второго порядка. За исключением вырожденных случаев, рассматриваемых в последнем разделе, коническими сечениями являются эллипсы, гиперболы или параболы.

Конические сечения часто встречаются в природе и технике. Например, орбиты планет, обращающихся вокруг Солнца, имеют форму эллипсов. Окружность представляет собой частный случай эллипса, у которого большая ось равна малой. Параболическое зеркало обладает тем свойством, что все падающие лучи, параллельные его оси, сходятся в одной точке (фокусе). Это используется в большинстве телескопов-рефлекторов, где применяются параболические зеркала, а также в антеннах радаров и специальных микрофонах с параболическими отражателями. От источника света, помещенного в фокусе параболического отражателя, исходит пучок параллельных лучей. Поэтому в мощных прожекторах и автомобильных фарах используются параболические зеркала. Гипербола является графиком многих важных физических соотношений, например, закона Бойля (связывающего давление и объем идеального газа) и закона Ома, задающего электрический ток как функцию сопротивления при постоянном напряжении. См. также НЕБЕСНАЯ МЕХАНИКА.

РАННЯЯ ИСТОРИЯ

Открывателем конических сечений предположительно считается Менехм (4 в. до н.э.), ученик Платона и учитель Александра Македонского. Менехм использовал параболу и равнобочную гиперболу для решения задачи об удвоении куба.

Трактаты о конических сечениях, написанные Аристеем и Евклидом в конце 4 в. до н.э., были утеряны, но материалы из них вошли в знаменитые Конические сечения Аполлония Пергского (ок. 260–170 до н.э.), которые сохранились до нашего времени. Аполлоний отказался от требования перпендикулярности секущей плоскости образующей конуса и, варьируя угол ее наклона, получил все конические сечения из одного кругового конуса, прямого или наклонного. Аполлонию мы обязаны и современными названиями кривых – эллипс, парабола и гипербола.

В своих построениях Аполлоний использовал двухполостной круговой конус (как на рис. 1), поэтому впервые стало ясно, что гипербола – кривая с двумя ветвями. Со времен Аполлония конические сечения делятся на три типа в зависимости от наклона секущей плоскости к образующей конуса. Эллипс (рис. 1,а) образуется, когда секущая плоскость пересекает все образующие конуса в точках одной его полости; парабола (рис. 1,б) – когда секущая плоскость параллельна одной из касательных плоскостей конуса; гипербола (рис. 1,в) – когда секущая плоскость пересекает обе полости конуса.

ПОСТРОЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ

Изучая конические сечения как пересечения плоскостей и конусов, древнегреческие математики рассматривали их и как траектории точек на плоскости. Было установлено, что эллипс можно определить как геометрическое место точек, сумма расстояний от которых до двух заданных точек постоянна; параболу – как геометрическое место точек, равноудаленных от заданной точки и заданной прямой; гиперболу – как геометрическое место точек, разность расстояний от которых до двух заданных точек постоянна.

Эти определения конических сечений как плоских кривых подсказывают и способ их построения с помощью натянутой нити.

Эллипс.

Если концы нити заданной длины закреплены в точках F1 и F2 (рис. 2), то кривая, описываемая острием карандаша, скользящим по туго натянутой нити, имеет форму эллипса. Точки F1 и F2 называются фокусами эллипса, а отрезки V1V2 и v1v2 между точками пересечения эллипса с осями координат – большей и малой осями. Если точки F1 и F2 совпадают, то эллипс превращается в окружность.

Гипербола.

При построении гиперболы точка P, острие карандаша, фиксируется на нити, которая свободно скользит по шпенькам, установленным в точках F1 и F2, как показано на рис. 3,а. Расстояния подобраны так, что отрезок PF2 превосходит по длине отрезок PF1 на фиксированную величину, меньшую расстояния F1F2. При этом один конец нити проходит под шпеньком F1 и оба конца нити проходят поверх шпенька F2. (Острие карандаша не должно скользить по нити, поэтому его нужно закрепить, сделав на нити маленькую петлю и продев в нее острие.) Одну ветвь гиперболы (PV1Q) мы вычерчиваем, следя за тем, чтобы нить оставалась все время натянутой, и потягивая оба конца нити вниз за точку F2, а когда точка P окажется ниже отрезка F1F2, придерживая нить за оба конца и осторожно потравливая (т.е. отпуская) ее. Вторую ветвь гиперболы (P ў V2Q ў ) мы вычерчиваем, предварительно поменяв ролями шпеньки F1 и F2.

