Уравнения константы реакции второго порядка

Реакции второго порядка.

К реакциям второго порядка относятся реакции соединения ти­па A + B→C, реакции обмена A + B = C + D, а также реакции раз­ложения и др. Скорость реакции второго порядка определяется уравнением

2.13

где k — константа скорости реакции; а — число молей вещества А в начале реакции; b — число молей вещества В в начале реакции; х—число прореагировавших молей.

Здесь возможны два случая. Первый случай — это когда какое-то количество вещества А вступает в реакцию с эквивалентным количеством вещества В, т. е. когда а = b. И второй случай более сложный — это когда а ≠ b. Рассмотрим оба эти случая.

Первый случай (а= b).Поскольку исходные концентрации реа­гирующих веществ равны между собой, уравнение (2.13) примет вид

2.14

Разделяя переменные и производя интегрирование, получим

2.15

При t = 0 x = 0, откуда const =1/а. После подстановки этой величи­ны в уравнение (2.15) получим

2.16

Размерность константы скорости реакции второго порядка t -1 C -1 . Поэтому в отличие от константы скорости первого порядка числен­ное значение k зависит от того, в каких единицах выражены t и С. Если последняя выражена в кмоль/м 3 , а время в с, то k имеет раз­мерность [с -1 ·(кмоль/м 3 ) -1 ].

Для реакций второго порядка большую роль играет число столк­новений, которые происходят в единицу времени между молекулами реагирующих веществ. Число столкновений, в свою очередь, пропор­ционально числу молекул в единице объема, т. е. концентрации. Таким образом, константа скорости, а следовательно, и скорость реакции второго порядка зависят от разбавления раствора.

Второй случай (а ≠ b). Если для реакции взяты неэквивалент­ные количества реагирующих веществ, скорость реакции выразится так:

2.17

После разделения переменных получим это уравнение в другом виде:

2.18

Выражение, стоящее в левой части уравнения (2.18), можно представить как

2.19

Поcле подстановки этого выражения в уравнение (2.13) получим

2.20
2.21

Поскольку при t = 0 х = 0, постоянная интегрирования

2.22

Подставляя это выражение в уравнение (2.16), найдем

2.23

Это и есть кинетическое уравнение реакции второго порядка. При­мером подобной реакции может служить омыление эфиров щело­чами:

Кинетика реакций второго порядка была детально изучена С. Г. Крапивиным еще в 1915 г.

Реакции третьего порядка встречаются очень редко и потому не имеет смысла рассматривать математический вывод их кинетиче­ского уравнения.

Существуют экспериментальные способы определения порядка реакции, основные из них:

подстановки в кинетическое уравнение реакций,

определение полупериода реакций,

Сложные реакции.

Сложными называются реакции, общее кинетическое уравнение которых в отличие от кинетического уравнения простых реакций со­держит несколько констант скоростей. К сложным реакциям отно­сятся обратимые, параллельные, последовательные, сопряженные, цепные и другие реакции. Теория всех этих реакций основана на по­ложении, что при протекании в системе одновременно нескольких реакций каждая из них проходит самостоятельно и к каждой из них в отдельности применимы уравнения кинетики простых реакций.

Параллельными реакциями называются реакции вида

т. е. при которых одни и те же исходные вещества, одновременно реагируя, образуют разные продукты. Примером подобного типа реакций является реакция разложения бертолетовой соли КСlO3, которая может идти в двух направлениях:

Примером последовательных реакций может служить гидролиз рафинозы трисахарида, который происходит через стадии образо­вания дисахарида, а последний образует уже моносахариды:

Расчет кинетики последовательных реакций в общем виде очень сложен и здесь не рассматривается. Отметим только, что если одна из ступеней обладает значительно меньшей скоростью, чем осталь­ные, то общая скорость реакции определяется скоростью именно этой ступени.

Сопряженными реакциями называются реакции, которые проте­кают по следующей схеме:

Реакция 1 может протекать самостоятельно, в то время как ре­акция 2 проходит при наличии реакции 1. Так, сульфат железа окисляется пероксидом водорода независимо от присутствия йодис­того водорода. Последний же в чистом виде пероксидом водорода не окисляется, но при окислении сульфата железа окисляется одно­временно с ним.

