Уравнения математической физики дифференциальные уравнения

Please wait.

We are checking your browser. gufo.me

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6e0897ba1d0e0022 • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Уравнения математической физики дифференциальные уравнения

МИР МАТЕМАТИЧЕСКИХ УРАВНЕНИЙ

Библиотека > Книги по математике > Уравнения математической физики, дифференциальные уравнения с частными производными

Уравнения математической физики, дифференциальные уравнения с частными производными

  • Адамар Ж. Задача Коши для линейных уравнений с частными производными гиперболического типа. М.: Наука, 1978 (djvu)
  • Араманович И.Г., Левин В.И. Уравнения математической физики (2-е изд.). М.: Наука, 1969 (djvu)
  • Бабич В.М., Булдырев В.С. Асимптотические методы в задачах дифракции коротких волн. М.: Наука, 1972 (djvu)
  • Бабич В.М., Кирпичникова Н.Я. Метод пограничного слоя в задачах дифракции. Л.: ЛГУ, 1974 (djvu)
  • Бакельман И.Я. Геометрические методы решения эллиптических уравнений. М.: Наука, 1965 (djvu)
  • Бергман С. Интегральные операторы в теории линейных уравнений с частными производными. М.: Мир, 1964 (djvu)
  • Бернштейн С.П. Аналитическая природа решений дифференциальных уравнений эллиптического типа. Харьков: ХГУ, 1956 (djvu)
  • Беpc Л., Джон Ф., Шехтер М. Уравнения с частными производными. М.: Мир, 1966 (djvu)
  • Брело М. О топологиях и границах в теории потенциала. М.: Мир, 1974 (djvu)
  • Брело М. Основы классической теории потенциала. М.: Мир, 1964 (djvu)
  • Будак Б.М., Самарский А.А., Тихонов А.Н. Сборник задач по математической физике (3-е изд.). М.: Наука, 1979 (djvu)
  • Векуа ИН. Новые методы решения эллиптических уравнений. М.-Л. ГИТТЛ, 1948 (djvu)
  • Власова Б.А., Зарубин B.C., Кувыркин Г.Н. Приближенные методы математической физики: Учеб. для вузов. М.: Изд-во МГТУ им. Н.Э. Баумана, 2001 (djvu)
  • Вольперт А.И., Худяев С.И. Анализ в классах разрывных функций и уравнения математической физики. М.: Наука, 1975 (djvu)
  • Гельфанд И.М., Шилов Г.Е. Пространства основных и обобщенных функций (Обобщенные функции, выпуск 2). М.: Физматлит, 1958 (djvu)
  • Годунов С.К. Уравнения математической физики (2-е изд. ). М.: Наука 1979 (djvu)
  • Годунов С.К., Золотарева Е.В. Сборник задач по уравнениям математической физики. Новосибирск: Наука, 1974 (djvu)
  • Горбузов В.Н. Интегралы дифференциальных систем. Гродно: ГрГУ, 2006 (pdf)
  • Гординг Л. Задача Коши для гиперболических уравнений. М.: ИЛ, 1961 (djvu)
  • Городцов В.А. Софья Ковалевская, Поль Пенлеве и интегрируемость нелинейных уравнений сплошных сред. М.: Физматлит, 2003. (djvu)
  • Гурса Э. Курс математического анализа, том 3, часть 1. Бесконечно близкие интегралы. Уравнения с частными производными. М.-Л.: ГТТИ, 1933 (djvu)
  • Гюнтер Н.М. Интегрирование уравнений в частных производных первого порядка. Л.-М.: ОНТИ, 1934 (djvu)
  • Гюнтер Н. Теория потенциала и ее применение к основным задачам математической физики. М.: ГИТТЛ, 1953 (djvu)
  • Демидович Б.П., Марон И.А., Шувалова Э.З. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения. М.: Наука, 1967 (djvu)
  • Егоров Д. Интегрирование дифференциальных уравнений (3-е изд.). М.: Печатня Яковлева, 1913 (djvu)
  • Егоров Д.Ф. Уравнения с частными производными 2-го порядка с двумя независимыми переменными. М.: МГУ, 1899 (djvu)
  • Егоров Ю.В., Шубин М.А., Комеч А.И. Дифференциальные уравнения с частными производными — 2 (серия «Современные проблемы математики», том 31). М.: ВИНИТИ, 1988 (djvu)
  • Зайцев Г.А. Алгебраические проблемы математический и теоретической физики. М.: Наука, 1974 (djvu)
  • Зайцев В.Ф., Полянин А.Д. Метод разделения переменных в математической физике. СПб.: Книжный Дом, 2009 (pdf)
  • Заславский Г.М., Сагдеев Р.З. Введение в нелинейную физику: от маятника до турбулентности и хаоса. М.: Наука, 1988 (djvu)
  • Зельдович Я.Б., Мышкис А.Д. Элементы математической физики. Среда из невзаимодействующих частиц. М.: Наука, 1973 (djvu)
