Уравнения математической физики в примерах и задачах

Уравнения математической физики: примеры и задачи

Уравнения математической физики для чайников

Задачи математической физики состоят в отыскании решений уравнений в частных производных, удовлетворяющих некоторым дополнительным условиям. Такими дополнительными условиями чаще всего являются так называемые граничные условия, т.е. условия, заданные на границе рассматриваемой среды, и начальные условия, относящиеся к одному какому-нибудь моменту времени, с которого начинается изучение данного физического явления.

В этом разделе вы найдете бесплатные примеры решений по предмету «Уравнения математической физики» (подраздел курса «Дифференциальные уравнения в частных производных» с физическими приложениями) для студентов. Разобраны типовые примеры для самых распространенных уравнений (уравнения Лапласа, Пуассона, теплопроводности, волновое), методов (разделения переменных, Фурье, Даламбера) и задач (Штурма-Лиувилля, Пфаффа и т.д.).

Задачи с решениями по уравнениям математической физики онлайн

Задача 1. Определить тип уравнений. Привести к каноническому виду. $$ u_+4u_+u_+u_x+u_y-x^2y=0. $$

Задача 2. Решить методом разделения переменных следующую задачу для неоднородного волнового уравнения.

Задача 3. Решить методом разделения переменных следующую задачу для неоднородного уравнения теплопроводности:

Задача 4. Решить методом разделения переменных следующую задачу для уравнения Пуассона в кольце.

Задача 5. Решить методом разделения переменных следующую задачу для уравнения Лапласа в кольцевом секторе.

Задача 6. Решить уравнение Лапласа в прямоугольнике:

Задача 7. Используя формулу Пуассона, найти решение задачи Коши для уравнения теплопроводности.

Задача 8. Решить задачу Коши для волнового уравнения:

Задача 9. Решить смешанную задачу для волнового уравнения

Задача 10. Решить задачу Дирихле для уравнения Лапласа для круга:

Задача 11. Решить уравнение методом Лагранжа-Шарпи.

Задача 12. Решить уравнение Пфаффа

$$ z^2 dx +zdy +(3zx +2y)dz=0. $$

Заказать работу по уравнениям в частных производных? Легко!

Нужно выполнить контрольную работу или задания из практикума по УМФ или ДУвЧП? Нет проблем — примем заказ от очников и заочников любых ВУЗов! Стоимость консультации по решению уравнения математической физики — от 150 рублей, подробное оформление согласно требованиям методички в Word.

Методы математической физики в примерах и задачах, в 2 томах, Том I, Горюнов А.Ф., 2015

Методы математической физики в примерах и задачах, в 2 томах, Том I, Горюнов А.Ф., 2015.

Учебное пособие ориентировано на специальности «Прикладная математика и информатика», «Физика», «Механика», «Физика атомного ядра и частиц» и др. Пособие представляет собой сборник задач и примеров по уравнениям математической физики. Темы первого тома: построение математических моделей различных физических процессов, решение задач методом Фурье и методом интегральных преобразований, интегральные уравнения. При решении задач используется аппарат обобщенных функций.
Пособие адресовано студентам, изучающим математическую и теоретическую физику; некоторые разделы могут быть полезны аспирантам, инженерно-техническим и научным работникам, интересующимся данной областью знаний.
Допущено Учебно-методическим объединением вузов направления подготовки 140300 «Ядерные физика и технологии» в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению «Ядерные физика и технологии».

МОДЕЛИ МАТЕМАТИЧЕСКОЙ ФИЗИКИ.

Предметом математической физики является разработка методов решения задач, возникающих при изучении явлений природы. Реальные процессы характеризуются величинами, зависящими (в общем случае) от координат и времени. Соотношения между этими величинам, записанные в математических терминах, составляют математическую модель данного процесса. Указанные соотношения являются следствием законов природы и представляют собой дифференциальные, интегральные, интегро-дифференциальные уравнения, а также набор дополнительных условий (граничных, начальных), учитывающих специфические свойства системы. Математическая модель лишь приближенно отражает эволюцию системы, так как невозможно учесть все факторы, определяющие ее поведение. С другой стороны, построение более точных моделей приводит к достаточно сложным задачам, аналитическое решение которых получить не удается. Поэтому на первом этапе изучения какого-либо процесса используется сравнительно простая модель, в которой не учитываются факторы, мало влияющие на его развитие. В ряде случаев это определяется ограничениями, которые накладываются на систему: малость отклонения величин от их равновесных значений, пренебрежение некоторыми из внешних воздействий и т.п. Как правило, при достаточно жестких ограничениях можно получить линейную модель, для изучения которой существуют различные эффективные методы. Таким образом, формирование математической модели (или постановка задачи) зависит от того, какие аспекты конкретного явления считаются главными, а какие второстепенными. Упрощенная модель является стартовой: после решения соответствующей задачи, анализа развития изучаемого явления и т. п. можно переходить к более сложным моделям.

ОГЛАВЛЕНИЕ.