Обратимыми называются такие реакции, скорость которых рав­на разности между скоростями прямой и обратной реакции:

Примером обратимой реакции, может служить реакция образования сложного эфира

В этом случае скорость прямой реакции с течением времени убыва­ет, а скорость обратной реакции возрастает до тех пор, пока обе скорости не выравняются и не наступит так называемое состояние динамического равновесия. Константа равновесия данной реакции равна отношению констант скоростей прямой и обратной реак­ции.

Наряду с рассмотренными выше реакциями, механизм которых сравнительно прост, существуют также реакции, в которых взаимо­действие осуществляется более сложным путем. Примером подоб­ных реакций являются цепные реакции, которые имеют исключи­тельно большое значение в химической технологии, так как на них основаны такие процессы, как полимеризация, крекинг нефти, деле­ние атомного ядра.

К цепным реакциям относится большая группа реакций, проте­кающих путем образования цепи следующих друг за другом реак­ций, в которых участвуют активные частицы с ненасыщенными сво­бодными валентностями — так называемые свободные радикалы. Свободные радикалы образуются за счет дополнительного погло­щения энергии при разрыве связей в молекуле, при электрическом разряде, при поглощении электромагнитных колебаний, а также за счет других внешних источников энергии.

Сущность цепного механизма реакции заключается в том, что активная молекула, реагируя, порождает новую активную молеку­лу или реакционноспособную частицу (валентно-ненасыщенные сво­бодные атомы или радикалы). Процесс исчезновения и регенерации каждой активной частицы в дальнейшем циклически повторяется много раз и создает цепь превращений, совершающихся частью последовательно, а частью параллельно.

Впервые определение цепного механизма реакций через образо­вание активных центров было дано Н. А. Шиловым (1904). Чрез­вычайно большой вклад в дело изучения цепных реакций внес Н. Н. Семенов, которому за эти исследования была присуждена Нобелевская премия.

В настоящее время цепные реакции изучены настолько хорошо, что стало осуществимо регулирование скорости этих реакций. До­бавляя вещество, легко вступающее во взаимодействие с активны­ми центрами, можно значительно увеличить число обрывов цепей и тем самым затормозить (или же прекратить вовсе) цепную реак­цию.

Например, добавление всего лишь 0,01% NС1з (треххлористого азота) к смеси водорода и хлора (Н2 и С2), которые реагируют по типу цепных нарастающих реакций, уменьшает скорость обра­зования хлористого водорода в десятки тысяч раз.

Некоторые добавки увеличивают скорость цепных реакций. Так, добавление сравнительно малых количеств N0 в значитель­ной степени ускоряет цепные реакции окисления углеводородов. При этом удается значительно понизить температуру процесса окисления, что очень важно, так как сохраняются от сгорания цен­ные промежуточные продукты — уксусный и муравьиный альде­гиды.

На цепных химических реакциях основаны многие технологи­ческие процессы — синтез спиртов, кетонов, формалина, уксусной кислоты.

В последнее время исследования показали, что некоторые био­логические процессы также протекают по типу цепных реакций, в частности процессы биологического окисления.

Тема 2: Реакции первого и второго порядка

НЕРАВНОВЕСНЫЕ ЯВЛЕНИЯ

В СЛОЖНЫХ ХИМИЧЕСИХ ПРОЦЕССАХ

Примеры решения задач

для студентов, обучающихся

по программе бакалавриата по направлению подготовки

240100 – Химическая технология

Тема 1: Кинетика химических реакций.

Реакции первого и второго порядка

Основные расчетные формулы:

;

Глубина протекания химической реакции

Плотность глубины реакции

Реакция I порядка, интегральное уравнение:

;

Реакция II порядка: А+В=С

;

Существует понятие суммарный порядок реакции n = ∑nk и частный порядок реакции по компоненту

или

Графическое или аналитическое определение Еа

— система координат при графическом решении уравнения Аррениуса.

Задача № 1

Термическое разложение в газовой фазе (Т = 849 К, V-const)

происходит как одностадийная реакция. Эта стадия является односторонней, мономолекулярной. Рассчитайте константу скорости прямой реакции по следующим данным:

τ, с
р, мм.рт.ст. (общее давление)

Решение:

1) Для реакции I порядка справедливо интегральное уравнение

;

k должно быть постоянной.