Ветви гиперболы приближаются к двум прямым, которые пересекаются между ветвями. Эти прямые, называемые асимптотами гиперболы, строятся как показано на рис. 3,б. Угловые коэффициенты этих прямых равны ± (v1v2)/(V1V2), где v1v2 – отрезок биссектрисы угла между асимптотами, перпендикулярной отрезку F1F2; отрезок v1v2 называется сопряженной осью гиперболы, а отрезок V1V2 – ее поперечной осью. Таким образом, асимптоты являются диагоналями прямоугольника со сторонами, проходящими через четыре точки v1, v2, V1, V2 параллельно осям. Чтобы построить этот прямоугольник, необходимо указать местоположение точек v1 и v2. Они находятся на одинаковом расстоянии, равном

от точки пересечения осей O. Эта формула предполагает построение прямоугольного треугольника с катетами Ov1 и V2O и гипотенузой F2O.

Если асимптоты гиперболы взаимно перпендикулярны, то гипербола называется равнобочной. Две гиперболы, имеющие общие асимптоты, но с переставленными поперечной и сопряженной осями, называются взаимно сопряженными.

Парабола.

Фокусы эллипса и гиперболы были известны еще Аполлонию, но фокус параболы, по-видимому, впервые установил Папп (2-я пол. 3 в.), определивший эту кривую как геометрическое место точек, равноудаленных от заданной точки (фокуса) и заданной прямой, которая называется директрисой. Построение параболы с помощью натянутой нити, основанное на определении Паппа, было предложено Исидором Милетским (6 в.). Расположим линейку так, чтобы ее край совпал с директрисой LL ў (рис. 4), и приложим к этому краю катет AC чертежного треугольника ABC. Закрепим один конец нити длиной AB в вершине B треугольника, а другой – в фокусе параболы F. Натянув острием карандаша нить, прижмем острие в переменной точке P к свободному катету AB чертежного треугольника. По мере того, как треугольник будет перемещаться вдоль линейки, точка P будет описывать дугу параболы с фокусом F и директрисой LL ў , так как общая длина нити равна AB, отрезок нити прилегает к свободному катету треугольника, и поэтому оставшийся отрезок нити PF должен быть равен оставшейся части катета AB, т.е. PA. Точка пересечения V параболы с осью называется вершиной параболы, прямая, проходящая через F и V, – осью параболы. Если через фокус провести прямую, перпендикулярную оси, то отрезок этой прямой, отсекаемый параболой, называется фокальным параметром. Для эллипса и гиперболы фокальный параметр определяется аналогично.

СВОЙСТВА КОНИЧЕСКИХ СЕЧЕНИЙ

Определения Паппа.

Установление фокуса параболы навело Паппа на мысль дать альтернативное определение конических сечений в целом. Пусть F – заданная точка (фокус), а L – заданная прямая (директриса), не проходящая через F, и DF и DL – расстояния от подвижной точки P до фокуса F и директрисы L соответственно. Тогда, как показал Папп, конические сечения определяются как геометрические места точек P, для которых отношение DF/DL является неотрицательной постоянной. Это отношение называется эксцентриситетом e конического сечения. При e 1 – гипербола; при e = 1 – парабола. Если F лежит на L, то геометрические места имеют вид прямых (действительных или мнимых), которые являются вырожденными коническими сечениями.

Бросающаяся в глаза симметрия эллипса и гиперболы говорит о том, что у каждой из этих кривых есть по две директрисы и по два фокуса, и это обстоятельство навело Кеплера в 1604 на мысль, что и у параболы существует второй фокус и вторая директриса – бесконечно удаленные точка и прямая. Точно также и окружность можно рассматривать как эллипс, фокусы которого совпадают с центром, а директрисы находятся в бесконечности. Эксцентриситет e в этом случае равен нулю.

Конструкция Данделена.