Предисловие
Предисловие к первому тому
Обозначения
Глава I. Модели математической физики
Литература к главе 1
1.1. Модели механики
1.2. Модели теплопроводности и диффузии
1.3. Модели газо- и гидродинамики
1.4. Модели электродинамики
1.5. Ответы
Глава 2. Метод разделения переменных
Литература к главе 2
2.1. Задачи для однородного уравнения с однородными граничными условиями
2.2. Задачи для неоднородного уравнения
2.3. Задачи, в которых применяются специальные функции и ортогональные полиномы
2.4. Ответы
Глава 3. Метод интегральных преобразований
Литература к главе 3
3.1. Преобразование Фурье
3.2. Преобразование Лапласа
3.3. Преобразование Меллина
3.4. Преобразование Ганкеля
3.5. Ответы
Глава 4. Методы решения интегральных уравнений
Литература к главе 4
4.1. Вывод интегральных уравнений
4.2. Решение интегральных уравнений
4.3. Ответы
Основные формулы
Литература

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Методы математической физики в примерах и задачах, в 2 томах, Том I, Горюнов А.Ф., 2015 — fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России. Купить эту книгу

Уравнения математической физики в действии

Сегодня поговорим о примерах в дисциплине уравнения математической физики общими словами без погружения в сухой, академический язык и множества формул.

По шкале сложности для чистой математики эта дисциплина на мой субъективный взгляд получает 7/10. Но это не значит, что эти формулы легки для зазубривания и запоминания. Тем более говорить о том, что я могу сделать открытие в данной области которое попадет в учебники, например объясняя физику какого — либо нового процесса или уточняя уже существующий. Если подумать, то, например выбирая какой-либо параграф учебника по данному предмету, то он исписан формулами, которые если провести аналогию похож на модуль по программированию. Скажу сразу мне преподавали данный предмет очень плохо, не объясняя, что данные формулы значат, точнее заглавие было например: «Уравнение волны» или «Колебание мембраны», а дальше переписывали все формулы в параграфе с короткими комментариями что откуда, весьма скудными в полной тишине. Препод перелистывал страницы презентации и ходил туда-обратно пока мы переписывали. Видно, что не ему, ни мне это было не нужно, как бы для общего развития. Скорее всего надо было читать дополнительную литературу чтобы понять, но там уровень для подкованного студента, предметов было много и где-то были пробелы и особо не было времени на все распылиться. Ну это так, к слову. К слову, чем больше людей надо учить в промежутке времени, тем меньше времени уделяется каждому студенту и тем хуже уровень знаний у каждого студента, ну это в пределе.

Ну это было уже давно, лекций не осталось, практика забылась, из головы все выветрилось как талая вода. Вот пример волны наглядный:

Волна

Как бы это уравнение бегущей волны с незакрепленными концами. Я мало что знаю об волнах, даже на уровне физики школьного курса, что-то типа амплитуды, периода, волнового числа и всего такого. Волны бывают продольные, поперечные, сферические, спиральные и другие. Это я только что прочитал на википедии.

Данный код ниже представляет практический интерес.

Как видите есть две функции, ksi и fi, они заданы тригонометрическими функциями sin, cos. Они характеризуют нашу волну. Там же есть аргументы функций 15*x и 18*x. Если, например увеличивать число 15 или число 18, то количество холмов будет увеличиваться, по-умному это значит, что чем большее число мы впишем в скобки, тем самым мы увеличиваем количество периодов функций данных, которые уместятся в заданный промежуток числа x. При увеличении будет сжиматься график вдоль оси Ox.

Икс то мы не увеличивали, шаг остался тем же около 0.01. Если мы будем уменьшать данные аргументы, то количество полных периодов функций будет меньше и как бы график растянется вдоль оси Ox.

А если мы вынесем за скобки и будем увеличивать/уменьшать само значение функции, как на коде выше, то будет растягиваться/сжиматься вдоль оси ординат, то есть вдоль оси Oy. Что показано на графиках ниже.

Здесь растяжение настолько большое что не вмещается в рабочее пространство и надо увеличивать рабочее пространство сцены и отдалять наблюдательное око.

А ниже наоборот сжатие относительно оси ординат.

Дело в том, я вот заметил, что каждое объяснение волн очень сложное, трудно выстроить в голове какие-либо упорядоченные знания об этом. Но я решил, что буду заниматься теперь только самыми насущными вещами, а не чтением гуманитарных статеек в интернете. Я очень много времени потратил на безделье и чтение всяких новостей, я превратился в гуманитария и не заметил.

С другой стороны, а как реализовать эти знания и монетизировать их? Не думаю, что есть вакансии, с требованием к программисту рисовать волны в браузере.

А вот второй пример посложнее, где уравнение окружность:

Волновая окружность

Хотелось сделать такой круг с волнами в виде, который похож на ютубе видел, как анимация голосовых волн от микрофона, но не получилось.

Здесь также можно увеличивать аргумент или/и значение функции и будет весьма интересно просмотреть результат.

Перейдем к следующему примеру, это концентрические окружности с волновым движением по оси Y:

Псевдо-мембрана

Чем-то похоже на изделие №1. Тот же принцип, но уже по массиву колец изменяется график, все кольцо увеличивается и уменьшается на одно значение, а другое кольцо уже на другое.

Чтобы улучшить вид, надо уменьшить шаг до тысячной доли, увеличить размер массива vertices в 10 раз, тогда не будет видно разрезов и будет идеально.

Глаз в положении 0,0,2

Резюмируя, хочу сказать вот многие говорили: «Зачем эти синусы и косинусы нужны?»

Вот для этого и многих других вещей, я, например написал об этом здесь, кто-то еще что-то придумает получше. Хотя трудно найти веб-программиста-математика-физика-художника, адская смесь получается.

Да, статья получилась не особо научной и в некотором роде объективной, но надо было чем-то заполнить пространство между картинками, спасибо у меня все!


источники:

http://obuchalka.org/2018020498839/metodi-matematicheskoi-fiziki-v-primerah-i-zadachah-v-2-tomah-tom-i-gorunov-a-f-2015.html

http://habr.com/ru/post/574410/