2) Рассмотрим реакцию

С2Н5СНО = С2Н6 + СО
τ = 0р0х=0х=0
τ = τр0 – ххх

Р0 – исходное давление С2Н5СНО. В любой момент времени общее давление пара равно

, тогда

; отсюда

3)

Значение k внесем в таблицу:

τ, с
k∙10 3 , с -12.081.671.591.601.59

4) Вычислим значение kср

с -1

Задача № 2

В реакции формальдегида с пероксидом водорода образуется муравьиная кислота (реакция II порядка, )

За время τ = 2 часа при 333,2 К . Вычислите константу скорости реакции; определите время, за которое прореагирует 90% исходных веществ; рассчитайте время, за которое реакции дойдет до той же глубины, если ( ) исходную смесь разбавить в 10 раз.

Дано:

Реакция II порядка

Решение:

НСНО + Н2О2 = НСООН + Н2О
τ = 0с0 = 1 моль/лс0 = 1 моль/л0 моль/л0 моль/л
τ1 = 2 часасτ1 = 0,215 моль/лсτ1 = 0,215 моль/лх моль/лх моль/л
τ2 = ?сτ2 = 0,1 моль/лсτ2 = 0,1 моль/л0,9 моль/л0,9 моль/л
τ3 = ?сτ3 = 0,01 моль/лсτ3 = 0,01 моль/л0,09 моль/л0,09 моль/л

Для реакции II порядка при с1,02,0

1) =>

2)

3)

Вывод: Если исходные компоненты разбавить в 10 раз, то для достижения той же глубины реакции нужно в 10 раз больше времени.

Задача № 3

Для реакции А→В к = 0,5. Вычислить степень превращения вещества А за время 1 час, если реакция идет по 0, 1 и 2 порядку и с0,1 = 1 моль/л . Определите, как зависит степень превращения вещества от порядка реакции.

Дано:

Решение:

1) Реакция 0 порядка:

2) Реакция 1 порядка:

;

3) Реакция II порядка

при с0,1 = С2,0

Сведем данные расчета в таблицу:

Порядок реакции, n
Степень превращения, α0,50,3940,333

Вывод: При одинаковом значении константы скорости реакции с увеличением порядка реакции уменьшается степень превращения вещества.

Задача № 4

Рассчитать константу скорости реакции кристаллического фиолетового со щелочью по следующим данным

τ, с
D0,6000,4050,3200,2200,1400,091

Щелочь берется в избытке: сщ,0 = 1,8 моль/л, скр,0 = 0,01 моль/л, t = 27 0 С.

Решение:

1) Реакция цветная, за концентрацией красителя можно судить по изменению D: D=ε с l

или

2) Рассчитать k можно графически или аналитическим расчетным способом. Строим график в координатах lnD = f(τ); k ’ = -a = −tgα

τ, с
lnD-0,511-0,903-1,139-1,514-1,966-2,397

2)

Задача № 5

Дана реакция 2 порядка А+В=С. Исходные концентрации с0,А = с0,В. За время 500 с реакция проходит на 20%. За какое время она пройдет на 60%?

Решение:

1) Интегральное уравнение реакции II порядка:

; с0 = 100% = 1, сτ = 100 — 20 = 80% = 0,8

Ответ: за 3000 с реакция пройдет на 60%.

Тема 2: Реакции первого и второго порядка

Задача № 1

Рассчитайте k, если скорость реакции II порядка равна 4,5∙10 -7 моль/см 3 ∙с при концентрации одного компонента 1,5∙10 -2 моль/л и другого 2,5∙10 -3 моль/л.

Решение:

Ответ: k = 1,2 л/моль∙с

Задача № 2

Определите возраст мумии, если содержание изотопа углерода 14 С в ее тканях составляет 80% от его содержания в живом организме, а период полураспада 14 С равен 5600 лет. Реакция распада углерода относится к реакциям 1 порядка.

Дано:

Решение:

1) Допустим, что с0 = 1 моль/м 3 , тогда сτ = 0,8 моль/м 3 .

2) Рассчитываем возраст мумии:

Ответ: возраст мумии 1802 года.

Задача № 3

Реакция взаимодействия уксусного ангидрида с водой является реакцией первого порядка

Дано:

Решение:

1) Рассчитываем k:

2)

3)

4)

Вывод: ко времени полупревращения скорость реакции уменьшается в два раза по сравнению с начальным моментом.

Задача № 4

Превращение перекиси водорода в диэтиловый эфир протекает как реакция I порядка. При 333 К за время 10 мин превращение прошло на 75%. Вычислите константу скорости реакции.