Фокусы и директрисы конического сечения можно наглядно продемонстрировать, если воспользоваться сферами, вписанными в конус и называемыми сферами (шарами) Данделена в честь бельгийского математика и инженера Ж.Данделена (1794–1847), предложившего следующую конструкцию. Пусть коническое сечение образовано пересечением некоторой плоскости p с двухполостным прямым круговым конусом с вершиной в точке O. Впишем в этот конус две сферы S1 и S2, которые касаются плоскости p в точках F1 и F2 соответственно. Если коническое сечение – эллипс (рис. 5,а), то обе сферы находятся внутри одной и той же полости: одна сфера расположена над плоскостью p, а другая – под ней. Каждая образующая конуса касается обеих сфер, и геометрическое место точек касания имеет вид двух окружностей C1 и C2, расположенных в параллельных плоскостях p1 и p2. Пусть P – произвольная точка на коническом сечении. Проведем прямые PF1, PF2 и продлим прямую PO. Эти прямые – касательные к сферам в точках F1, F2 и R1, R2. Поскольку все касательные, проведенные к сфере из одной точки, равны, то PF1 = PR1 и PF2 = PR2. Следовательно, PF1 + PF2 = PR1 + PR2 = R1R2. Так как плоскости p1 и p2 параллельны, отрезок R1R2 имеет постоянную длину. Таким образом, величина PR1 + PR2 одна и та же для всех положений точки P, и точка P принадлежит геометрическому месту точек, для которых сумма расстояний от P до F1 и F2 постоянна. Следовательно, точки F1 и F2 – фокусы эллиптического сечения. Кроме того, можно показать, что прямые, по которым плоскость p пересекает плоскости p1 и p2, – директрисы построенного эллипса. Если p пересекает обе полости конуса (рис. 5,б), то две сферы Данделена лежат по одну сторону от плоскости p, по одной сфере в каждой полости конуса. В этом случае разность между PF1 и PF2 постоянна, и геометрическое место точек P имеет форму гиперболы с фокусами F1 и F2 и прямыми – линиями пересечения p с p1 и p2 – в качестве директрис. Если коническое сечение – парабола, как показано на рис. 5,в, то в конус можно вписать только одну сферу Данделена.

Другие свойства.

Свойства конических сечений поистине неисчерпаемы, и любое из них можно принять за определяющее. Важное место в Математическом собрании Паппа (ок. 300), Геометрии Декарта (1637) и Началах Ньютона (1687) занимает задача о геометрическом месте точек относительно четырех прямых. Если на плоскости заданы четыре прямые L1, L2, L3 и L4 (две из которых могут совпадать) и точка P такова, что произведение расстояний от P до L1 и L2 пропорционально произведению расстояний от P до L3 и L4, то геометрическое место точек P является коническим сечением. Ошибочно полагая, что Аполлоний и Папп не сумели решить задачу о геометрическом месте точек относительно четырех прямых, Декарт, чтобы получить решение и обобщить его, создал аналитическую геометрию.

АНАЛИТИЧЕСКИЙ ПОДХОД

Алгебраическая классификация.

В алгебраических терминах конические сечения можно определить как плоские кривые, координаты которых в декартовой системе координат удовлетворяют уравнению второй степени. Иначе говоря, уравнение всех конических сечений можно записать в общем виде как

где не все коэффициенты A, B и C равны нулю. С помощью параллельного переноса и поворота осей уравнение (1) можно привести к виду

Первое уравнение получается из уравнения (1) при B 2 № AC, второе – при B 2 = AC. Конические сечения, уравнения которых приводятся к первому виду, называются центральными. Конические сечения, заданные уравнениями второго вида с q № 0, называются нецентральными. В рамках этих двух категорий существуют девять различных типов конических сечений в зависимости от знаков коэффициентов.

-2831) Если коэффициенты a, b и c имеют один и тот же знак, то не существует вещественных точек, координаты которых удовлетворяли бы уравнению. Такое коническое сечение называется мнимым эллипсом (или мнимой окружностью, если a = b).

2) Если a и b имеют один знак, а c – противоположный, то коническое сечение – эллипс (рис. 1,а); при a = b – окружность (рис. 6,б).

3) Если a и b имеют разные знаки, то коническое сечение – гипербола (рис. 1,в).

4) Если a и b имеют разные знаки и c = 0, то коническое сечение состоит из двух пересекающихся прямых (рис. 6,а).