  • Зоммерфельд А. Дифференциальные уравнения в частных производных физики. М.: ИЛ, 1950 (djvu)
  • Ибрагимов Н.Х. Азбука группового анализа. М.: Знание, 1989 (djvu)
  • Ибрагимов Н.Х. Группы преобразований в математической физике. М.: Наука, 1983 (djvu)
  • Имшенецкий В.Г. Интегрирование дифференциальных уравнений с частными производными 1-го и 2-го порядков. М.: Изд. Моск. мат. общества, 1916 (djvu)
  • Йон Ф. Плоские волны и сферические средние в применении к дифференциальным уравнениям с частными производными. М.: ИЛ, 1958 (djvu)
  • Калоджеро Ф., Дигасперис А. Спектральные преобразования и солитоны. Методы решения и исследования нелинейных эволюционных уравнений. М.: Мир, 1985 (djvu)
  • Камке Э. Справочник по дифференциальным уравнениям в частных производных первого порядка. М.: Наука, 1966 (djvu)
  • Карпман В.И. Нелинейные волны в диспергирующих средах. М.: Наука, 1973 (djvu)
  • Кирхгоф Г. Механика. Лекции по математической физике. М.: АН СССР, 1962 (djvu)
  • Коркин А.Н. Сочинения, том 1. СПб.: Императорская Академия Наук, 1911 (djvu)
  • Коллатц Л. Задачи на собственные значения (с техническими приложениями). М.: Наука, 1968 (djvu)
  • Коул Дж. Методы возмущений в прикладной математике. М.: Мир, 1972 (djvu)
  • Кошляков Н.С. Глинер Э.Б. Смирнов М.М. Уравнения в частных производных математической физики. М.: Высшая школа, 1970 (djvu)
  • Кудряшов Н.А. Аналитическая теория нелинейных дифференциальных уравнений. Москва-Ижевск: Институт компьютерных исследований, 2004 (djvu)
  • Куликовский А.Г., Погорелов Н.В., Семенов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. М.: Физматлит, 2001 (djvu)
  • Курант Р. Уравнения с частными производными. М.: Мир, 1964 (pdf)
  • Курант Р., Гильберт Д. Методы математической физики. Том 1. М.-Л.: ГТТИ, 1933 (djvu)
  • Курант Р., Гильберт Д. Методы математической физики. Том 2. М.-Л.: ГТТИ, 1945 (djvu)
  • Куренский М.К. Дифференциальные уравнения. Книга 2. Дифференциальные уравнения с частными производными. Л.: Артиллерийская академия, 1934 (djvu)
  • Лаврентьев М.А. Вариационный метод в краевых задачах для систем уравнений эллиптического типа. М.: АН СССР, 1962 (djvu)
  • Ладыженская О.А. Краевые задачи математической физики. М.: Наука, 1973 (djvu)
  • Ладыженская О.А., Солонников В.А., Уралыдева Н.Н. Линейные и квазилинейные уравнения параболического типа. М.: Наука, 1967 (djvu)
  • Ладыженская О.А., Уральцева Н.Н. Линейные и квазилинейные уравнения эллиптического типа (2-е изд.). М.: Наука, 1973 (djvu)
  • Лакс П., Филлипс Р. Теория рассеяния. М.: Мир, 1971 (djvu)
  • Ландис E.M. Уравнения второго порядка эллиптического и параболического типов. М.: Наука, 1971 (djvu)
  • Лаптев Г.И., Лаптев Г.Г. Уравнения математической физики. М.: 2003 (pdf)
  • Лионс Ж.-Л. Некоторые методы решения нелинейных краевых задач. М.: Мир, 1972 (djvu)
  • Лионс Ж.-Л. Оптимальное управление системами, описываемыми уравнениями в частных производных. М.: Мир, 1972 (djvu)
  • Маделунг Э. Математический аппарат физики: Справочное руководство. М.: Наука, 1968 (djvu)
  • Маслов В.П. Асимптотические методы и теория возмущений. М.: Наука, 1988 (djvu)
  • Маслов В.П., Федорюк М.В. Квазиклассическое приближение для уравнений квантовой механики. М.: Наука, 1976 (djvu)
  • Марченко В.А., Хруслов Е.Я. Краевые задачи в областях с мелкозернистой границей. Киев: Наук. думка, 1974 (djvu)
  • Мизохата С. Теория уравнений с частными производными. М.: Мир, 1977 (djvu)
  • Миллер У. (мл.). Симметрия и разделение переменных. М.: Мир, 1981 (djvu)
  • Миранда К. Уравнения с частными производными эллиптического типа. М.: ИЛ, 1957 (djvu)
  • Михайлов В.П. Дифференциальные уравнения в частных производных.М.: Наука, 1976 (djvu)
  • Михлин С.Г. Курс математической физики. М.: Наука, 1968 (djvu)
  • Михлин С.Г. Линейные уравнения в частных производных. М.: Высшая школа, 1977 (djvu)