Решение:

Допустим, что с0 = 1 моль/л, тогда сτ = с0 – х = 100-75,2 = 24,8%

Задача № 5

Фенилдиазохлорид разлагается по уравнению:

При 323 К и начальной концентрации 10 г/л были получены следующие результаты:

τ, мин
VN2, cм 319,332,650,458,3

Рассчитайте константу скорости реакции, постойте график VN2 = f(τ) и сделайте вывод о порядке реакции.

Решение:

В данной химической реакции за ходом процесса удобно следить по объему выделившегося газа. Реакция мономолекулярная, скорее всего, протекает согласно реакции I порядка. Кинетическое уравнение для реакции I порядка выглядит так:

или

Рассчитаем значение константы:

Значения констант скорости реакции имеет почти одинаковые значения, то это реакция I порядка и взятое нами уравнение удовлетворяет или описывает кинетику этого процесса.

Задача № 6

Найдите время, за которое реакция А→В с константой скорости 6,5∙10 -5 с -1 пройдет а) наполовину; б) на 98%.

Решение:

1) по единице измерения константы можно сказать, что данная реакция относится к реакции I порядка.

2) Кинетическое интегральное уравнение можно записать:

При τ = τ1/2 сτ = 0,5с0, если с0 = 1 моль/м 3 , то сτ = 0,5 моль/м 3 .

Уравнения константы реакции второго порядка

Из уравнений (4) и (5) видно, что критериями первого порядка реакции по реагенту А является линейная зависимость ln [ A ]t или ln t

В тоже время по тангенсам углов наклона линейных зависимостей можно определить константы скорости.

Другой тест правильности выбранного первого порядка является постоянство константы скорости реакции, вытекающее из уравнения (5)

Размерность константы скорости первого порядка dim < k >= [1/ c ], [1/мин] или соответственно с -1 , мин -1

Третий тест основан на концентрационной зависимости времени полупревращения. Условие полупревращения [ A ] = 0,5[ A ]0 , тогда в соответствии с уравнением (5)

Можно видеть, что критерием первого порядка реакции является независимость времени полупревращения t ½ от начальной концентрации реагента [ A ]0.

Примерами подобных реакций первого порядка являются реакции изомеризации, а также реакции разложения некоторых сложных молекул в газовой фазе.

и в жидкой фазе, например, гидролиз трет-бутилбромида.

Для реакции A + B C + D можно записать уравнение скорости

Обозначим [ A ]0 и [ B ]0 – начальными концентрациями реагентов А и В, а Х – количество прореагировавших А и В, тогда уравнение (1) приобретет вид

Разделяя переменные, имеем

Проинтегрируем левую часть этого уравнения методом неопределенных коэффициентов, для чего представим дробь

в виде суммы дробей

Решая совместно эти уравнения, имеем

,

Подставляя значения α и β в уравнение (3) и (4) и интегрируя полученные уравнения в соответствующих пределах

Из уравнения (5) видно, что критерием правильности выбранного второго порядка реакции является линейность зависимости

от времени.

По тангенсу угла наклона этой зависимости можно определить константу скорости реакции. Другим критерием правильности выбранного второго порядка является постоянство значений k , вычисленных в соответствии с уравнением (5):

во всем диапазоне пар значений τ – х.

Размерность константы скорости второго порядка

или, соответственно, л·моль -1 ·с -1 , л·моль -1 ·мин -1 .

Если вещества А и В взяты в равных количествах или реакция идет с участием одного вещества, например

то при постоянстве объема удобно использовать в качестве переменной концентрацию одного из исходных веществ

тогда кинетическое уравнение будет иметь вид

Интегрируя это уравнение в соответствующих пределах

приходим к выражению

Из уравнений (7) и (8) следует, что критериями правильности выбранного второго порядка являются линейный характер зависимости 1/[ A ] от t и постоянство значения k , вычисленных для различных пар значений [ A ] t по формуле

Третий критерий правильности второго порядка основан на определении времени полупревращения t ½ . Так как [ A ] = 0.5[ A ]0, то в соответствии с уравнением (7)

, откуда

Можно видеть, что критерием второго порядка является обратно пропорциональная зависимость между t ½ и начальной концентрацией реагента. В соответствии с выражениями (7) и (8) константы скорости второго порядка можно определить по тангенсу угла наклона зависимостей или от времени.