5) Если a и b имеют один знак и c = 0, то существует только одна действительная точка на кривой, удовлетворяющая уравнению, и коническое сечение – две мнимые пересекающиеся прямые. В этом случае также говорят о стянутом в точку эллипсе или, если a = b, стянутой в точку окружности (рис. 6,б).

6) Если либо a, либо b равно нулю, а остальные коэффициенты имеют разные знаки, то коническое сечение состоит из двух параллельных прямых.

7) Если либо a, либо b равно нулю, а остальные коэффициенты имеют один знак, то не существует ни одной действительной точки, удовлетворяющей уравнению. В этом случае говорят, что коническое сечение состоит из двух мнимых параллельных прямых.

8) Если c = 0, и либо a, либо b также равно нулю, то коническое сечение состоит из двух действительных совпадающих прямых. (Уравнение не определяет никакого конического сечения при a = b = 0, поскольку в этом случае исходное уравнение (1) не второй степени.)

9) Уравнения второго типа определяют параболы, если p и q отличны от нуля. Если p № 0, а q = 0, мы получаем кривую из п. 8. Если же p = 0, то уравнение не определяет никакого конического сечения, поскольку исходное уравнение (1) не второй степени.

Вывод уравнений конических сечений.

Любое коническое сечение можно также определить как кривую, по которой плоскость пересекается с квадратичной поверхностью, т.е. с поверхностью, задаваемой уравнением второй степени f (x, y, z) = 0. По-видимому, конические сечения были впервые распознаны именно в этом виде, а их названия (см. ниже) связаны с тем, что они были получены при пересечении плоскости с конусом z 2 = x 2 + y 2 . Пусть ABCD – основание прямого кругового конуса (рис. 7) с прямым углом при вершине V. Пусть плоскость FDC пересекает образующую VB в точке F, основание – по прямой CD и поверхность конуса – по кривой DFPC, где P – любая точка на кривой. Проведем через середину отрезка CD – точку E – прямую EF и диаметр AB. Через точку P проведем плоскость, параллельную основанию конуса, пересекающую конус по окружности RPS и прямую EF в точке Q. Тогда QF и QP можно принять, соответственно, за абсциссу x и ординату y точки P. Получившаяся кривая будет параболой.

Построение, представленное на рис. 7, можно использовать для вывода общих уравнений конических сечений. Квадрат длины отрезка перпендикуляра, восстановленного из любой точки диаметра до пересечения с окружностью, всегда равен произведению длин отрезков диаметра. Поэтому

Для параболы отрезок RQ имеет постоянную длину (так как при любом положении точки P он равен отрезку AE), а длина отрезка QS пропорциональна x (из соотношения QS/EB = QF/FE). Отсюда следует, что

где a – постоянный коэффициент. Число a выражает длину фокального параметра параболы.

Если угол при вершине конуса острый, то отрезок RQ не равен отрезку AE; но соотношение y 2 = RQ Ч QS эквивалентно уравнению вида

где a и b – постоянные, или, после сдвига осей, уравнению

являющемуся уравнением эллипса. Точки пересечения эллипса с осью x (x = a и x = –a) и точки пересечения эллипса с осью y (y = b и y = –b) определяют соответственно большую и малую оси. Если угол при вершине конуса тупой, то кривая пересечения конуса и плоскости имеет вид гиперболы, и уравнение приобретает следующий вид:

или, после переноса осей,

В этом случае точки пересечения с осью x, задаваемые соотношением x 2 = a 2 , определяют поперечную ось, а точки пересечения с осью y, задаваемые соотношением y 2 = –b 2 , определяют сопряженную ось. Если постоянные a и b в уравнении (4a) равны, то гипербола называется равнобочной. Поворотом осей ее уравнение приводится к виду

Теперь из уравнений (3), (2) и (4) мы можем понять смысл названий, данных Аполлонием трем основным коническим сечениям. Термины «эллипс», «парабола» и «гипербола» происходят от греческих слов, означающих «недостает», «равен» и «превосходит». Из уравнений (3), (2) и (4) ясно, что для эллипса y 2 2 /a) x, для параболы y 2 = (a) x и для гиперболы y 2 > (2b 2 /a) x. В каждом случае величина, заключенная в скобки, равна фокальному параметру кривой.