  • Михлин С.Г. (ред.). Линейные уравнения математической физики. М.: Наука, 1964 (djvu)
  • Морс Ф.М., Фешбах Г. Методы теоретической физики. Том 1. М.: ИЛ, 1958 (djvu)
  • Морс Ф.М., Фешбах Г. Методы теоретической физики. Том 2. М.: ИЛ, 1960 (djvu)
  • Нагумо М. Лекции по современной теории уравнений в частных производных. М.: Мир, 1967 (djvu)
  • Назимов П.С. Об интегрировании дифференциальных уравнений. М.: МГУ, 1880 (djvu)
  • Нобл Б. Применение метода Винера — Хопфа для решения дифференциальных уравнений с частными производными. М.: ИЛ, 1962 (djvu)
  • Оганесян Л.А., Руховец Л.А. Вариационно-разностные методы решения эллиптических уравнений, Ереван: АН АрмССР, 1979 (djvu)
  • Олейник О.А., Иосифьян Г.А., Шамаев А.С. Математические задачи теории сильно неоднородных упругих сред. М.: Изд-во МГУ, 1990 (djvu)
  • Паламодов В.П. Линейные дифференциальные операторы с постоянными коэффициентами. М.: Наука, 1967 (djvu)
  • Петровский И.Г. Лекции об уравнениях с частными производными (3-е изд.). М.: Наука, 1961 (djvu)
  • Полянин А.Д., Журов А.И. Методы разделения переменных и точные решения нелинейных уравнений математической физики. М.: ИПМех РАН, 2020 (pdf)
  • Полянин А.Д., Сорокин В.Г., Журов А.И. Дифференциальные уравнения с запаздыванием: Свойства, методы, решения и модели. М.: ИПМех РАН, 2022 (pdf)
  • Расулов М.Л. Метод контурного интеграла и его применение к исследованию задач для дифференциальных уравнений. М.: Наука, 1964 (djvu)
  • Рождественский Б.Л., Яненко Н.Н. Системы квазилинейных уравнений и их приложения к газовой динамике (2-е изд.) М.: Наука, 1978 (djvu)
  • Салтыков Н.Н. Исследования по теории уравнений с частными производными первого порядка одной неизвестной функции. Харьков, 1904 (djvu)
  • Самарский А.А. Введение в теорию разностных схем. М.: Наука, 1971 (djvu)
  • Синцов Д.М. Теория коннексов в пространстве в связи с теорией дифференциальных уравнений в частных производных первого порядка. Казань: КГУ, 1894 (pdf)
  • Смирнов М.М. Дифференциальные уравнения в частных производных второго порядка. М.: Наука, 1964 (djvu)
  • Смирнов М.М. Задачи по уравнениям математической физики (6-е изд.). М.: Наука, 1973 (djvu)
  • Смирнов М.М. Уравнения смешанного типа. М.: Наука, 1970 (djvu)
  • Соболев С.Л. Уравнения математической физики (4-е изд.). М.: Наука, 1966 (djvu)
  • Степанов В.В. Курс дифференциальных уравнений (8-е изд.). М.: ГИФМЛ, 1959 (djvu)
  • Тихонов А.Н., Самарский А.А. Уравнения математической физики (5-е изд.). М.: Наука, 1977 (djvu)
  • Трев Ж. Лекции по линейным уравнениям в частных производных с постоянными коэффициентами. М.: Мир, 1965 (djvu)
  • Фещенко С.Ф., Шкиль Н.И., Николенко Л.Д. Асимптотические методы в теории линейных дифференциальных уравнений. Киев: Наук. думка, 1966 (djvu)
  • Фущич В.И., Никитин А.Г. Симметрия уравнений квантовой механики. М.: Наука, 1990 (djvu)
  • Хёрмандер Л. К теории общих дифференциальных операторов в частных производных. М.: ИЛ, 1959 (djvu)
  • Ховратович Д.В. Уравнения математической физики, МГУ (pdf)
  • Шамровский А.Д. Асимптотико-групповой анализ дифференциальных уравнений теории упругости. Запорожье: Изд-во Запорожской государственной инженерной академии, 1997 (pdf)
  • Шапиро Д.А. Конспект лекций по математическим методам физики. Часть 1 (Уравнения в частных производных. Специальные функции. Асимптотики). Новосибирск: НГУ, 2004 (djvu)
  • Шапиро Д.А. Конспект лекций по математическим методам физики. Часть 2 (Представления групп и их применение в физике. Функции Грина). Новосибирск: НГУ, 2004 (djvu)
  • Шилов Г.Е. Математический анализ. Второй специальный курс. М.: Физматлит, 1965 (djvu)
  • Шишмарев И.А. Введение в теорию эллиптических уравнений. М.: МГУ, 1979 (djvu)
  • Шубин М.А. Псевдодифференциальные операторы и спектральная теория (2-е изд.). М.: Добросвет, 2003 (pdf)
  • Яковенко Г.Н., Аксёнов А.В. (ред.). Симметрии дифференциальных уравнений. Сборник научных трудов. М.: МФТИ, 2009 (pdf)