Имеется множество реакций протекающих по кинетике второго порядка:

и простой случай, соответствующий равенству исходных и текущих концентраций реагентов

Разделяя переменные и интегрируя

Из уравнения (3) видно, что критериями правильности выбранного третьего порядка является линейность зависимостей или от t , постоянства значения k , вычисленное по формуле

для всех пар значений t и [ A ] и обратно пропорциональная зависимость между временем полупревращения и квадратом начальной концентрации реагента

В соответствии с уравнением (3) константа скорости третьего порядка может быть определена по тангенсу угла наклона зависимости или от времени.

Интегрирование уравнения (1)

приводит к выражениям

Из уравнений (2) и (3) следует, что критериями нулевого порядка по реагенту А являются линейный характер зависимости [ A ] от t , постоянство k , вычисленного по формуле

во всем диапазоне пар значений t – A и прямолинейная зависимость между временем полу превращения и начальной концентрацией реагента

Из уравнений (2) и (3) следует, что константа скорости нулевого порядка может быть определена по тангенсу угла наклона зависимостей [ A ]0 – [ A ] или [ A ] от времени

Сложные реакции представляют собой совокупность простых реакций. К сложным реакциям относятся обратимые реакции.

При кинетическом анализе сложных реакций руководствуются принципом независимости простых реакций, согласно которому каждая простая реакция, входящая в сложную ведет себя кинетически так, как если бы она была единственная.

в начальный момент времени концентрация реагента A составляет [ A ]0, а [ B ] = 0, то уравнение этой реакции запишется как

Выражая r через концентрацию [A] имеем

= k1<[A]0 – X> – k-1X

= k1<[A]0 – X> – k-1X

где X – количество молей вещества A в единице объеме, которое прореагировало к моменту τ и соответственно количество молей вещества B в единице объеме, которое образовалось к этому моменту. Преобразуя правую часть уравнения (2)

= k1[A]0 (k-1 + k1)X

В условиях равновесия

При τ ® ¥ X стремится к своему равновесному значению X ® X ¥ . Тогда

где

Тогда кинетическое уравнение (3) примет вид

Интегрируя это уравнение в соответствующих пределах

и

В соответствии с выражениями (6) и (7) кинетические зависимости для A и B будут иметь следующий вид

Пользуясь интегральной формой кинетического уравнения (5) и соотношением можно на основе кинетических данных определить значения констант скоростей k 1 и k -1

Так, в соответствии с (5)

так как , то

Подставляя последнее выражение в уравнение (8), имеем

Подставляя выражение (10) в уравнение (8), имеем

Рассмотрим систему параллельных реакций первого порядка

В соответствии с ранее принятыми обозначениями суммарная скорость расходования реагента A выразится уравнением

По форме уравнение (1) подобно кинетическому уравнению необратимой реакции первого порядка, поэтому его интегральная форма имеет вид.

Разрешая уравнение (2) относительно [ A ] имеем

Для определения констант k 1 и k 2 рассмотрим уравнения конкурирующих параллельных реакций.

Поделив почленно, левые и правые части уравнений (5) и (6), имеем уравнение , интегрирование которого приводит к равенству

Разделяя, левые и правые части уравнений (5) и (1), (6) и (7), приходим к очевидным равенствам

и

интегрирование которых дает уравнения:

и

Подставляя в последние уравнения выражение (4) приходим к равенствам

Уравнения (2) и (8) являются основой для определения абсолютных значений констант скорости конкурирующих реакций k 1 и k 2 . На первом этапе можно определить сумму констант скоростей k 1 + k 2 , пользуясь уравнением (2). Затем на основе линейных зависимостей между XB и X , а также XC и X определяют брутто константы и , из которых рассчитывают k 1 и k 2 по ранее определенному значению суммарной константы скорости k 1 + k 2 .

Нетрудно показать, что для трех параллельных реакций первого порядка

,

,

Этот случай более сложен по сравнению с предыдущим. Рассмотрим систему параллельных реакций

Уравнение скорости расхода A в этой системе реакций с учетом его количества, прореагировавшего к моменту времени t (Х) имеет вид:

или с учетом преобразований

обозначая , имеем

Разделяя переменные, приходим к выражению

Интегрируем левую часть уравнения (3) методом неопределенных коэффициентов, для чего представим левую её часть в виде суммы дробей.