Сам Аполлоний рассматривал только три общих типа конических сечений (перечисленные выше типы 2, 3 и 9), но его подход допускает обобщение, позволяющее рассматривать все действительные кривые второго порядка. Если секущую плоскость выбрать параллельной круговому основанию конуса, то в сечении получится окружность. Если секущая плоскость имеет только одну общую точку с конусом, его вершину, то получится сечение типа 5; если она содержит вершину и касательную к конусу, то мы получаем сечение типа 8 (рис. 6,б); если секущая плоскость содержит две образующие конуса, то в сечении получается кривая типа 4 (рис. 6,а); при переносе вершины в бесконечность конус превращается в цилиндр, и если при этом плоскость содержит две образующие, то получается сечение типа 6.

Если на окружность смотреть под косым углом, то она выглядит как эллипс. Взаимосвязь между окружностью и эллипсом, известная еще Архимеду, становится очевидной, если окружность X 2 + Y 2 = a 2 с помощью подстановки X = x, Y = (a/b) y преобразовать в эллипс, заданный уравнением (3a). Преобразование X = x, Y = (ai/b) y, где i 2 = –1, позволяет записать уравнение окружности в виде (4a). Это показывает, что гиперболу можно рассматривать как эллипс с мнимой малой осью, или, наоборот, эллипс можно рассматривать как гиперболу с мнимой сопряженной осью.

Соотношение между ординатами окружности x 2 + y 2 = a 2 и эллипса (x 2 /a 2 ) + (y 2 /b 2 ) = 1 непосредственно приводит к формуле Архимеда A = p ab для площади эллипса. Кеплеру была известна приближенная формула p (a + b) для периметра эллипса, близкого к окружности, но точное выражение было получено лишь в 18 в. после введения эллиптических интегралов. Как показал Архимед, площадь параболического сегмента составляет четыре третьих площади вписанного треугольника, но длину дуги параболы удалось вычислить лишь после того, как в 17 в. было изобретено дифференциальное исчисление.

ПРОЕКТИВНЫЙ ПОДХОД

Проективная геометрия тесно связана с построением перспективы. Если начертить окружность на прозрачном листе бумаги и поместить под источником света, то эта окружность будет проецироваться на находящуюся ниже плоскость. При этом, если источник света расположен непосредственно над центром окружности, а плоскость и прозрачный лист параллельны, то проекция также будет окружностью (рис. 8). Положение источника света называется точкой схода. Она обозначена буквой V. Если V расположена не над центром окружности или если плоскость не параллельна листу бумаги, то проекция окружности принимает форму эллипса. При еще большем наклоне плоскости большая ось эллипса (проекции окружности) удлиняется, и эллипс постепенно переходит в параболу; на плоскости, параллельной прямой VP, проекция имеет вид параболы; при еще большем наклоне проекция принимает вид одной из ветвей гиперболы.

Каждой точке на исходной окружности соответствует некоторая точка на проекции. Если проекция имеет вид параболы или гиперболы, то говорят, что точка, соответствующая точке P, находится в бесконечности или бесконечно удалена.

Как мы видели, при подходящем выборе точек схода окружность может проецироваться в эллипсы различных размеров и с различными эксцентриситетами, а длины больших осей не имеют прямого отношения к диаметру проецируемой окружности. Поэтому проективная геометрия не имеет дела с расстояниями или длинами самими по себе, ее задача – изучение отношения длин, которое сохраняется при проецировании. Это отношение можно найти с помощью следующего построения. Через любую точку P плоскости проведем две касательные к любой окружности и соединим точки касания прямой p. Пусть другая прямая, проходящая через точку P, пересекает окружность в точках C1 и C2, а прямую p – в точке Q (рис. 9). В планиметрии доказывается, что PC1/PC2 = –QC1/QC2. (Знак минус возникает из-за того, что направление отрезка QC1 противоположно направлениям других отрезков.) Иначе говоря, точки P и Q делят отрезок C1C2 внешним и внутренним образом в одном и том же отношении; говорят также, что гармоническое отношение четырех отрезков равно — 1. Если окружность спроецировать в коническое сечение и сохранить за соответствующими точками те же обозначения, то гармоническое отношение (PC1)(QC2)/(PC2)(QC1) останется равным — 1. Точка P называется полюсом прямой p относительно конического сечения, а прямая p – полярой точки P относительно конического сечения.