Веб-сайт EqWorld содержит обширную информацию о решениях различных классов обыкновенных дифференциальных уравнений, дифференциальных уравнений с частными производными (уравнений математической физики), интегральных уравнений, функциональных уравнений и других математических уравнений.

Основные типы уравнений математической физики

Основные типы уравнений

К основным уравнениям математической физики относятся следующие дифференциальные уравнения в частных производных второго порядка.

1. Волновое уравнение:

.

Это уравнение является простейшим уравнением гиперболического типа. К его исследованию приводит изучение процессов поперечных колебаний струны, продольных колебаний стержня, электрических колебаний в проводах и т. д.

2. Уравнение теплопроводности, или уравнение Фурье:

.

Это уравнение является простейшим уравнением параболического типа. К его исследованию приводит рассмотрение процессов распространения тепла, фильтрации жидкости и газа в пористой среде, изучение некоторых вопросов теории вероятностей и т. д.

3. Уравнение Лапласа:

.

Это уравнение относится к простейшим уравнениям эллиптического типа. К его исследованию приводит изучение задач об электрических и магнитных полях, о стационарном тепловом состоянии, задач гидродинамики и т. д.

В выписанных уравнениях искомая функция u зависит от двух переменных t, x или x, y. Рассматриваются также уравнения и для функций с большим числом переменных. Например, волновое уравнение с тремя независимыми переменными имеет вид

,

и уравнение Лапласа

.

Уравнение колебаний струны.

Формулировка краевой задачи

В математической физике струной называют гибкую упругую нить. Пусть струна в начальный момент времени расположена на отрезке 0≤xl оси Ox. Предположим, что ее концы закреплены в точках x=0 и x=l. Если струну отклонить от первоначального положения, а потом предоставить самой себе или придать ее точкам некоторую скорость, то точки струны будут совершать движение. Задача заключается в определении формы струны в любой момент времени и в определении закона движения каждой точки струны в зависимости от времени.

Если предположить, что движение точек струны происходит перпендикулярно оси Ox и в одной плоскости, то процесс колебания струны описывается одной функцией u(x,t), которая определяет величину перемещения точки струны с абсциссой x в момент t.

Доказано, что при отсутствии внешней силы функция u(x,t) должна удовлетворять дифференциальному уравнению в частных производных второго порядка

.

Для полного определения движения струны одного уравнения недостаточно. Искомая функция u(x,t) должна удовлетворять граничным условиям, указывающим, что делается на концах струны (при x=0 и x=l), и начальным условиям, описывающим состояние струны в начальный момент (t=0). Совокупность граничных и начальных условий называется краевыми условиями.

Пусть, например, концы струны при x=0 и x=l неподвижны. Тогда при любом t должны выполняться равенства

Это – граничные условия для рассматриваемой задачи. В начальный момент t=0 струна имеет определенную форму, которую мы ей придали. Пусть эта форма определяется функцией f(x), т. е.

Далее в начальный момент должна быть задана скорость в каждой точке струны, которая определяется функцией φ(x), т. е.

.

Эти два условия называются начальными условиями.

Колебания бесконечной струны.