или

так как , то и

Тогда и

Откуда и ,

С учетом (4) возвращаемся к уравнению (3)

Интегрирование уравнения (5) приводит к выражению

Откуда

или

Возвращаясь к соотношению преобразуем (6) в равенство

Рассмотрим систему двух последовательных реакций первого порядка

В силу принципа независимости скорости расходования реагента A выражается уравнением скорости необратимой реакции первого порядка

Решение которого дается в виде

, и

Уравнение скорости изменения концентрации промежуточных продуктов

Разделим почленно левые и правые части уравнений (3) и (1)

Уравнение (4) имеет признаки однородного уравнения первого порядка. Для его решения вводим обозначение

Подставляя последнее выражение в уравнение (4), имеем:

Разделяем переменные и интегрируем

и

тогда

и

или

Так как , то уравнение (5) можно выразить в форме

В тоже время в соответствии с уравнением (2)

Тогда уравнение (5) можно преобразовать в форму

Выведенные зависимости показывают, что в случае необратимых последовательных реакций уравнение для первого промежуточного продукта связано с характеристиками лишь первых двух стадий, оставаясь одинаковым при любом числе и характеристиках последующих стадий. При этом независимо от начальной концентрации реагента A , значение второй характеристики материального баланса укладывается на одну кривую, если её изображать как функцию ХА или t .

Используя уравнение (5) можно найти по экспериментальным данным путем подбора и зная, на основе кинетически исчерпывания A величину k 1 – определить k 2 .

Из анализа уравнения (6) следует, что при XA = 0 и XA = 1 , что говорит о наличии максимума . Его положение можно найти, приравнивая к нулю соответствующую производную

откуда

и значение максимума

Из выражений (8) и (9) видно, что положение и величина максимума промежуточного продукта в необратимых реакциях первого порядка зависит только от соотношения констант скоростей первых двух стадий. При этом, чем больше величина , тем ниже максимум и тем больше его положение смещается в сторону более низких степеней превращения (и наоборот). Очевидно, что по экспериментальному положению максимума можно определить по специальным номограммам или по уравнению (8) значение и использовать его в дальнейшем для описания значений концентраций B во времени согласно уравнению (7)

Уравнение образования продукта C :

Максимальная скорость соответствует точке перегиба на зависимости [ C ] от t и определяется из условия

Легко видеть, что это условие соответствует одновременно условию максимума концентрации B , определяемого уравнениями(8) и (9). Качественно проанализированные зависимости могут быть представлены графически.

Неэлементарные реакции состоят из ряда элементарных стадий, составляющих их механизм. Кинетика таких реакций определяется последовательностью элементарных стадий, их характером (обратимые, необратимые), природой реагентов, интермедиатов и продуктов реакции. При кинетическом анализе неэлементарных реакций возникает задача определения концентраций интермедиатов, играющих ключевую роль в образовании продуктов или расходовании реагентов. В качестве инструмента такого определения используется принцип квазистационарных концентраций Боденштейна – Семенова. Согласно этому принципу скорость изменения концентраций нестабильных интермедиатов пренебрежимо мала по сравнению со скоростью изменения концентраций реагентов и продуктов реакции и её можно считать равной нулю. Применение принципа стационарных концентраций к неэлементарным реакциям, протекающим по сложному механизму, позволяет исключить из кинетического описания процессов неизвестные концентрации интермедиатов и получить одно или некоторый минимум дифференциальных уравнений скорости, выраженных через подлежащие измерению концентрации реагентов и продуктов реакции.

Рассмотрим пример неэлементарной реакции, описываемой стехиометрией

и протекающей через образование интермедиата Q

Скорость реакции можно приравнять к скорости образования продукта B

В соответствии с принципом квазистационарных концентраций

откуда

Подставляя последнее выражение в уравнение (1) приходим к уравнению скорости реакции

Если экспериментально возможно непосредственно измерить скорость реакции, то обработку кинетических данных можно провести, преобразуя уравнение (3) как:

Последнее уравнение приводится к виду

Обрабатывая зависимость (4) в координатах по ординате находят k 1 , а по тангенсу угла наклона . Полученных констант достаточно для кинетического описания реакции, так как, разделив числитель и знаменатель уравнения (3) на k 2 , приходят к уравнению


источники:

http://poisk-ru.ru/s3490t4.html

http://www.trotted.narod.ru/physchem/26.htm