Когда точка P приближается к коническому сечению, поляра стремится занять положение касательной; если точка P лежит на коническом сечении, то ее поляра совпадает с касательной к коническому сечению в точке P. Если точка P расположена внутри конического сечения, то построить ее поляру можно следующим образом. Проведем через точку P любую прямую, пересекающую коническое сечение в двух точках; проведем касательные к коническому сечению в точках пересечения; предположим, что эти касательные пересекаются в точке P1. Проведем через точку P еще одну прямую, которая пересекается с коническим сечением в двух других точках; допустим, что касательные к коническому сечению в этих новых точках пересекаются в точке P2 (рис. 10). Прямая, проходящая через точки P1 и P2, и есть искомая поляра p. Если точка P приближается к центру O центрального конического сечения, то поляра p удаляется от O. Когда точка P совпадает с O, то ее поляра становится бесконечно удаленной, или идеальной, прямой на плоскости. См. также ПРОЕКТИВНАЯ ГЕОМЕТРИЯ.

СПЕЦИАЛЬНЫЕ ПОСТРОЕНИЯ

Особый интерес для астрономов представляет следующее простое построение точек эллипса с помощью циркуля и линейки. Пусть произвольная прямая, проходящая через точку O (рис. 11,а), пересекает в точках Q и R две концентрические окружности с центром в точке O и радиусами b и a, где b f между прямой OQR и большой осью называется эксцентрическим углом, а построенный эллипс удобно задавать параметрическими уравнениями x = a cos f , y = b sin f . Исключая из них параметр f , получим уравнение (3а).

Для гиперболы построение во многом аналогично. Произвольная прямая, проходящая через точку O, пересекает одну из двух окружностей в точке R (рис. 11,б). К точке R одной окружности и к конечной точке S горизонтального диаметра другой окружности проведем касательные, пересекающие OS в точке T и OR – в точке Q. Пусть вертикальная прямая, проходящая через точку T, и горизонтальная прямая, проходящая через точку Q, пересекаются в точке P. Тогда геометрическим местом точек P при вращении отрезка OR вокруг O будет гипербола, задаваемая параметрическими уравнениями x = a sec f , y = b tg f , где f – эксцентрический угол. Эти уравнения были получены французским математиком А.Лежандром (1752–1833). Исключив параметр f , мы получим уравнение (4a).

Эллипс, как заметил Н.Коперник (1473–1543), можно построить с помощью эпициклического движения. Если окружность катится без скольжения по внутренней стороне другой окружности вдвое большего диаметра, то каждая точка P, не лежащая на меньшей окружности, но неподвижная относительно нее, опишет эллипс. Если точка P находится на меньшей окружности, то траектория этой точки представляет собой вырожденный случай эллипса – диаметр большей окружности. Еще более простое построение эллипса было предложено Проклом в 5 в. Если концы A и B отрезка прямой AB заданной длины скользят по двум неподвижным пересекающимся прямым (например, по координатным осям), то каждая внутренняя точка P отрезка опишет эллипс; нидерландский математик Ф. ван Схотен (1615–1660) показал, что любая точка в плоскости пересекающихся прямых, неподвижная относительно скользящего отрезка, также опишет эллипс.

Б.Паскаль (1623–1662) в 16 лет сформулировал ныне знаменитую теорему Паскаля, гласящую: три точки пересечения противоположных сторон шестиугольника, вписанного в любое коническое сечение, лежат на одной прямой. Из этой теоремы Паскаль вывел более 400 следствий.

Конусы: определение, сечения, построение

Конусом называется поверхность, определяемая в некоторой прямоугольной системе координат каноническим уравнением

где — положительные параметры, характеризующие конус, причем .

Начало координат называется центром конуса (рис.4.44,а).

Конус является конической фигурой, поскольку вместе с любой своей точкой уравнению (4.50) удовлетворяют также все точки при луча . Точка является вершиной конуса (4.50), а любой луч , принадлежащий конусу, является его образующей .

Плоские сечения конуса

Сечения конуса координатными плоскостями представляют собой пары пересекающихся прямых, удовлетворяющих в этих плоскостях уравнениям (при ) или (при ) соответственно.