Формула Даламбера решения задачи Коши

для волнового уравнения

Прежде чем решать задачу о колебаниях закрепленной струны, рассмотрим более простую задачу – о колебаниях бесконечной струны. Если представить очень длинную струну, то ясно, что на колебания, возникающие в ее средней части, концы струны не будут оказывать заметного влияния.

Рассматривая свободные колебания, мы должны решить однородное уравнение

при начальных условиях

, ,

где функции f(x) и g(x) заданы на всей числовой оси. Такая задача называется задачей с начальными условиями или задачей Коши.

Преобразуем волновое уравнение к каноническому виду, содержащему смешанную производную. Уравнение характеристик

распадается на два уравнения:

интегралами которых служат прямые

Введем новые переменные ξ=xat, η=x + at и запишем волновое уравнение для переменных ξ и η.

, ,

,

,

и подставляя их в исходное уравнение, видим, что уравнение колебания струны в новых координатах будет

.

Интегрируя полученное равенство по η при фиксированном ξ, придем к равенству . Интегрируя это равенство по ξ при фиксированном η, получим

,

где φ и ψ являются функциями только переменных ξ и η соответственно. Следовательно, общим решением исходного уравнения является функция

. (8)

Найдем функции φ и ψ так, чтобы удовлетворялись начальные условия:

.

,

.

Интегрируя последнее равенство, получим:

,

где х0 и С – постоянные. Из системы уравнений

Таким образом, мы определили функции φ и ψ через заданные функции f и g, причем полученные равенства должны иметь место для любого значения аргумента. Подставляя в (8) найденные значения φ и ψ, будем иметь

.

Найденное решение называется формулой Даламбера решения задачи Коши для волнового уравнения

Пример. Решить уравнение при начальных условиях , .

Используя формулу Даламбера, сразу получаем

.

Решение волнового уравнения

методом разделения переменных

Метод разделения переменных применяется для решения многих задач математической физики. Пусть требуется найти решение волнового уравнения

, (9)

удовлетворяющее краевым условиям

u(x,0)=f(x), . (12),(13)

Частное решение уравнения (9), удовлетворяющее граничным условиям (10) и (11), ищут в виде произведения двух функций:

Подставляя функцию u(x,t) в уравнение (9) и преобразовывая его, получим

.

В левой части этого уравнения стоит функция, которая не зависит от x, а в правой – функция, не зависящая от t. Равенство возможно только в том случае, когда левая и правая части не зависят ни от x, ни от t, т. е. равны постоянному числу. Обозначим

, где λ>0. (14)

Из этих уравнений получаем два однородных дифференциальных уравнения второго порядка с постоянными коэффициентами

и . (15)

Общее решение этих уравнений

,

,

где A, B, C, D – произвольные постоянные.

Постоянные A и B подбирают так, чтобы выполнялись условия (10) и (11), из которых следует, что X(0)=X(l)=0, так как T(t)≠0 (в противном случае u(x,t)=0). Учитывая полученные равенства, находим

А=0 и .

Так как B≠0 (иначе, было бы X=0 и u=0, что противоречит условию), то должно выполняться равенство

,

.

Найденные значения λ называют собственными значениями для данной краевой задачи. Соответствующие им функции X(x) называются собственными функциями.

Заметим, что, если в равенстве (14) вместо – λ взять число λ (λ>0), то первое из уравнений (15) будет иметь решение в виде

.

Отличное от нуля решение в такой форме не может удовлетворять граничным условиям (10) и (11).

Зная , можем записать

.

Для каждого n получаем решение уравнения (9)

.

Так как исходное уравнение (9) линейное и однородное, то сумма решений также является решением, и потому функция

(16)

будет решением дифференциального уравнения (9), удовлетворяющим граничным условиям (10) и (11).

Найденное частное решение должно еще удовлетворять начальным условиям (12) и (13). Из условия (12) получим

.

Далее, дифференцируя члены ряда (16) по переменной t, из условия (13) будем иметь

.

Правые части двух последних равенств есть ряды Фурье для функций f(x) и φ(x), разложенных по синусам на интервале (0, l). Поэтому

. (17)

Итак, ряд (16), для которого коэффициенты Cn и Dn определяются по выписанным формулам, если он допускает двукратное почленное дифференцирование, представляет решение уравнения (9), удовлетворяющее граничным и начальным условиям.

Пример. Найти решение краевой задачи для волнового уравнения

, 0


источники:

http://eqworld.ipmnet.ru/ru/library/mathematics/pde.htm

http://pandia.ru/text/79/052/35879.php