Рассмотрим теперь сечение конуса плоскостями, параллельными плоскости . Подставляя , где — произвольная постоянная (параметр), в уравнение (4.50), получаем

При этому уравнению удовлетворяет одна вещественная точка — начало координат. При любом отличном от нуля значении параметра уравнение определяет эллипс с полуосями . Следовательно, сечение конуса плоскостью представляет с собой эллипс, центр которого лежит на оси аппликат, а вершины принадлежат координатным плоскостям и .

Таким образом, конус можно представить как поверхность, образованную эллипсами, центры которых лежат на оси аппликат, а вершины принадлежат координатным плоскостям и (см. рис.4.44,а).

Круговой конус

При все сечения конуса плоскостями становятся окружностями. Такой конус является фигурой вращения и называется прямым круговым конусом . Он может быть получен в результате вращения, например, прямой (образующей) вокруг оси аппликат (рис.4.44,б).

1. Конус является линейчатой поверхностью, поскольку может быть получен при помощи перемещения прямой.

2. Конус, образованный асимптотами гипербол, получающихся при пересечении гиперболоида плоскостями, проходящими через ось , называется асимптотическим конусом этого гиперболоида. На рис.4.44,в изображен асимптотический конус для однополостного и двуполостного гиперболоидов.

3. Конус (4.50) может быть получен из прямого кругового конуса (у которого ) в результате двух сжатий (растяжений) к координатным плоскостям и .

4. Начало канонической системы координат является центром симметрии конуса, координатные оси — осями симметрии конуса, координатные плоскости — плоскостями симметрии конуса.

В самом деле, если точка принадлежит конусу, то точки с координатами при любом выборе знаков также принадлежат конусу, поскольку их координаты удовлетворяют уравнению (4.50).

5. Рассмотрим сечение прямого кругового конуса плоскостями, не проходящими через его вершину, например, плоскостями , где — произвольная постоянная (параметр) — угловой коэффициент прямой в плоскости . Заметим, что образующие рассматриваемого конуса в плоскости описываются уравнением с угловым коэффициентом . Подставляя в уравнение конуса, получаем

Это уравнение проекции на координатную плоскость линии пересечения плоскости с конусом. Вычисляем инварианты

\tau\cdot\Delta=k^2-2 . По таблице 3.2 определяем, что рассматриваемое сечение, которое пересекает все образующие прямого кругового конуса, является эллипсом. При 1″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAAVBAMAAADlb+D4AAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAwAFBgwIcMaGw61tx0C5PF/kAAADbSURBVCjPY2DAD45D6Sasss4MDI7CQFoUXYIdIstq+ByLbHifAkQv4yJMWeaF66CyehNgsiUJcGklOais3QGYLLMEXJoJJutXkCEONZlZwgBNlklKffYSmL3sjQZosi9LWF7DXRXWuAlFlvltA1sBws1svRuQZVlerkxA8hGbL4os46KsCQhZti5Uk/Um8AqchsmyobvK7oDWhGkwH000gpqhcE8JLHuugGflBlhoFMBC8t27dw4gWTYGhjSovRVIIakE0QsEoTBXBWDGLxiI4op9PLLuUHoSFjkA6I4yBZZKaW0AAAAASUVORK5CYII=» style=»vertical-align: middle;» /> имеем . По таблице 3.2 определяем, что рассматриваемое сечение, которое параллельно двум образующим кругового конуса, является гиперболой. При имеем . По таблице 3.2 определяем, что рассматриваемое сечение, которое параллельно одной образующей кругового конуса, является параболой. Поскольку при аффинных преобразованиях тип линий не изменяется, такой же вывод можно сделать для произвольного конуса (4.50):

– сечение конуса плоскостью, пересекающей все его образующие, является эллипсом (рис.4.45,а);

– сечение конуса плоскостью, параллельной двум его образующим, является гиперболой (рис.4.45,б);

– сечение конуса плоскостью, параллельной одной его образующей, является параболой (рис.4.45,в).

6. Конические сечения могут быть взяты в качестве эквивалентных определений эллипса, гиперболы, параболы.


источники:

http://www.krugosvet.ru/enc/matematika/konicheskie-secheniya

http://mathhelpplanet.com/static.php?p=konus

Название: Конические сечения
Раздел: Рефераты по математике
Тип: реферат Добавлен 22:58:10 01 февраля 2010 Похожие работы
Просмотров: 1156 Комментариев: 20 Оценило: 4 человек Средний балл: 4.8 Оценка: неизвестно Скачать